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Abstract: During the 1970s, harmful cyanobacteria (HFCB) were common occurrences in western
Lake Erie. Remediation strategies reduced total P loads and bloom frequency; however, HFCB have
reoccurred since the mid-1990s under increased system stress from climate change. Given these
concurrent changes in nutrient loading and climate forcing, there is a need to develop management
tools to investigate historical changes in the lake and predict future water quality. Herein, we applied
coupled one-dimensional hydrodynamic and biogeochemical models (GLM—-AED) to reproduce
water quality conditions of western Lake Erie from 1979 through 2015, thereby removing the obstacle
of setting and scaling initial conditions in management scenarios. The physical forcing was derived
from surface buoys, airports, and land-based stations. Nutrient loads were reconstructed from
historical monitoring data. The root-mean-square errors between simulations and observations for
water levels (0.36 m), surface water temperature (2.5 °C), and concentrations of total P (0.01 mg LD,
PO, (0.01 mg L~1), NHy (0.03 mg L~1), NO3 (0.68 mg L), total chlorophyll a (18.74 ug L™1),
chlorophytes (3.94 pg LD, cyanobacteria (12.44 ug L), diatoms (3.17 ug L1, and cryptophytes
(3.18 ug L) were minimized using model-independent parameter estimation, and were within
literature ranges from single year three-dimensional simulations. A sensitivity analysis shows
that 40% reductions of total P and dissolved reactive P loads would have been necessary to bring
blooms under the mild threshold (9600 MTA cyanobacteria biomass) during recent years (2005-2015),
consistent with the Annex 4 recommendation. However, these would not likely be achieved by
applying best management practices in the Maumee River watershed.

Keywords: harmful algal blooms; GLM-AED; western Lake Erie

1. Introduction

Lake Erie, the shallowest and most productive Laurentian Great Lake, has been suf-
fering from eutrophication for the past half century, particularly in the shallow western
basin [1]. Eutrophication is primarily driven by excess nutrient loads, particularly phos-
phorus (P), from agriculture, domestic wastewater, and industrialization [2]. Observations
of P limitation in the lower Great Lakes (including western Lake Erie) have resulted in P
control policies designed to reverse eutrophication [3].

From the early 1980s to the early 1990s, point-source P abatement programs were
implemented as part of the Great Lakes Water Quality Agreement (GLWQA) of 1972 [4].
The 1978 Amendment to the GLWQA set a Lake Erie target total phosphorus (TP) load of
11,000 MTA. As a response, the external P loading entering into the western basin declined,
leading to reduced total P concentrations in the water column [1], a decline in phytoplank-
ton biomass [5,6], and improved water quality in the western basin. However, beginning in
the mid-1990s, the algal blooms returned [7,8], their recurrence linked to increased spring
precipitation flushing increased soluble P from the Maumee River watershed into Lake
Erie [9,10]. These changes in nutrient loads are consistent with long-term and predicted
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future trends in agricultural practices and climate-driven meteorological forcing, which
favor bloom development with significant interannual variation in severity [11], suggesting
algae blooms will continue and potentially worsen in the future.

The USEPA [12] report recommended a total P (TP) spring load of 860 metric tons
and a dissolved reactive phosphorus (DRP) load of 186 metric tons from the Maumee
River to achieve a western-basin bloom (90% of the time) no greater than that observed
in 2004 or 2012. The 860 metric ton target is approximately a 40% reduction of the 2008
spring load, as determined from modeling studies. The DRP reduction addressed the
shift from point-source to agriculturally derived non-point-source P loading. To assess the
ability of this reduction to be realized in the Lake Erie watershed, Makarewicz et al. and
Bosch et al. [13,14] modelled implementation of agricultural best management practices
(BMPs; e.g., reduced tillage, cover crops, and filter strips) to control P loads within the
Maumee River. However, the direct impacts of BMPs on water quality and nuisance bloom
formation within western Lake Erie remain uninvestigated.

The more recent 2016 GLWQA Annex 4 applied a suite of models to relate P loads to
overall phytoplankton biomass, occurrence of cyanobacteria blooms, degree of hypoxia,
and presence of Cladophora. Focusing again on 2008, a 50% reduction in maximum western
basin chlorophyll a (Chl-a) concentration was achieved by reducing TP loads from the
Maumee River (in particular, P from March to July storm events). Particulate P was a
significant fraction of the bioavailable P pool [15], and so reducing the Maumee DRP load
alone would be insufficient to prevent bloom development. A sensitivity analysis confirmed
that P from the Detroit River was not a driver of cyanobacteria blooms. Overall, a mean
annual western basin P load of 2193 MTA was recommended using a combination of 2D
(EcoLE, [10]), 3D (ELCOM-CAEDYM, [16], WLEEM, [17]), and semiempirical mass balance
models [18]. WLEEM investigated the relationship between P loads and cyanobacteria
response over March through November of 2008 and 2011 to 2014. They modelled that
890 metric tons of total P from the Maumee River over March to July produced a ‘mild’
cyanobacterial bloom in western Lake Erie [17].

