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Abstract: Haze pollution is a problem that cannot be ignored in the process of building sustainable
cities, and while shifting industrial enterprises can solve the problem at the root, it is not conducive
to the sustainable development of urban economies. This paper discusses the role of industrial
agglomeration on urban pollution amelioration (haze pollution) using a sample of 253 prefecture-
level cities in China. The highlight of this paper is the study of economic and environmental factors in
the development of sustainable cities in the same framework and a series of econometric treatments
that greatly increase the accuracy of the empirical evidence. Research intuitively shows that China’s
haze pollution is clustered in spatial distribution and is spatially heterogeneous in concentration.
With the passage of time, haze pollution has a tendency to move from an H–H concentration area to
an L–L concentration area. The regression results show that an increase in the scale of local industrial
agglomeration will lead to a decrease in local haze pollution; but an increase in the scale of local
industrial agglomeration will lead to an increase in haze pollution in adjacent areas. Industrial
agglomeration has significant spatial spillover effects, which are spatially heterogeneous. In addition,
spillover effects between regions are greater than those within regions. After replacing the spatial
weight matrix and controlling the endogenous problem using the instrumental variable method, the
conclusion is still robust.

Keywords: industrial agglomeration; haze pollution; sustainable cities; spatial econometric model

1. Introduction

Sustainable development is the theme of economic development in the world today.
In Our Common Future, sustainable development was first defined as “development that
meets the needs of the present without compromising the ability of future generations to
meet their needs”. Sustainable cities give the concept of sustainable development to cities,
implying that sustainable cities have a rich connotation. In China, research on sustain-
able cities is still immature, with current studies focusing more on their environmental
components such as ecological construction or environmental protection [1] but neglect-
ing the economic sustainability of cities. However, for developing countries, economic
development and environmental protection are often at odds with each other. In the rapid
development of more than 20 years, the new type of economy represented by China has
always paid attention to the expansion of “quantity” but ignored the improvement of
“quality” [2]. This crude economic development method has promoted China’s economic
take-off on the one hand [3], but on the other hand, it has also led to increasingly serious
environmental pollution problems in China and reduced the quality of economic devel-
opment [4], which is not conducive to the long-term stable and sustainable development
of China’s economy [5]. Abandoning local industrial enterprises seems to be the radical
cure for achieving environmental performance of sustainable cities, but it is also the worst
way. Industrial enterprises are the backbone of many cities, such as: the revitalization
strategy of the old industrial base in Northeast China [6,7], the strategy of China’s western
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development [8], and the “Belt and Road” initiative [9]. These projects affect the economic
lifeblood of many cities and are by their very nature industrial agglomerations. It is there-
fore unscientific and unwise to try to abandon industrial agglomeration and talk about
sustainable development, leaving the economy behind.

At present, China’s industrial agglomeration still shows the characteristics of low-
level and unbalanced development. Compared with the industrial agglomeration in the
United States, the gap of industrial production between Chinese cities is larger, and the
overall economic development and population distribution are more unbalanced. The
internal industrial connection of urban agglomeration is not close enough, and the level
of coordinated development among industries is poor. According to the characteristics of
China’s regional scale distribution, we calculated the industrial spatial concentration degree
in China and found that the industrial concentration degree of most industries is still at a
medium or low level. High-end technology industries with fast core technology renewal,
such as precision instruments, fine chemicals, and pharmaceutical industries, have not yet
formed an agglomeration effect in China. China’s industrial space agglomeration still has
large technical barriers, the core high-tech is still in the hands of foreign investors, and for
a long period of time, low-end and outsourcing businesses still occupy the mainstream of
China’s industry.

Research on regional industrial agglomeration and environmental governance has not
been uniform in its findings [10]. The idea that industrial agglomeration is beneficial to
environmental pollution control was first based on the Porter hypothesis [11]. The Porter
hypothesis has been used to explain the problem in the same way, as they argue that the
reduction in labour and transport costs brought about by industrial agglomeration will
promote technological improvements in enterprises, as well as social responsibility and
green innovation [12]. This innovation compensation mechanism reduces the pressure of
regional pollution control. This theory was later developed into the scale effect theory [13]
and the knowledge spillover theory [14]. The scale effect theory suggests that the scale
effect of specialised division of labour among industrial enterprises stimulates sustainable
production behaviour [15,16]. At the same time, industrial agglomeration brings about
centralized pollution control and pollution outsourcing, which can improve production effi-
ciency and thus alleviate haze pollution [17]. The “learning effect” and “competition effect”
brought about by knowledge spillover will eventually promote technological progress,
adjust the regional industrial structure, promote regional green production, and thus re-
duce haze pollution [18,19]. Studies suggesting that industrial agglomeration exacerbates
haze pollution are based on the “crowding effect” hypothesis [20], which suggests that
industrial agglomeration creates severe economic competition and that the pressure on
enterprises to survive leads to unsustainable production behaviour [21]. The government,
in order to develop the economy, will indulge in such behaviour, further creating a “pol-
lution haven” [22] and exacerbating environmental pollution. However, as the Chinese
government has taken environmental issues more seriously [23], it has elevated the results
of environmental management to the forefront of officials’ competitive evaluation [24].
This “crowding effect” is also decreasing.

Of course, a good environment is also one of the necessary conditions for a sustainable
city. Haze pollution is the main pollutant of air pollution, which is formed by water
vapour and particulate pollutants, of which PM2.5 and PM10 are the most important
observations [25], and it has a clear spatial and temporal variability [26,27]. Therefore,
the prevention and control of haze pollution are some of the core steps in the process
of development of sustainable cities. There is a large literature on haze, such as urban
agglomeration development [28], road traffic pollution [29], public health expenditure [30],
and residents’ health and mortality [31]. Furthermore, PM10 produced by industrial point
sources was significantly higher than that produced by other regions [32].

Both industrial agglomeration and haze pollution control are important components
of sustainable cities. Much of the research between the two has focused on the economic
consequences, industrial agglomeration and pollution emission supervision [33], land-use
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pattern after pollution [34], financial consequences of pollution estimation [35], industrial
structure characteristics [14], and many other aspects. At the same time, due to the
spillover effects of industrial agglomeration and the mobility of pollution, some scholars
have studied the spatial nature of the relationship between the two [36], but most of them
do not discuss causality identification caused by endogenous problems [29,30]. This greatly
reduces the credibility of the results. In addition, there are still many other problems,
such as excessively high selection of sample levels leading to insufficient sample size [3],
excessively simple setting of spatial weight matrix [2], or unreasonable setting of spatial
weight matrix [14].

The vigorous development of design-based spatial econometrics in recent years has
provided us with effective tools to solve these problems. This paper starts with the
producer’s production decision, improves on the Ciccone and Hall research foundation,
establishes a production–pollution decision model, and further includes the spatial factor
into the model. [36] The following paragraph explains the measurement and selection
reasons of the relevant variables in the model.