However, these models had several limitations that make it difficult to delineate the
impacts of long-term trends in climate-driven meteorological forcing from agricultural
practices on the relationships between nutrients and nuisance blooms in western Lake Erie.
The models were reinitialized annually each spring, making it (1) impossible to capture the
cumulative effects of changes in nutrient loads over years or decades, and (2) difficult to
account for changes in nutrient loads on model initialization. Typically, the initial nutrient
concentrations are not changed within model specified initial conditions, causing the lake
to respond slowly to load reductions over the residence time (~2 months for the western
basin), which overlaps the spring bloom. Moreover, (3) nutrient loads are simply scaled
(e.g., [10,16,17]), and so the effectiveness of BMPs has not been directly tested.

To address these issues related to seasonal simulations with static initial conditions,
there is a need to run long-term models (much longer than the residence time and sufficient
to resolve decadal changes in agricultural practices and climate forcing). However, 3D
hydrodynamic-biogeochemical lake models are often under-calibrated due to the long run-
times (e.g., ~3 weeks for a 6 month simulation of Lake Erie with ELCOM-CAEDYM; [19]).
These uncertainties in model parameters and initial conditions are the primary model
input errors [20], which can result in poor representation of processes, such as seasonal
phytoplankton succession (e.g., [21,22]). In the present study, the one-dimensional vertical
coupled hydrodynamic biogeochemical Aquatic Ecosystem Dynamics—General Lake Model
(AED-GLM; [23]) has been applied to simulate western Lake Erie from 1979 through 2015,
forced with both historical observed and modelled BMP tributary loads. GLM-AED runs
significantly faster (~1 min for 36 years) compared to 3D models, allowing for long-term
simulations, in-depth sensitivity analysis, and the utilization of an automated calibration
procedure to optimize parameter settings (e.g., [24]).

The objectives of the present study were to: (1) calibrate AED-GLM using model-
independent parameter estimation; (2) apply the model to simulate the interannual varia-
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tion in the development of nuisance algae blooms in Lake Erie since 1979; (3) evaluate the
long-term effectiveness of nutrient load reductions and BMPs on reducing bloom severity.
This work is novel, in that it is the longest coupled hydrodynamic and biogeochemical
simulation of Lake Erie and the first to employ an automated calibration approach. A full
list of acronymes is given in Table 1.

Table 1. List of acronyms.

HFCB harmful cyanobacteria

AED Aquatic Ecosystem Dynamics

GLM General Lake Model

P phosphorus

N nitrogen

PEST Model-Independent Parameter Estimation

GLWQA  Great Lakes Water Quality Agreement

TP total phosphorus

DRP dissolved reactive phosphorus

USEPA United States Environmental Protection Agency
BMP agricultural best management practice

Chl-a total chlorophyll a

MTA metric tons per annum

ELCOM Estuary and Lake Computer Model
CAEDYM Computational Aquatic Ecosystem Model
WLEEM Western Lake Erie Ecosystem Model

EcoLE Ecological Model of Lake Erie

GLERL Great Lakes Environmental Research Laboratory
NOAA National Oceanic and Atmospheric Administration
ECCC Environment and Climate Change Canada

EMRB Environmental Monitoring and Reporting Branch

OCWA Ontario Clean Water Agency
GLENDA  Great Lakes Environmental Database
NDBC National Data Buoy Centre

GREEN green algae

CYANO cyanobacteria

DIAT diatoms

CRYPT cryptophytes

DO dissolved oxygen

POy dissolved reactive phosphorus
NO3 nitrate

NH4 ammonium

RSi reactive silica
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Table 1. Cont.

DON dissolved organic nitrogen

DOP dissolved organic phosphorus

DOC dissolved organic carbon

PON particulate organic nitrogen

POP particulate organic phosphorus

POC particulate organic carbon

RS relative sensitivity

ARS absolute relative sensitivity

RMSE root-mean-square error

DYRESM  Dynamic Reservoir Simulation Model

SWAT Soil and Water Assessment Tool

CI cyanobacteria index

WASP Water Quality Analysis Simulation Program
2. Methods

2.1. Study Site and Field Data

Lake Erie is the southernmost, shallowest, and smallest by volume of the Great Lakes,
and has distinct western, central, and eastern basins. The present study area is the western
basin (Figure 1), which has a surface area of 4837 km?, a volume of ~20 km3, and an
average depth of 7.4 m. It has two major tributaries, the Detroit River (Figure 1 point A),
accounting for approximately 90% of the total annual inflow [25], and the Maumee River
(Figure 1 point B), accounting for approximately 47% of the TP (total phosphorus) loads
into Lake Erie during 2011-2013 [12]. The TP concentration is 25 times larger in the Maumee
River compared to the Detroit River [12]; hence, the Maumee River is the main P source
for western Lake Erie. The theoretical hydraulic residence time is ~51 days [26], with
outflow to the central basin through a rocky chain of islands from Point Pelee, Ontario, to
Marblehead, Ohio.
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Figure 1. (a) Map of Lake Erie and data sites. Detail of western basin shoreline showing the
Detroit River (A), Maumee River (B), NDBC station (45005) (magenta dot), ECCC and NOAA
surface temperature measurements (red dots), W1 and W2 stations (blue dots) [27], ECCC station
357 (blue star), ECCC water quality stations (green dots), EMRB (black asterisks), OCWA (cyan dots),
Ludsin et al. [28] (magenta stars), Thomas et al. [29] (black circles), Verhamme et al. [17] (yellow dots),
GLENDA (black dots). For further information on the datasets, see Table 2. (b) Lake Erie hypsometric
depth vs. area profile used in the 1D model.
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Table 2. Sources of measured data used in calibration (see also Figure 1). Shaded datasets had the most comprehensive

spatial and temporal coverage and so were used for calibration with PEST.

Identifier in

Character Location Source . Sample Date
Figure 1
. ECCC and NOAA Red and magenta 1979-2015 and
Western basin surface and Sta. 45005 & NDBC ot 2005-2015
Water temperature Ackerman ot al
Sta. W1, W2 and Sta. 357 (2001) ’ Blue circles and star 1994 and 2008
Western basin Ludsin et al. (2001) Orange diamond 1980-1992
Western basin Thomas et al. (2014) Black circles 1999-2015
(May-Sep.)
1-11m ECCC Green dots 1994-2015
0-18.8 m OCWA Cyan dots 2001-2014
Nutrients 1 m above bottom EMRB Black asterisks 1986-2015
(phosphorus and -
nitrogen) ER58 (integrated sample)
ER59 (integrated sample)
ER60 (integrated sample)
ER61 (integrated sample) GLENDA Black dots 19862015
ER91 (integrated sample)
ER92 (integrated sample)
1-11m depth ECCC Green dots 1994-2015
MB18 (integrated sample)
8M (integrated sample) Verh?g(‘)%e) etal Yellow dots 20082014
GR1 (integrated sample)
Chl-a ER58 (integrated sample)
ER59 (integrated sample)
ER60 (integrated sample)
ER61 (integrated sample) GLENDA Black dots 2001-2015
ER91 (integrated sample)
ER92 (integrated sample)
ER58 (integrated sample)
ER59 (integrated sample)
Phytoplankton ER60 (integrated sample)
groups ER61 (integrated sample) GLENDA BlaCk dOtS 2001-2015

ER91 (integrated sample)

ER92 (integrated sample)

Observational data for model forcing and calibration (Figure 1) have been compiled
from the Great Lakes Environmental Research Laboratory (GLERL), the National Oceanic
and Atmospheric Administration (NOAA), Environment and Climate Change Canada
(ECCC), the Environmental Monitoring and Reporting Branch (EMRB), the Ontario Clean
Water Agency (OCWA), and published scientific literature (Tables S1 and S2).

To compare the modeled phytoplankton concentrations to observations, the observed
GLENDA biovolumes (um? L~1) were converted to Chl-a biomass (ng L1 using two
conversions: (1) we applied the formula log,, (biovolume) = a + blog,(chlorophyll a) with
species-specific values of a and b [30], and (2) the biovolumes were multiplied by density
(1g cm~3) and 7.5% of the phytoplankton biomass used to estimate Phyto C, followed by a
Phyto C: Chl-a = 50:1 (ug L~?) ratio being applied [21].

2.2. Model Description

The 1D hydrodynamic model General Lake Model (GLM v. 3.0.5), coupled with
the Aquatic Ecosystem Dynamics module library (AED), was applied in this study [23].
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These open-source models have an active development community through the Global
Lakes Ecological Observatory Network (GLEON; [23]), and are updated versions of the
well-tested and commonly used DYRESM-CAEDYM [31,32]. GLM—-AED has been applied
to a wide range of water bodies, including simulation of algae/nutrient/oxygen dynamics
in temperate lakes [33] and reservoirs [34]. The low computational requirements for a
single run allow for extensive calibration and sensitivity analysis.

GLM is a mixed layer model that solves a turbulent kinetic energy balance to simulate
the surface heat and momentum budgets and the resultant development of thermal stratifi-
cation and mixing, including ice and snow cover. The model assumes there is no horizontal
variability (horizontally averaged) and adopts a flexible Lagrangian structure, adjusting
the vertical layer thicknesses dynamically to resolve the water column structure. AED is a
biogeochemical nutrient/plankton/oxygen model that dynamically couples to GLM.