This paper selects contiguity-based spatial weights matrix for baseline research.
Moran’s I is used to analyse the global spatial auto-correlation and investigate the spatial
agglomeration of the entire spatial sequence. The results show that industrial agglomera-
tion and PM2.5 have a positive spatial auto-correlation, so that it is sufficient and necessary
to select a spatial measurement model for research. Furthermore, we used Moran’s I scat-
terplot to depict local spatial correlations and found that China’s haze pollution is clustered
in spatial distribution and spatially heterogeneous in concentration. Over time, the trend
of moving from high-value and high-value (H–H) concentrated areas to low-value and
low-value (L–L) concentrated areas indicates that the haze concentration in prefecture-level
cities in China has declined from 2012 to 2016. Then, this paper uses the two-way fixed spa-
tial Durbin model (SDM) to perform regression analysis on industrial agglomeration and
haze pollution. The regression results show that the increase in the scale of local industrial
agglomeration will lead to the reduction of local haze pollution. However, the increase
in the scale of local industrial agglomeration will lead to an increase in haze pollution in
adjacent areas. Industrial agglomeration has significant spatial spillover effects, and the
spillover between spatially heterogeneous regions is greater than that within regions.

In order to ensure the robustness of the conclusions, this study further replaces the
adjacency matrix with the inverse distance matrix and the economic geographic nesting
matrix and re-substitutes it into the SDM for empirical research. The results of the robust-
ness test show that the signs of the coefficients of the variables in the direct and indirect
effects are the same, and the significance is roughly the same. Among them, the direct and
indirect effects of industrial agglomeration (IA) terms are both significant. Overall, the
empirical results are consistent with the baseline study, indicating that the conclusions are
robust. Furthermore, in order to alleviate the “pseudo-saliency” caused by the endogenous
problem, this paper uses the two-stage least squares regression method and the Generalized
Spatial Two-stage Least Square proposed at the same time, using topographic undula-
tion as an instrumental variable to explain industrial agglomeration. After conducting
instrumental variables to deal with the endogenous problems, the empirical results are still
robust.

The marginal contributions of this paper are: Firstly, the paper discusses the research
questions within the framework of causal identification, making the empirical results purer
and increasing the credibility of the study. Secondly, the paper expands the sample size
and uses more spatial weight matrices, which largely alleviates the empirical bias brought
about by the study and increases the persuasiveness of the study. Finally, linking the
environmental element of sustainable cities to the lesser regarded economic element is
a useful addition to the research in the field of sustainable cities from a “double-win”
perspective.
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2. Methodology
2.1. Spatial Econometric Model Derivation and Design

According to Cobb–Douglas Production Function, and incorporating industrial ag-
glomeration into the production function, the model in this paper is derived as follows:

y = KαL1−α, (1)

where K is the capital input and L is the labor input.
By adding the aggregation effect function G(al) to the production function, we get:

Y = G(al)y = G(al)KαL1−α. (2)

The following conditions are known:

Production Q = (1− θ)Y
Haze pollution PM = h(θ)Y

where the haze pollution function h(θ) = A−1(1− θ)
1
β .

A is the level of technology, β ∈ (0, 1), and θ ∈ (0, 1) denotes the proportion of all
production resources used by the firm to reduce pollution.

This study sets out the following production decisions for firms:
Step 1. Given the cost of capital and wages, choose the optimal capital–labour ratio

that minimises the production cost of potential output, i.e., solve the convex optimisation
problem:

cl

(
c f , cw

)
= min

{
c f K + cwL, Y = G(al)y = 1

}
, (3)

Get the first-order condition:
∂Y
∂K
∂Y
∂L

=
cw

c f
. (4)

Step 2. Given the cost of emissions and the cost per unit of potential output, choose the
optimal amount of emissions and potential output that minimises the cost of production
per unit of product, i.e., solve the convex optimisation problem:

cq
(
cl , cp

)
= min

{
cp APM + clY, (A·P)βY1−β = 1

}
, (5)

Get the first-order condition:

(1− β)A·PM
βY

=
cl
cp

. (6)

This study sets out the following pollution decisions for firms:

Let the price of product Q be exogenously given as p.
Then total revenue E = pQ, total cost C = clY + cp AY, and profit R = E− C, assuming
that the market is perfectly competitive, i.e., pQ = clY + cp AY.

Then, by taking the above equation into (6), we get:

PM = β
pQ
cp A

= β(1− θ)pcp
−1 A−1G(al)KαL1−α, (7)

Dividing both sides simultaneously by L, logarithm gives:

lnPM = ln[β(1− θ)p]− lncp − lhA + lnG(al) + αlnk, (8)

where ln[β(1− θ)p] is constant. G(al) = IAβ1 . Equation (9) can therefore be organized as:

lnPM = β0 + β1lnIA + lnZ, (9)
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where β0 = ln[β(1− θ)p] and Z = cp
−1 A−1k.

Anselin argues that economic units in any region do not exist in isolation but are
linked to their neighbours in some way; the closer the geographical distance the stronger
the link [36]. Lesage and Pace constructed a spatial Durbin model (SDM) with both spatial
lagged terms of the dependent variable and spatial lagged terms of the independent
variable, taking into account the spatial dependence of the dependent and independent
variables. [37] Based on the spatial panel Durbin model and with reference to the STIRPAT
model applied in York et al. and Li and Lin, the model is widely used in the field of
environmental economics. [38,39] In this paper, a spatial econometric model of industrial
agglomeration and haze pollution in Chinese prefecture-level cities is developed, with the
expressions:

lnPMit = a + ρWlnPMit + b1lnIAit + b2lnCit
+q1WlnIAit + q2WlnCit + eit

, (10)

where: a is the intercept term; W is a spatial weight matrix of order 253 × 253, which is
represented by the adjacency matrix, inverse-distance matrix, and nested matrix, respec-
tively, in this paper; ρ refers to the direction and degree of spatial interaction between
local PM2.5 concentration and PM2.5 concentration in adjacent areas; lnPMit is the spatial
lag term of the explanatory variable PM2.5 concentration; b1 is the elasticity coefficient of
the explanatory variable industrial agglomeration (IA); Cit is the other control variables;
WlnIAit is the spatial lag term of the explanatory variable industrial agglomeration (IA);
WlnCit is the spatial lag term of the other control variables; and eit is the random error
term.

2.2. Selection of Spatial Weight Matrix

Spatial weight matrix quantifies the degree of association through the locational
geographic information of sample observation points (mainly latitude and longitude coor-
dinates) and contain spatially dependent and spatially heterogeneous spatial correlations;
thus, a correct and reasonable choice of spatial weight matrices is crucial for the spatial
econometric analysis of haze concentrations. The commonly used spatial weight matrices
in empirical studies are the adjacency matrix [2], the inverse-distance matrix [37], the
economic distance matrix [38], and the nested matrix [38]. The underlying form of the
spatial weight matrix, a spatial section symmetric matrix with diagonal elements of zero, is
shown in Equation (1).

Wij =


0 w12 . . . w1n

w21 0 . . . w2n
...

...
...

wn1 w12 . . . 0

, (11)

The following section shows the basics of the three spatial weight matrices used in
this paper and how they were constructed.

2.2.1. Contiguity-Based Spatial Weights Matrix

The contiguity-based spatial weights matrix is the earliest spatial measurement model
used in the literature [39]. The adjacency matrix assumes that two spatial units are spatially
correlated if they share a common boundary of non-zero length and a common vertex
and assigns the weights wij of spatial units i and j to 1 and vice versa to 0. Due to the
proximity of cities, haze pollution is significantly spatially correlated, and the adjacency
weight matrix can represent the mutual adjacency of spatial units. The specific form is:

Wij =

{
1, Province i is adjancent to province j
0, Ohterwise

, (12)
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2.2.2. Inverse-Distance-Based Spatial Weights Matrix

The first law of geography states that everything is connected to everything else
in the vicinity and that things that are closer together are more closely connected than
things that are further away [40]. According to this law, the inverse-distance-based spatial
weights matrix assumes that the distance between two spatial units measures their spatial
relatedness, with larger distances being less spatially related and, conversely, smaller
distances being more spatially related. Unlike the adjacency matrix, the inverse distance
matrix does not assume that spatial effects exist only in adjacent areas but rather that
spatial effects exist when the spatial unit i 6= j is present. This paper uses urban landmark
distances to construct the weights [37]. The specific form is:

Wij =

{
1/d2, i 6= j

0, i = j
, (13)

2.2.3. Nested Weights Matrix

The vast majority of current researchers have set the two-way interaction between
the spatial units characterised by the numerical elements in the spatial weight matrix
as equivalent, i.e., (wij = wji), while the reality is that regions with higher levels of eco-
nomic development have stronger spatial effects on regions with lower levels of economic
development; therefore, referring to Wang et al., we constructed an economic distance
nested matrix [37]. The nested weights matrix covers both geographical and economic
factors, and the inverse-distance matrix and the economic feature weight matrix are used
in combination to accurately portray the comprehensiveness and complexity of the spatial
effects. The specific form is:

W = Wddiag
(
Y1/Y, Y2/Y, L, Yn/Y

)
, (14)

where Wd is the inverse-distance matrix described previously, diag
(
Y1/Y, Y2/Y, L, Yn/Y

)
is a diagonal matrix whose diagonal element Yi =

t1
∑
i0

Yit/(t1 − t0 + 1) is the mean value of

the economic variable Y of spatial cell i within time period t0 to t1, and Y =
n
∑

i=1

t1
∑
t0

Yit/n(t1 − t0 + 1) is the mean value of the economic variable Y of all spatial cells

within the period under examination. The nested weights matrix is set to be the product of
an inverse-distance weight matrix and a diagonal matrix, such that when the mean value of
the economic variable Y for one spatial cell is relatively large, i.e., Yi/Y > Y j/Y, its effect
on the other spatial cells is also large, i.e., wij > wji.

3. Selection and Explanation of Variables
3.1. Selection of Variables
3.1.1. Explained Variable

Haze pollution (PM): Following the serious exceedance of the PM2.5 index in various
regions of China in October 2011, the PM2.5 index was included in the compulsory moni-
toring of provinces and cities in 2012 and was officially included in the Ambient Air Quality
Standards by the Chinese Ministry of Environmental Protection. The two sessions in 2014
and 2015 made the reduction of the PM2.5 index a priority for environmental management.
People’s growing demand for a better environment has forced governments around the
world to strengthen the regulation and management of PM2.5 emissions. PM2.5 is the main
cause of haze, and thus this paper uses urban PM2.5 concentrations as the explanatory
variable. Since PM2.5 data in China vary from one monitoring agency to another, this paper
uses the global PM2.5 concentration mean raster data published by the Socioeconomic
Data and Applications Center (SEDAC) of Columbia University, which is widely used by
scholars [41,42], and further parses this raster data into prefecture-level city-level data by
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using ArcGIS software combined with administrative area vector maps and compares it
with the data from the China Research Data Service (CNR). The PM2.5 data were cross-
validated with the PM2.5 data from the China Research Data Service Platform (CNRDS).
Compared with ground-based data, the satellite observation data are surface-source data,
which can reflect the regional PM2.5 concentrations and their evolution characteristics
more comprehensively.

3.1.2. Explanatory Variables

Industrial agglomeration (IA): There are many indicators used to measure the level
of industrial agglomeration, such as concentration ration of industry, space Gini coeffi-
cient [43], Hirschman–Herfindahl index, concentration index of industrial space [44], and
entropy index. Among the various measures of industrial agglomeration, concentration
ration of industry is the simplest and most commonly calculated index and is an important
indicator of the degree of competition in a given market. The concentration of industry is
the share of industrial output of n firms in a given region in the industrial output of all N
firms in the country in that year. An increase in the share of industry in a region indicates
that industrial agglomeration is occurring in that location. The specific formula is:

IAn =
∑n

i=1 Xi

∑N
i=1 Yi

, (15)

where IAn represents the industrial concentration of region X, Xi represents the production
value of the ith firm in region X, n represents the number of firms in region X, and N
represents the number of firms in country Y. IAn is a graphical representation of the
level of concentration in the industrial market and measures the degree of monopoly and
competition in the national industrial market in important industrial regions.

3.1.3. Control Variables

The detailed explanation of the control variables is shown in Table 1.

Table 1. Control variables.

Variable Symbol Explanation

Demographic factors POP

Human activity is the primary source of PM2.5 pollution [45]. Scholars
have different views on the relationship between population density and
haze pollution. Hui et al. believed that areas with concentrated
populations consume less energy due to the presence of centralised heating
systems [46]. Meanwhile, Ding et al. argued that the higher the population
density of an area, the greater the environmental damage it brings.
Therefore, this paper adds the population factor to the model [47].
Referring to Ji et al., Xie et al., and Jin and Zhang, the year-end population
of each prefecture-level city is used in this paper. [48–50]

Economic development GDP

Economic development is a key factor related to environmental issues [51].
According to the “environmental Kuznets curve (EKC)” hypothesis [52],
when the level of economic development is low, the level of environmental
pollution is low, but as the per capita income increases, the level of
environmental pollution tends to increase, and the level of environmental
degradation increases with economic growth [3]; when the economic
development reaches a certain level of economic development, that is, after
a certain critical point or “inflection point” is reached, with a further
increase in per capita income, the level of environmental pollution
decreases and the quality of the environment gradually improves, i.e.,
there is an inverted U-shaped relationship between pollutant emissions
and GDP per capita [53]. Referring to Liu et al., this paper uses GDP per
capita to measure the level of local economic development [54].
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Table 1. Cont.