In the present AED setup, 11 state variables were employed to predict seasonal
succession of phytoplankton biomass (greens (GREEN), diatoms (DIAT), cryptophytes
(CRYPT), and cyanobacteria (CYANO)). These included dissolved oxygen (DO), four dis-
solved inorganic groups (dissolved reactive phosphorus (POy), nitrate (NO3), ammonium
(NHy), and reactive silica (RSi)), three dissolved organic groups (dissolved organic nitrogen
(DON), dissolved organic phosphorus (DOP), and dissolved organic carbon (DOC)), and
three particulate detrital organic groups (particulate organic nitrogen (PON), particulate
organic phosphorus (POP), and particulate organic carbon (POC)). The phytoplankton
growth rates were modelled as a function of the user specified maximum growth rate,
photorespiratory loss, ambient temperature, metabolic stress, and the minimum light, N,
P, and Si limitation functions [35]. The associated dynamic functions representing algae
growth rates (photosynthesis), respiration, excretion, and mortality losses can be found in
Hipsey et al. [35].

Photosynthesis is parameterized as the uptake of carbon, and it is determined by a
maximum potential growth rate at 20 °C modified by photorespiratory loss, a tempera-
ture response function, metabolic stress, and the minimum value of the expressions for
limitation by light, P, N, and Si. There is maximum productivity at the optimum growth
temperature (Tppr), zero growth above the maximum growth temperature (Tj14x), and
below standard growth temperature (Tstp ); the productivity follows Arrhenius scaling. P
and N uptake are regulated by external and internal nutrient concentrations. Loss terms,
including respiration, natural mortality, and excretion, are modelled with respiration rate
coefficients, and the loss rate is divided into two parts: a pure respiratory fraction fr.s, as
well as mortality and excretion. The constant fraction fpop; of mortality and excretion
goes to the dissolved organic pool (excretion), and the remainder to the particulate organic
pool (detritus). Settling of particles (—0.06 m day~!) and mineralization of dissolved
organics were modeled as migration with photoinhibition (Rdoc_minerl = 0.001 day};
Rdon_minerl = 0.005 day ~!; Rdop_minerl = 0.001 day!). Given the difficulty in mod-
elling changes in the associated population dynamics over decadal timescales, we neglect
simulation of dreissenid mussels and zooplankton. Following Snortheim et al. [33], we
have subsumed the associated mortality and nutrient cycling into the respiration parameter,
allowing for regulation without enabling a zooplankton and mussel functional group [35].
This is justified by the efficient internal recycling of nutrients modelled to occur in Lake
Erie through predation/excretion [36]. The inclusion of these processes could be the subject
of future work.

2.3. Initial and Boundary Conditions

The bathymetric profile (area vs. depth; Figure 1b) was manually computed from a
2km x 2 km x 1 m Lake Erie grid (https://www.ngdc.noaa.gov/mgg/greatlakes/erie.
html (last accessed on 2 July 2021)). The model was initialized on 1 May 1979, using
available water quality data from the Maumee River, as there were no data available
for western Lake Erie (Table 3), and advanced using an hourly timestep. Mean daily
meteorological forcing data included air temperature, wind speed, relative humidity,
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precipitation, shortwave solar radiation, and cloud cover. Daily solar radiation data were
disaggregated into sub-daily (rad mode = 0), with longwave radiation computed from
cloud cover (Iw_type = 'LW_CC’; cloud mode = 1). Mean daily boundary conditions
were specified for the Detroit River and Maumee River (flow, temperature, and the water
quality state variables; Tables S1 and S2). Exchange to the central basin was specified as an
outflow, based on a water balance computed from the Detroit and Maumee River flows,
precipitation, evaporation, and observed water levels [37,38]. Default parameters were used
for ice and snow (snow_albedo_factor = 1.0; snow_rho_max = 300; snow_rho_min = 50).

Table 3. Initial biogeochemical conditions specified in the model for 1 May 1979. For data sources
see Table S2.

DO SiO, NH, NO; PO, PON DON POP

(mmol (mmol (mmol (mmol (mmol (mmol (mmol (mmol
0,/m°) Si/m3  N/m®) N/m®)  Pmd) N/m®)  N/md) P/m3)
376.76 114.29 9.66 47.42 297 30.18 80.88 3.48

DOP POC DOC GREEN  DIAT CYANO CRYPT

(mmol (mmol (mmol (mmol (mmol (mmol (mmol

P/m?) C/m?)  C/md) C/m?  C/md) C/m%  C/md)