Variable Symbol Explanation

Investment in science and
technology TEC

Research and development in science and technology can help reduce the
cost of emissions for enterprises, and government investment in science
and technology can help develop technologies to reduce pollution
emissions [54]. Considering the composition of local government
expenditure in China, this paper uses regional government expenditure on
science and technology to measure the level of science and technology
investment.

Transportation TRA

Transportation is an intensive economic activity that contributes to PM2.5
pollution [29]. Not only are motor vehicle emissions from road transport a
primary source of haze pollution, but the pollutants CO2, SO2, and NO2
are also important secondary sources of PM2.5 pollution. Considering the
availability of city-level data, we use road passenger traffic to reflect
transport intensity.

3.2. Data Source

During the Eleventh Five-Year Plan period, China attached particular importance to
environmental protection and formulated a number of environmental policies. In the 12th
Five-Year Plan, China has further strengthened its environmental policies. Therefore, in
order to better capture these impacts, we set the starting point of the study to 2012. As the
data for important variables such as PM2.5 are only updated to 2016, the study period is
2012–2016. The data used for the other explanatory and control variables in this paper come
from the China City Statistical Yearbook and the China Research Data Service Platform
(CNRDS). After omitting cities with missing data, the 253 prefecture-level cities in China
were finally used as the study population. The adjacency relationships between regions in
the adjacency matrix were obtained from the 1:4,000,000 electronic map provided by the
National Geographic Information System website. The coordinates of the geographical
centre locations of each prefecture-level city in the inverse-distance matrix and nested
matrix were obtained from the above maps by GeoDa 095i software, and the distances
between the coordinates were calculated by Stata 16.1 SE. Descriptive statistics for each
variable are shown in Table 2.

Table 2. Descriptive statistics.

Variable Unit N Mean Sd Min Max

PM µg/m3 1265 36.49 16.66 2.85 86.35
IA % 1265 0.0039 0.0200 0.0001 0.0269

GDP RMB10,000/person 1265 51,113 33,902 10,090 470,000
TRA 10 thousand people 1260 8546 14,947 93 290,000
TEC RMB 1265 68,730 170,000 753 4,000,000
POP 10 thousand people 1265 436 258 20 1399

4. Empirical Results
4.1. Sample Description Analysis
4.1.1. Spatio-Temporal Distribution of Industrial Agglomeration

Figure 1 shows that there are obvious spatial distribution characteristics of industrial
agglomeration in China, which are characterised by high agglomeration in the eastern
region, low agglomeration in the western region, and the highest level of industrial ag-
glomeration in the coastal region. In addition, a clear correlation can be found between the
level of industrial agglomeration in cities and their level of economic development. The
exceptions to this are Beijing, Shanghai, and Shenzhen. This is because these first-tier cities
have moved towards an innovation-driven and sustainable development path and have
shifted many industrial enterprises out of the city.
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Figure 1 shows that the temporal distribution of industrial agglomeration in China
has been stable. From 2012 to 2016, the spatial distribution characteristics of industrial
agglomeration did not change significantly, indicating that the distribution characteris-
tics of industrial agglomeration in China are stable, indicating that China’s industrial
development pattern has formed a more complete system.

Sustainability 2021, 13, x FOR PEER REVIEW 9 of 22 
 

4. Empirical Results 
4.1. Sample Description Analysis 
4.1.1. Spatio-Temporal Distribution of Industrial Agglomeration 

Figure 1 shows that there are obvious spatial distribution characteristics of industrial 
agglomeration in China, which are characterised by high agglomeration in the eastern 
region, low agglomeration in the western region, and the highest level of industrial ag-
glomeration in the coastal region. In addition, a clear correlation can be found between 
the level of industrial agglomeration in cities and their level of economic development. 
The exceptions to this are Beijing, Shanghai, and Shenzhen. This is because these first-tier 
cities have moved towards an innovation-driven and sustainable development path and 
have shifted many industrial enterprises out of the city. 

  
(a) Industrial agglomeration in China (2012) (b) Industrial agglomeration in China (2012) 

  
(c) Industrial agglomeration in China (2015) (d) Industrial agglomeration in China (2016) 

Figure 1. Spatio-temporal distribution of industrial agglomeration in China. 

Figure 1 shows that the temporal distribution of industrial agglomeration in China 
has been stable. From 2012 to 2016, the spatial distribution characteristics of industrial 
agglomeration did not change significantly, indicating that the distribution characteristics 
of industrial agglomeration in China are stable, indicating that China’s industrial devel-
opment pattern has formed a more complete system. 
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4.1.2. Spatio-Temporal Distribution of PM2.5

Figure 2 shows that there are obvious spatial distribution characteristics of PM2.5
pollution in China, and the overall pattern is similar to the distribution pattern of industrial
agglomeration, specifically: PM2.5 pollution in the east and central regions (mainly in
the Yangtze River Delta city cluster and the Pearl River Delta city cluster) is significantly
higher than that in other regions, PM2.5 pollution in the southeast coastal region is smaller,
and PM2.5 in the western and northern regions is at a very low level. The cities in Hebei
Province have the highest PM2.5 pollution levels, and the PM2.5 pollution levels in its
neighbouring provinces are decreasing in a radial manner. Furthermore, similar to the level
of industrial agglomeration, the three first-tier cities of Beijing, Shanghai and Shenzhen
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have much lower PM2.5 levels than their neighbouring cities, indirectly indicating the
relationship between industrial agglomeration and PM2.5.

Figure 2 shows that there is a clear temporal distribution of PM2.5 pollution in China.
It can be found that the spatial pattern has not changed significantly over time, but the
PM2.5 pollution levels across China show a decreasing trend year by year. Even in the
urban masses of Hebei Province, where PM2.5 pollution is most serious, the number of
cities meeting the highest standards of PM2.5 pollution has been decreasing.
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4.2. Spatial Auto-Correlation Analysis

“Everything is related to everything else, but near things are more related than distant
things” [40]. This view is known as the “first law of geography” and is one of the basic
theories of spatial econometrics. The need to add spatial effects to the STIRPAT model
depends on the existence of spatial auto-correlation between PM2.5 concentrations and
industrial agglomeration variables at the prefecture level in China; thus it is necessary to
conduct spatial auto-correlation tests on the explanatory variables PM2.5 concentrations
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and industrial agglomeration variables to determine their spatial distribution character-
istics. If the regional PM2.5 concentration and industrial agglomeration show random
distribution characteristics, then there is no need to use spatial measures; if they show
spatial agglomeration characteristics, then spatial measures should be used. Since the
article chooses the first-order adjacency matrix as the spatial weight matrix of the main
regression model, the spatial auto-correlation analysis of regional PM2.5 concentration is
carried out based on the first-order adjacency matrix.

4.2.1. Global Spatial Auto-Correlation Analysis

Global spatial auto-correlation analysis examines the spatial clustering of the entire
spatial sequence. The Moran’s I test is commonly used, with values in the range [–1, 1],
indicating positive spatial auto-correlation when the value is greater than 0, negative spatial
auto-correlation when the value is less than 0, and no spatial auto-correlation when the
value is equal to 0. When the value is equal to 0, there is no spatial auto-correlation. The
specific formula is as follows:

I =
∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − x

)
S2 ∑n

i=1 ∑n
j=1 wij

, (16)

where, S2 = ∑n
i=1(xi−x)2

n is the sample variance and wij is the spatial weight matrix element;
n is the sample size, i.e., the number of regions under study; xi and xJ denote the attribute,

i.e., PM2.5 concentration, for regions i and j, respectively; and x = 1
n

n
∑

i=1
xi, i.e., the mean

value of xi.
Using Stata 16.1 SE, PM2.5 concentrations and industrial agglomeration data of 253

prefectural-level cities in China were selected to calculate Moran’s I index for both variables
in China from 2012–2016. As shown in Table 3. It can be found that the Moran’s I
values of PM2.5 concentration and industrial agglomeration for all years are greater than
0 and pass the 1% significance test, indicating that there is a significant positive spatial
auto-correlation and a significant spatial dependence between PM2.5 concentration and
industrial agglomeration in China, and therefore it is necessary to further investigate the
relationship between industrial agglomeration and PM2.5 concentration using a spatial
Durbin model.

Table 3. Moran’s I (2012–2016).

Panel A: ln PM
Year Moran’s I p-value

2012 0.174 0.000
2013 0.162 0.000
2014 0.168 0.000
2015 0.232 0.000
2016 0.194 0.000

Panel B: ln IA
Year Moran’s I p-value

2012 0.126 0.000
2013 0.128 0.000
2014 0.113 0.000
2015 0.135 0.000
2016 0.142 0.000



Sustainability 2021, 13, 6609 12 of 22

4.2.2. Local Spatial Auto-Correlation Analysis

The Moran’s I index reveals the global spatial correlation of regional haze concen-
trations, while the Moran’s I scatterplot is used to depict local spatial correlations, thus
illustrating the spatial clustering of high (or low) observations of haze concentrations.
Moran’s I scatterplot is based on a standardised Cartesian coordinate system, with the
horizontal coordinate representing the attributes of the region and the vertical coordinate
representing the mean of the attributes of neighbouring regions, while the Moran’s I index
mentioned above can be considered as the slope of the regression line of the scatterplot.
In the four quadrants of the Moran’s I scatterplot, each quadrant represents a different
spatially correlated state. The meaning of spatial correlation in each of the four quadrants
is: (1) in the upper right quadrant, it represents areas with high PM2.5 concentrations and
adjacent areas with high PM2.5 concentrations, i.e., high values are spatially correlated
with high values; (2) in the lower left quadrant, it represents areas with low PM2.5 concen-
trations and adjacent areas with low PM2.5 concentrations, i.e., low values are spatially
correlated with low values; (3) in the lower right quadrant, it represents areas with high
PM2.5 concentrations whose neighbouring areas have low PM2.5 concentrations, i.e., a
spatial correlation between high and low values; (4) in the upper left quadrant, it repre-
sents areas with low PM2.5 concentrations whose neighbouring areas have high PM2.5
concentrations, i.e., a spatial correlation between low and high values.

This paper plots the Moran’s I scatterplot from 2012 to 2016, but as the distribution of
the scatterplot does not change significantly with increasing years, this paper only shows
the Moran’s I scatterplot for 2012 and 2016, as shown in Figure 3. An overview of all
regions reveals that: (1) The spatial clustering distribution of regional PM2.5 concentrations
in China is stable, mostly in the upper right quadrant and lower left quadrant, showing
positive spatial correlation, which indicates that PM2.5 concentrations in each region are
clustered in spatial distribution (spatial dependence) and also reflects the variability of
PM2.5 concentrations in general (spatial heterogeneity). (2) The scatter density in the upper
right quadrant decreases as the year increases, with a number of areas moving from the
upper right quadrant to the lower left quadrant, i.e., from areas of concentration of high
and high values to areas of concentration of low and low values. This indicates a decrease
in haze concentrations in China’s prefecture-level cities from 2012 to 2016.
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4.3. Further Improvement of Empirical Model
4.3.1. Panel Model Effects Test

Panel models come in various forms and can usually be classified as: mixed regression
models, fixed-effects models, and random-effects models. The specificity of panel data
for prefecture-level cities has led to the use of fixed-effects models. However, there are
three forms of fixed-effects models: spatial fixed effects, time fixed effects, and two-way
fixed effects. In order to select the appropriate form of panel model, this paper uses the
Durbin–Wu–Hausman test to see whether the model should use fixed effects. As the model
is estimated using the great likelihood method, the likelihood ratio test (LR) is used to
determine exactly which fixed-effects model should be used in this paper.

Table 4 shows the results of the LR test and the Durbin–Wu–Hausman test. The
Durbin–Wu–Hausman coefficient is significant at the 1% level, indicating that a fixed-
effects model should be used in this paper. Both results of the LR test reject the original
hypothesis at the 1% level, and therefore, a two-way fixed-effects model should be used in
this paper.

Table 4. Panel effect test.

Hypothesis LR Durbin–Wu–Hausman

Hypothesis: Time fixed effect nested in
two-way fixed effect 3448.00 ***

103.67 ***
Hypothesis: Individual fixed effect nested in

two-way fixed effect 43.33 ***

*** indicate statistical significance at the 1% level.

4.3.2. Spatial Model Effects Tests

Starting with a spatial Durbin model for modelling analysis of spatial econometric
models may be a good option, but a series of spatial correlation tests are needed to confirm
which spatial econometric model is more effective in explaining the data. (i) We use the
classical LM test and the robust LM test to test both whether a spatial lag model or a spatial
error model is more appropriate to describe the data relative to the OLS model [55]. (ii)
If the OLS model is rejected in favour of the spatial lag model or the spatial error model,
the spatial Durbin model should be used for estimation. As the model is estimated using
the great likelihood method, the likelihood ratio test (LR) is used in this paper to select
the model to determine whether the spatial Durbin model can be reduced to a spatial lag
model and a spatial error model.

The results of the LM and LR tests are shown in Table 5. In both the LM test and the
robust LM test, most of the LM values passed the 1% significance test, rejecting the original
hypothesis and indicating that the spatial model outperforms the OLS model; in the LR
test, the LR values passed the 5% and 1% significance tests, respectively, indicating that the
spatial Durbin model (SDM) could not be simplified to the spatial lag model (SLM) or the
spatial error model (SEM). Therefore, SDM is the most suitable spatial model for this paper.

Table 5. Spatial panel model test.