2.32 41.67 250 1.59 1.81 0 0.03

2.4. Model Calibration

To minimize uncertainty in parameter estimation and avoid user bias in model calibra-
tion [20], GLM-AED was calibrated using model-independent parameter estimation and
uncertainty analysis (PEST; http:/ /www.pesthomepage.org/ (last accessed on 2 July 2021)).
This approach is similar to previous studies that have applied autocalibration methods
(Monte Carlo and PEST, respectively) to calibrate the 1D models DYRESM-CAEDYM [39]
and Simstrat [24]. To apply PEST to all ~60 model parameters would take 10?® years, and
so a sensitivity analysis was employed to determine which parameters required calibra-
tion, and the associated calibration ranges. Sensitivity of modelled water temperature, TP,
POy, total Chl-a, and the four phytoplankton groups to changes in parameter values were
evaluated according to relative sensitivity (RS; [23,40]):

AC;/Cis
Aﬁ]/ﬁjs

where i is the modelled value (output), j is the calibrated parameter value (input), AC; is
the change in the modelled value, Cj; is the initial modelled value, AB; is the change in the
parameter, and f3;; is the initial parameter value. In this study, to cross-compare RS values,
absolute relative sensitivity (ARS) was used, which is the absolute value of RS. If ARS = 0.5,
a 10% increase or decrease in the model parameter will cause a 5% change in the modelled
state variable. The model parameters with ARS values (Table 4) were calibrated with PEST
over parameter ranges based on literature values (Tables S3-S5).

PEST optimizes the goodness-of-fit (minimizes root-mean-square error, RMSE) be-
tween model output and observation. Datasets for calibration were chosen that most
comprehensively covered the entire western basin based on Table 2, Figure 1. In practice,
PEST was first applied to calibrate temperature, using GLM, to achieve the smallest RMSE
between simulations and observations. Subsequently, PEST was applied to AED-GLM to
calibrate nutrients (TP and POy). Finally, total Chl-a and the four phytoplankton groups
were calibrated to ensure the model can reproduce seasonal succession. This iterative
approach was favored over attempts to use normalized RMSE, which can give misleading
results when RMSE is small [22].

RS = 1)
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Table 4. Summary of absolute relative sensitivity (ARS) values from the sensitivity analysis. The model parameters with the
6 largest ARS values (shaded) were calibrated with PEST [40]. The ‘- indicates no sensitivity.

Model ARS of Modelled State Variable
Farameter Water Tem- PO, TP Chl-a GREEN  CYANO DIAT CRYPT
perature

Ky 0.02 0.37 0.09 0.86 4.89 3.19 0.58 4.6
Wind_factor 0.06 0.28 0.07 0.35 0.66 0.93 0.66 0.22
Lw_factor 0.66 0.32 0.24 0.78 2.62 5.50 2.58 12.88

Ce 0.01 - - - - - - -

Ch 0.01 - - - - - - -

Cy 0.01 - - - - - - -

Theta_sed_frp - 0.65 0.07 - - - - -
Fsed_frp - 0.29 0.15 0.31 1.25 2.20 0.02 1.06
Ksed_frp - 0.25 0.13 0.26 1.06 1.87 0.03 091
Pz, GREEN - 0.24 0.06 075 20.70 7.69 249 829
VT, GREEN - 0.03 0.03 0.30 9.80 498 0.06 8.44
Totd, GREEN - 0.08 0.05 0.60 14.44 7.94 0.29 7.31
Topt, GREEN - 0.05 0.04 0.45 11.89 6.58 0.21 6.40
Tax, GREEN - 0.01 0.01 0.16 9.67 258 0.04 2.90
K, GREEN - 0.02 0.03 0.30 9.50 4.80 0.03 8.19
Prrax, CYANO - 0.23 0.04 0.72 9.39 12.94 2.48 8.60
VT, cyano - 0.03 0.04 0.52 8.31 9.53 0.05 15.98
Tstd CYANO - 0.004 0.03 0.35 8.18 8.49 0.02 6.89
Topt, CYANO - 0.004 0.03 0.30 6.53 8.89 0.03 539
Tax, CYANO - 0.001 0.01 0.07 1.36 8.26 0.02 1.36
K, CYANO - 0.002 0.04 045 7.87 8.96 0.13 15.10
Priax, DIAT - 0.13 0.02 0.65 0.27 0.88 3.50 0.24
VT, DIAT - 0.001 0.06 0.05 1.76 2.69 9.93 0.96
Totd, DIAT - 0.01 0.002 0.05 0.15 0.01 332 0.12
Topt, DIAT - 0.02 0.003 0.12 047 0.11 3.82 0.40
Tnax, DIAT - 0.10 0.01 0.38 1.93 0.57 2.94 1.84
K., DIAT - 0.11 0.03 0.60 0.77 0.55 3.48 0.56
Prax, CRYPT — 0.24 0.07 073 924 7.63 248 83.71
VT, crYPT - 0.01 0.01 0.06 1.44 1.09 0.03 16.65
Totd, CRYPT - 0.07 0.05 0.58 8.67 7.72 0.28 6443
Topt, CRYPT - 0.05 0.04 0.47 8.21 6.72 0.21 57.72
Tynax, CRYPT - 0.008 0.01 0.12 292 191 0.03 17.90
K, crypT - 0.004 0.01 0.07 1.38 1.01 0.001 16.98

Notes: K,—phytoplankton respiration/metabolic loss rate of 20 °C (d~'); P,y;y—maximum phytoplankton growth rate of 20 °C (d~1);
T,;4—standard temperature for algal growth (°C); Topr—optimum temperature for algal growth (°C); Tyax—maximum temperature for
algal growth (°C); Vr—Arrhenius temp scaling coefficient for growth; Kyy—extinction coefficient for PAR radiation (m~1); Wind_factor—
wind factor; Lw_factor—longwave factor; C.—bulk aerodynamic coefficient for latent heat transfer; C;,—bulk aerodynamic coefficient
for sensible heat transfer; C;—bulk aerodynamic coefficient for transfer of momentum; Theta_sed_frp—temperature multiplier for
temperature dependence of sediment phosphate flux; Fsed_frp—maximum flux of oxygen across the sediment water interface into the
sediment (mmol P m~2 d~1); Ksed_frp—half saturation constant for oxygen dependence of sediment phosphate flux (mmol O, m~—3);
Water tempwater temperature (° C); TPtotal phosphorus concentration (mmol m~3); POg—phosphate concentration (mmol m~3); Chl-a—
total chlorophyll a (mmol m~3); GREEN—green algae (mmol m~3); CYANO—cyanobacteria (mmol m~3); DIAT—diatoms (mmol m~3);
CRYPT—cryptophytes (mmol m~—3).

2.5. Phosphorus Loading Reduction Scenarios

The Maumee River delivers significant P to the western basin and has an agricultural
watershed that has been the study of the effectiveness of BMPs on nutrient load reductions
(e.g., [14,41]). Therefore, to explore the impacts of phosphorus loading reduction scenarios
on water quality changes, the nutrient loads from the Maumee River were varied in
two management scenarios. In the first scenario, the observed flow rates and nutrient
concentrations were scaled according to load reductions realized by implementing BMPs
in a published application of the SWAT model to the Maumee River watersheds over
1998-2005 [14]; their BMPs were at a moderate level considered feasible by agricultural
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specialists. In the second scenario, observed nutrient loads were reduced by 20, 40, and
60% to test if these reductions will achieve the target of limiting PO, and TP loads from the
Maumee River to 186 MTA and 860 MTA during March to July, and limiting the maximum
30-day average cyanobacteria biomass to 9600 MTA [42].

3. Results
3.1. Temperature, Water Levels, and Ice Cover

Accurate modelling of phosphorus loads and algae growth requires simulation of the
water balance [43] and water temperature/ice cover [44], respectively. The time-series of
surface water temperature indicated that the model reproduced the annual variations of wa-
ter temperature, which varied between —5 °C (in winter) and 25 °C (in summer) (Figure 2).
The model also reproduced the seasonal stratification profile, including ephemeral weak
stratification (Figure 3). The surface RMSE was 2.95 °C (1979 to 2015), and vertically
averaged RMSE values were 1.39 °C in 1994 and 1.70 °C in 2008 (Figure S1). These RMSE
values were consistent with those from both 1D (1-6 °C; [45]) and 3D (1-3 °C; [46]) models
applied to Lake Erie, and Bruce et al. [47] who applied GLM to 32 lakes (RMSE of 1.62 to
1.31 °C through the water column).

35 | T T
° observed
) 301 simulated 7
EBR b1 8250“ i é Y %ggg ! Y
5 @ 5 f e -f - I
Ezo§ .!i%g $%oé”§8§ §'§3$‘*%o ‘ %
v LR P e 8o [ ol 1| % 9§,
£ gii; '%’gcg 1% J% | ligfs%og?\ g‘#ﬁ?ﬁl?;;#g?""?gg? ; gl : SSIEJ@
815 g I?|q\0| \ ‘33&L|‘4\$§1!4‘¢?°"'8 8 ,“)oé. gogtééz gog'9 éﬁ 83\‘;
- °‘,‘1?‘35§"Z'°$$é‘$m!‘f"er ,"“1%‘3%‘“?1&/%5 '8 68 %9[ 8o }oﬁlé
510;'4.6\3.&‘22“;"¢",’,;ég'é{y.mouéo?#;@;fg ‘Q' Qg ? 4§|. #
2 olllru&;"mgxou\?,g‘é‘”l!d{l““lb|§|p!‘?\i|§‘|%\gl\“ﬂ'.g G‘ggg ? IR
9 TR YR AT AT IR SR T 918 .6 8. 12.8ls 8lel g 1§§|3‘ I
V) 5'§ g f ol \31\\ g '\ L ‘?\b [ ¢ ol 8 % g Lf §l§ 11 | ) g o ° ||'.
ug I ""n‘,ﬁ":Loouwfvo\.bllﬂargvf,iox_" b " '8'0\8r,-e‘|?‘§®8"§g+ 1Y
w0+ e 2o o -
_5 | | | 1 | 1 |
1982 1987 1993 1998 2004 2009 2014

Figure 2. The simulated and observed surface water temperature comparison at Sta. 45005 (ECCC and NOAA) for

1979-2015.