Hypothesis LM Robust-LM Hypothesis LR

Null hypothesis: SEM is not better
than OLS model 2406.781 *** 2396.70 ***

Null hypothesis: SDM can be
simplified to SEM 13.92 **

Alternative hypothesis: SEM is
better than OLS model

Alternative hypothesis: SDM cannot
be simplified to SEM

Null hypothesis: SLM is not better
than OLS model 12.667 *** 2.587

Null hypothesis: SDM can be
simplified to SLM 26.81 ***

Alternative hypothesis: SLM is
better than OLS model

Alternative hypothesis: SDM cannot
be simplified to SLM

***, ** respectively, indicate statistical significance at the 1% and 5% levels.
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4.4. Spatial Econometric Analysis
4.4.1. Estimated Results of the Spatial Econometric Model

In this paper, the model of Equation (10) was operated using maximum likelihood es-
timation based on annual panel data of 253 prefecture-level cities in China from 2012–2016
using Stata 16.1 SE. To test the robustness of the regression results, we gradually added
control variables to the regression process of SDM, and the final regression results are
shown in Table 6. Column 1 is the regression result including only the independent variable
IA and its spatial lag term, while column 5 is the regression result including all control
variables and their spatial lag terms. We found that the coefficient of IA is always negatively
significant at the 1% level when the control variables are gradually added, suggesting that
industrial agglomeration suppresses the level of local haze pollution. The coefficient of
W*IA is always positively significant at the 1% level, suggesting that industrial agglom-
eration increases the level of haze pollution in the surrounding area. However, Elhorst
pointed out that the regression coefficients of SDM do not have explanatory power and it is
meaningless to discuss the values and significance of their coefficients. He emphasised that
the coefficients should be decomposed into direct and indirect effects before the regression
results are interpreted. [56] Therefore, the empirical results in Table 6 merely demonstrate
that the results are robust and provide some evidence for our conclusions. Further, the
paper decomposes the coefficients of the independent variables to obtain direct and indirect
effects, as shown in Table 7.

Table 6. Comparison results of spatial Durbin model.

Variable (1) (2) (3) (4) (5)

IA −0.1669 ***
(−10.46)

−0.1386 ***
(−7.51)

−0.1403 ***
(−7.53)

−0. 1198 ***
(−6.12)

−0.1124 ***
(−5.67)

W*IA 0.3701 ***
(3.74)

0.4452 ***
(3.34)

0.4559 ***
(3.37)

0. 4754 ***
(3.49)

0. 4381 ***
(3.17)

GDP −0.0887 ***
(−3.02)

−0.0817 ***
(−2.72)

−0. 0693 **
(−2.30)

−0.0770 **
(−2.55)

W*GDP 0.0362
(0.69)

0.1946 *
(1.67)

0.2921 *
(1.91)

0.3412 **
(2.21)

TRA −0.0053
(−0.70)

−0.0064
(−0.86)

−0.0065
(−0.86)

W*TRA 0.0509 *
(1.71)

0. 0583 *
(1.95)

0. 0521 *
(1.72)

TEC −0.0308 ***
(−3.26)

−0.0294 ***
(−3.12)

W*TEC −0.0387
(−0.60)

−0. 0149
(−0.22)

POP −0.2049 **
(−2.39)

W*POP −1.0508
(−1.31)

R2 0.1679 0.2245 0.2451 0.2560 0.2768

Spat-rho 0.8125 ***
(16.77)

0.7866 ***
(14.18)

0.7613 ***
(12.64)

0. 7614 ***
(12.61)

0.7475 ***
(12.03)

Log-L 1094.5435 1099.7333 1101.2793 1106.7502 1110.3296

*, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Z statistics in parentheses.
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Table 7. Direct and indirect effects.

Direct
Effect Coefficient Z-Value p-Value Indirect

Effect Coefficient Z-Value p-Value

IA −0.105 −5.10 0.000 IA 1.400 3.06 0.002
GDP −0.073 −2.42 0.016 GDP 1.165 1.49 0.137
TRA −0.004 −0.66 0.507 TRA 0.186 1.34 0.181
TEC −0.030 −3.13 0.002 TEC −0.158 −0.50 0.614
POP −0.227 −2.67 0.007 POP −4.966 −1.37 0.172

Based on the spatial Durbin model (SDM) partial differential method to decompose
the spillover effects, the total effect can be decomposed into two parts: one is the direct
effect, which indicates the impact of local industrial agglomeration on local haze pollution;
the other is the indirect effect, also known as the spillover effect, which indicates the impact
of local industrial agglomeration on haze pollution in neighbouring areas. According to the
decomposition results in Table 7, (i) the coefficient of industrial agglomeration under the
direct effect is −0.105 and is significant at the 1% level, which means that an increase in the
scale of local industrial agglomeration will lead to a decrease in local haze pollution; (ii) the
coefficient of industrial agglomeration under the indirect effect is 1.400 and is significant at
the 1% level, which means that an increase in the scale of local industrial agglomeration
will lead to an increase in haze pollution in neighbouring areas. It can be seen that there
is a significant spatial spillover effect of industrial agglomeration, and the inter-regional
spillover is greater than the intra-regional spillover.

4.4.2. Conclusion Analysis and Explanation

In the context of China’s reality, the possible reasons are as follows:

1. Local industrial agglomeration creates economies of scale, brings advanced tech-
nology to the local area, promotes the upgrading of local industry [3], improves
the energy-saving and emission reduction capabilities of industrial enterprises [6],
and develops towards an environment-friendly and clean green economy [12]. The
positive externalities brought about by agglomeration, such as reduced transport and
information communication costs (labour and technology spillover effects) between
enterprises [43], have led to an increase in the overall economic productivity of local
enterprises, improved energy efficiency, and reduced pollutant emissions [57], thus
improving the efficiency of the green economy in the region [58]. Therefore, the
expansion of local industrial agglomeration is beneficial to the control of haze and
reduces the concentration of PM2.5 [59].

2. Due to the mobility of technology, capital, and talent, when the scale of local industrial
agglomeration rises and industrial density becomes too high, the local workforce
cannot keep up with the demand for efficient production [2], and thus local enterprises
recruit more labour from neighbouring areas and attract more talent, creating a
“siphon effect” on neighbouring cities [3]. As a result, technology, capital, and talent
will inevitably move to cities with high levels of industrial development, further
increasing the technological gap between local and neighbouring areas [60]. At this
point, the negative externalities of industrial agglomeration on neighbouring regions
are greater than the positive externalities, which is not conducive to neighbouring
cities improving their technology and developing a green economy [61]. In addition,
due to the existence of promotion tournaments between regional governments in
China, when the scale of local industrial agglomeration rises, neighbouring regions
are forced to increase their industrial development due to promotion pressure [62],
seeking regional economic development and forming inter-regional industrial level
competition. However, due to the inadequate technology level of the neighbouring
regions, they cannot form economies of scale like the regions with high industrial
agglomeration scale [63], making the development of industry in the neighbouring
regions instead increase the level of haze pollution.
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5. Discussion

Some studies believe that an important reason for the spatial dependence of haze
pollution is industrial agglomeration and point out that with the growth of GDP, the
degree of haze pollution will continue to rise [6,7]. Therefore, industrial agglomeration
not only promotes regional economic growth and development but also leads to many
environmental problems that cannot be ignored. Britain and the United States caused
serious haze to the country’s environment during the great development. As a developing
country, China’s industrial agglomeration areas have low production efficiency, poor
industrial relevance, and lack of innovation ability, which leads to the pollution spillover
effect of industrial agglomeration areas, especially in the northeast, which is a heavy
industry area. This requires that all regions in China actively explore the innovation
of industrial science and technology, enhance the industrial value chain, and form a
development mode of energy conservation and environmental protection.