Simulated water levels had an RMSE of 0.36 m, in comparison to observations (average
of four western basin gauge stations: Buffalo, Cleveland, Port Stanley, and Toledo). These
data were daily averages to remove the effects of the 14-hr surface seiche, which was not
resolved by the horizontally averaged model. Given that the outflow was determined from
a water balance, which included the observed levels, the RMSE was directly attributable
to differences between the evaporation and precipitation models employed in the water
balance versus GLM. The simulated ice thickness (not shown) had an RMSE of 0.13 m,
compared with observations [48] in Sandusky Bay, which is just outside the model domain.

3.2. Nutrients

Simulated TP was visually consistent with annually and seasonally averaged obser-
vations from four published studies over 1979 through 2015 (Figure 4). From the early
1980s to the early 1990s, both simulated and observed TP concentrations showed a de-
creasing trend, coincident with the implementation of point-source P abatement programs
(Figure 4a). Moreover, from the mid-1990s, from May to September, TP concentrations (Fig-
ure 4b) increased in accordance with P from the Maumee River watersheds being flushed
by increased spring precipitation. Peaks in observed TP concentration occurred in April,
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Depth (m)
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consistent with the spring P loads from the Maumee River, and were the major P source
for western Lake Erie; the simulations did not capture all peaks, potentially because loads
are instantaneously distributed throughout the basin in the horizontally averaged model
(Figure 4c,d). The average TP RMSE was 0.01 mg L1, comparable to 0.01-0.074 mg L~
for a 1D model of Lake Ravn [32] and 0.03 mg L~! for a 3D model of Lake Erie [49].
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Figure 3. Contours of simulated and observed water temperature profile at Sta. W1 and W2 for 1994 (a,b) and STN357 for

2008 (c,d).
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Figure 4. Comparison of simulated and observed TP concentrations. (a) Annual averages
(+max/min) of daily depth-averaged model output vs. observations (annual TP concentrations
throughout the western basin [28] for 1980-1992), (b) averages of daily depth-averaged output
(+max/min) during May through September and observations are seasonal (May-September) mean
TP concentrations at stations [29] (black circles in Figure 1) for 1999-2015, (c) simulations and ob-
servations of daily depth-averaged TP comparisons at ECCC stations (green dots in Figure 1) for
1994-2015, (d) simulations and observations of daily 1 m above the bed TP concentrations at EMRB
stations (black asterisks in Figure 1) for 1986-2015. Data sources: Table 2.
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Depth-averaged PO, concentrations were both simulated and observed to be ~0.02 mg L~!
during 2000 through 2014 (Figure 5a). However, the simulations were, at times, smaller
than the observations at the stations located 1 m above the lake bed (Figure 5b), suggesting
mineralization of POy, which has been shown to vary spatially by an order of magnitude
in western Lake Erie [26], was not always accurately reproduced with the static release
model in AED. Sediment mineralization of PO, was the only phosphorus boundary condi-
tion that was not directly measured. The parameters regulating sediment mineralization
(Theta_sed_frp, Fsed_frp, and Ksed_frp; Table 4) were automatically calibrated; therefore,
simulation of less PO, from the sediments suggests that PEST may be compensating for
excessive POy loads, either from the tributaries or internal cycling.
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Figure 5. Comparison of simulated and observed PO4 concentrations. (a) Daily depth-averaged at
OCWA stations (cyan dots in Figure 1) for 2001-2014, (b) daily 1 m above the bed at EMRB stations
(black asterisks in Figure 1) for 1986-2015. Data sources: Table 2.

During the late 1980s through 2010, the PO4 concentration increased, with increases
in soluble P from the Maumee River watershed [50], which is in agreement with the
simulations, showing POy to be maximal during 2010 through 2014. The average RMSE of
PO, was 0.01 mg L~!, comparable to 0.007-0.061 mg L~! for simulations of Lake Raven [32]
using 1D DYRESM-CAEDYM.