This paper provides some enlightenment for thinking about the differences in haze
pollution in different regions of China. Being similar to the research [3,42], this study
concludes that industrial agglomeration has a negative external effect on haze pollution
and will cause the deterioration of the ecological environment. There is much literature
on industrial agglomeration and environmental pollution, but few studies related to haze
pollution. Therefore, this paper brings industrial agglomeration and haze pollution into
the framework to investigate the internal relationship between industrial agglomeration
and haze pollution. Most previous studies on industrial agglomeration took provinces
as the unit and did not subdivide urban areas. This study took Chinese cities as the
research objects to investigate the impact of industrial agglomeration within cities on
haze pollution. Considering the spatial spillover effect of industrial agglomeration and
haze pollution, this paper uses a spatial econometric model to test the external effect of
industrial agglomeration, and analyses the direct impact of industrial agglomeration on
haze pollution in different urban areas and the spatial spillover impact on haze pollution in
neighbouring urban areas. At the same time, some parts of this study need to be improved
in the future.

5.1. Robustness Test Using Inverse-Distance Matrix and Economic Geography Nested Matrix

To ensure the robustness of the conclusions, the paper will further replace the adja-
cency matrix and re-substitute it into the spatial Durbin model for empirical evidence. In
this paper, the same partial differential decomposition of the spillover effects of industrial
agglomeration is done, and the direct and indirect effects of industrial agglomeration are
shown in Tables 8 and 9.

The direct and indirect effects of industrial agglomeration are shown in Tables 8 and 9:
the signs of the coefficients of the variables in the direct and indirect effects are the same,
and the significance is approximately the same. Both the direct effect of the IA term and its
indirect effect are significant. Overall, the empirical results are consistent with the previous
paper, indicating that the previous conclusions are robust.

Table 8. Inverse-distance-based spatial weights matrix.

Direct
Effect Coefficient Z-Value p-Value Indirect

Effect Coefficient Z-Value p-Value

IA −0.099 −4.50 0.000 IA 0.213 2.42 0.015
GDP −0.063 −2.06 0.040 GDP −0.109 −0.84 0.399
TRA −0.009 −1.20 0.229 TRA −0.017 −0.60 0.548
TEC −0.022 −2.07 0.039 TEC 0.059 1.21 0.227
POP −0.196 −2.12 0.034 POP −0.611 −1.05 0.296
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Table 9. Nested Weights Matrix.

Direct
Effect Coefficient Z-Value p-Value Indirect

Effect Coefficient Z-Value p-Value

IA −0.095 −4.31 0.000 IA 0.186 1.86 0.063
GDP −0.066 −2.16 0.031 GDP −0.033 −0.24 0.811
TRA −0.006 −0.92 0.358 TRA −0.014 −0.50 0.616
TEC −0.023 −2.21 0.027 TEC 0.024 0.50 0.618
POP −0.188 −2.04 0.041 POP −0.204 −0.30 0.763

5.2. Discussion on Endogeneity Based on GS2SLS

The previous regression results suggest that high levels of industrial agglomeration
can reduce local haze pollution; however, areas with low levels of haze pollution may
attract more industrial presence due to low environmental regulation, leading to reverse
causality in the empirical model. Therefore, this paper employs both two-stage least squares
regression and Generalized Spatial Two-stage Least Square, using topographic relief (RDLS)
as an instrumental variable for the explanatory variable industrial agglomeration (IA).

Topographic relief is one of the most important factors affecting population distri-
bution and labour intensity in China. The topographic relief of a region is determined
by the combination of the highest and lowest elevation, the flat land area, and the total
area of the region and is a naturally occurring and geographically objective factor. It can
therefore be assumed that this indicator does not directly affect the level of haze pollution.
Topographic relief, however, affects population inflow and thus negatively influences the
degree of industrial agglomeration. It is therefore reasonable to use topographic relief as an
instrumental variable for industrial agglomeration. Using GIS technology and China’s 1:1
million geographic digital elevation simulation data, raster data were extracted based on a
1 km × 1 km specification, and a 10 km × 10 km raster was selected as the measurement
unit. Within each measurement unit (100 km2), the relief degree of terrain (RDLS) was
measured using the formula:

RDLS =
[max(H)−min(H)]× [1− P(A)/A]

500
, (17)

where max(H) and min(H) are the maximum and minimum elevation within each measure-
ment unit, A is the area of the measurement unit, and P(A) is the area of flat land within the
measurement unit, where the difference between the maximum and minimum elevation
within 25 km2 is less than or equal to 30 m.

Columns 1–2 of Table 10 present the results of the estimation using the instrumental
variable 2sls, and Columns 3–5 show the results using the instrumental variable General-
ized Spatial Two-stage Least Square. To test the plausibility of the instrumental variables,
the F-test of the Cragg–Donald Wald rank test is adopted in this paper. The original hy-
pothesis is that the relationship between the instrumental variables and the endogenous
variables is weak. As a rule of thumb, an F-value greater than 10 rejects the original hypoth-
esis. Therefore, the instrumental variables are strongly correlated with the endogenous
variables in this paper. The minimum eigenvalue test statistic of 132.866 is greater than the
critical value of 16.38, indicating that there is no weak instrumental variable problem.

Column 1 of Table 10 shows the results of the first stage of the 2SLS regression, and it
can be seen that topographic relief (RDLS) and industrial agglomeration (IA) are negatively
correlated. This is due to the fact that areas with high topographic relief are more difficult
for population inflows and outflows and thus more difficult for industrial agglomeration
effects to develop. Column 1 shows the regression results after controlling for the endogene-
ity between industrial agglomeration and haze using topographic relief. The regression
results show that the coefficient of IA is significantly negative at the 1% level, indicating
that industrial agglomeration suppresses local haze pollution levels. Column 3 considers
both the endogeneity and spatial spillover effects between industrial agglomeration and
haze. After considering the spatial spillover effect, the coefficient of IA is still significantly
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negative at the 1% level, but the effect of industrial agglomeration on the surrounding area
cannot be observed. Columns 4–5 decompose the effect of industrial agglomeration on
haze into a direct effect and an indirect effect. The results show that the direct effect of
industrial agglomeration on haze is significantly negative, i.e., industrial agglomeration
has a suppressive effect on local haze pollution. At the same time, the indirect effect of
industrial agglomeration on haze is significantly positive, which indicates that industrial
agglomeration exacerbates the haze pollution in the surrounding areas. This is consistent
with the main regression results. It can be argued that its empirical results remain robust
after the endogeneity of this paper has been treated using instrumental variables.

Table 10. Direct and indirect effects.

Variable

2SLS GS2SLS

(1) (2) (3) (4) (5)

Stage I Stage II Results Direct Effect Indirect Effect

RDLS −0.1903 ***
(−11.53)

IA −2.0973 ***
(−12.23)

−2.1510 ***
(−5.01)

−2.0071 ***
(−4.42)

2.7075 ***
(3.50)

GDP 1.2089 ***
(34.70)

−2.5677 ***
(−11.22)

−2.6906 ***
(−4.52)

−2.5340 ***
(−4.18)

2.9479 ***
(3.08)

TRA 0.0682 ***
(4.44)

−0.1319 ***
(−4.09)

0.0121
(0.14)

0.0266
(0.33)

0.2736
(0.68)

TEC 0.0857 ***
(4.84)

−0.1580 ***
(−4.20)

−0.2570 ***
(−3.04)

−0.2242 **
(−2.49)

0.6174 *
(1.96)

POP 0.8425 ***
(30.44)

−1.5616 ***
(−9.35)

−1.6410 ***
(−3.80)

−1.5681 ***
(−3.69)

1.3715 **
(2.32)

Constant −23.88 ***
(−64.51)

52.64 ***
(12.08)

29.85
(1.16)

R2 0.8337 0.2110
F 1262.73

Minimum
eigenvalue 132.866 10%, 16.38

N 1265 1265 1265 1265 1265

*, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

5.3. Limitations and Future Research

We believe that although we achieved the objectives of this paper to a certain extent,
there are still some shortcomings and areas for future improvement:

1. Using spatial econometrics as an analytical tool, this paper extends the study to 253
prefecture-level cities. To a certain extent, it alleviates the endogeneity implications
of the lack of freedom in previous studies and the neglect of the causal identifica-
tion problem, e.g., [3,26]. The possible endogeneity problems due to insufficient
causal identification are also discussed. However, due to the difficulty of obtaining
data and the limitations of the development of spatial econometrics, the scientific
tools for the discussion of the endogeneity problem are still relatively homogeneous.
With the introduction of new spatial econometric causal inference methods, further
improvements to the study will be made.

2. In the baseline regression and robustness tests, three spatial weight matrices are used
to discuss the problem, which to some extent ameliorates the problem of unrobustness
in previous studies. However, the reasonableness of the choice of spatial weight matrix
has been a major problem in such studies. We will also follow up on related studies
and improve on them.

3. For the reasons of the results, due to the consideration of space and other factors,
this paper mainly adopts a qualitative research method based on the combination of
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previous literature. In subsequent studies, we will try to discuss the mechanism issue
in detail empirically.

6. Conclusions and Policy Implications

Economic factors are easily ignored in sustainable urban development. The highlight
of this paper is the exploration of whether economic factors can be compatible with envi-
ronmental factors. Specifically, based on data related to 253 prefecture-level cities in 30
provincial administrative units in China from 2012–2016, this paper uses spatial measure-
ment as a tool to explore whether industrial agglomeration should exist in sustainable cities
from the perspective of haze pollution prevention and control and further analyses the
spatial heterogeneity and spatial spillover effects of pollution reduction effects of industrial
agglomeration.

This study found that there is an obvious positive spatial correlation between in-
dustrial agglomeration and haze pollution, and the strong and weak agglomeration has
been stable in the past five years, with a typical High–High and Low–Low divergence
phenomenon. In other words, haze pollution in China is clustered in terms of spatial
distribution and spatially heterogeneous in terms of concentration. However, there is a
tendency to move from areas of concentration of High–High values to areas of concentra-
tion of Low–Low values over time, indicating a decrease in haze concentrations in Chinese
prefecture-level cities from 2012 to 2016.

SDM with spatial and time-period fixed effects is used to regress industrial agglom-
eration and haze pollution. The regression results show that an increase in the scale of
local industrial agglomeration leads to a decrease in local haze pollution; however, an
increase in the scale of local industrial agglomeration leads to an increase in haze pollution
in neighbouring areas. There is a significant spatial spillover effect of industrial agglom-
eration, with spatial heterogeneity and the inter-regional spillover being greater than the
intra-regional spillover.

This paper will further use the inverse-distance matrix and economic geography
nested matrix to replace the adjacency matrix and re-substitute into the spatial Durbin
model for empirical research. The results of the robustness test show that the signs of the
coefficients of the variables in the direct effect and the indirect effect are consistent and
approximately the same in terms of significance. In particular, both the direct effect of the
IA term and its indirect effect are significant, and overall, this empirical result is consistent
with the baseline study. The empirical results remain robust after the instrumental variables
are used to treat the endogeneity of this paper.

In sustainable urban planning, the spatial distribution of industrial enterprises is
rationalised, rather than simply shifting polluting enterprises away from the region. The
findings of this paper suggest that high-intensity industrial agglomeration is conducive to
the reduction of haze pollution, suggesting that economic development and environmental
protection may lead to a “double-win” path.

Performance evaluation policies for industrial development, especially environmental
evaluation policies, should reflect regional synergy. The findings of this paper show that
the increase in the level of regional industrial agglomeration produces negative external-
ities on haze pollution in other cities. Therefore, when evaluating the performance of
environmental protection in regional economic development, isolated assessments should
be avoided and an overall regional performance assessment can be conducted to avoid
malicious competition between regional officials, which increases this negative externality.

In the construction of urban agglomerations, the “siphoning effect” should be avoided,
and the coordinated development of regional industries should be achieved. The results
of this study show that the negative impact of industrial agglomeration in the region on
other regions is mainly due to the “siphon effect”. Therefore, industrial policies should be
reasonably arranged and planned to avoid excessive competition and factor congestion.
While forming large urban agglomerations, the surrounding small and medium-sized cities
should not be turned into “industrial graveyards”.
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Green transformation of traditional manufacturing industries and establishment of
a green, low-carbon, and circular development system: The results of this study show
that improving the efficiency of the manufacturing industry can indeed improve haze
pollution, accelerate the development of advanced manufacturing industries, support
green and clean production, promote the green transformation of traditional manufacturing
industries, and establish a green low-carbon recycling development system. On the one
hand, encourage the separation of the manufacturing industry, actively develop the service
industry, vigorously guide the development of productive services in the direction of
specialisation and socialisation, and cultivate a number of specialised service enterprises
with strong competitive ability and high level of research and development; on the other
hand, continuously expand the length of the industrial chain of manufacturing industry
synergistic agglomeration, manufacturing efficiency, and haze pollution industry, and
enhance such high-end value chain as research and development design, engineering
management, financial leasing, equipment testing the design of the ring, and more service
elements into the final product to enhance the level of industry chain services and product
added value.
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