The annual and seasonal variations in simulated and sampled NO3 and NH4 were
small (Figures 6 and 7). During early summer, the predominant algae were non-N-fixing,
and in late summer—if required—they were able to fix nitrogen directly from the atmo-
sphere [51]. The average RMSE for NO3 and NH,4 was 0.68 and 0.03 mg L1, respectively,
comparable to 0.036 mg L~! for NO; from 3D simulations of Lake Erie [49].
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Figure 6. Comparison of simulated and observed NO3 concentrations. (a) Daily depth-averaged at OCWA stations (cyan
dots in Figure 1) for 2001-2014, (b) daily depth-averaged at ECCC stations (green dots in Figure 1) for 1994-2015, (c) daily 1
m above the bed at EMRB stations (black asterisks) for 1986-2015. Data sources: Table 2.
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Data sources: Table 2.
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3.3. Phytoplankton

The model reproduced an increase in total Chl-a from 1994 through 2015 (Figure 8). The
Chl-a RMSE between simulations and ECCC observations (17.85 ug L~!) was smaller than
that between simulations and GLENDA observations (19.21 ug L~! based on Reavie et al. [30],
and 6.25 pg L~! based on Elbagoury [21]) (Figure 8). The error was comparable to 10.4
and 12.76 pg L~! in Lake Ravn in Denmark using 1D DYRESM-CAEDYM [32]. The
ECCC data were sampled through the water column across the whole western basin and
the vertically averaged simulations from the horizontally averaged model capture these
variations. GLENDA samples were measured through the water column during spring
and in the epilimnion (from 2 to 4 m depths) during summer at only six stations (ER5S,
59, 60, 61, 91, and 92; Figure 1). Particularly, ER59 was located near the Maumee River
mouth, along the southwest border in the western basin, resulting in the observations at
ER59 during summer being larger than the simulations near the Maumee River plume [52].
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Figure 8. Comparison between depth-averaged simulations and observed total Chl-a from integrated sampling at ECCC
stations (green dots in Figure 1) for 19942015, GLENDA stations (black dots in Figure 1) for 2001-2015 (ER58, 59, 60, 61, 91,
92); (4) Verhamme et al. [17] (yellow dots in Figure 1) for 2008, and 2011-2014 (Sta. MB18, SMGR1). MB18 is closest to the
Maumee River mouth. The GLENDA data have been converted from biovolume to biomass using the conversions in both
Reavie et al. [30] and Elbagoury [21]. Data sources: Table 2.

However, being spatially averaged, gradients in Chl-a from near the Maumee River
mouth to offshore were observed, with higher than observed concentrations at MB18 and 8M,
and lower concentrations at GR1 (Figure 8, transect running from Sta. MB18 to 8M and GR1)
were not reproduced due to horizontal averaging in the 1D AED-GLM model framework. The
model reproduced the observed variation at GR1 (RMSE = 17.24 pg L~1) near the mid-basin,
while it underestimated the Chl-a concentration at MB18 (RMSE = 31.30 ug L =!) and 8M
(RMSE =20.57 pg L™1).

Peaks in both simulated and observed total Chl-a occurred in 2008 and 2011, with
high cyanobacteria (Figure 9), and the lowest Chl-a appeared in 2009 and 2012, with low
cyanobacteria. This is consistent with higher TP concentrations in 2008 and 2011, and lower
values in 2009 and 2012 (Figure 4b,c). Both simulated and observed diatoms in this study
represent early diatoms (optimum temperature of 9.8 °C), with high Si requirements and
rapid sinking rates. Like cyanobacteria, the peak of observed diatoms also occurred in
2008 and 2011, which was not reproduced by the model. Peaks in both simulated and
observed cyanobacteria were in 2008 and 2011, corresponding to the lowest concentrations
of greens and cryptophytes, suggesting the cyanobacteria are out-competing other groups
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Figure 9. Phytoplankton group comparisons between the simulated daily depth-averaged concentrations and inte-
grated samples from GLENDA (black dots in Figure 1) expressed as Chl-a for 2001-2015. (a) Diatoms; (b) green algae;
(c) cryptophytes; and (d) cyanobacteria. The GLENDA data have been converted from biovolume to biomass using the

conversions in both Reavie et al. [30] and Elbagoury [21]. Data sources: Table 2.

In addition to the GLENDA cyanobacteria observations, the modeled maximum
rolling 30-day average of cyanobacteria concentration was compared to the NOAA bloom
severity index (cyanobacteria index, CI; Figure 10). The CI was determined over 10-day
intervals from remote sensing, taking the highest cyanobacterial chlorophyll-related index
at each pixel available from any of the daily images within a 10-day period. The algal bloom
severity was determined from the annual CI [53-55], which was the average of the 10-day
intervals around the maximum severity of the bloom [56]. Intense algal blooms typically
lasted 3040 days [55]. When the index was in the range of 2—4, blooms were regarded as
mild, with severe blooms above 4. Both the highest severity index and simulated maximum
30-day average cyanobacteria concentration occurred in 2011 and 2015, indicating these
two years were with the most severe blooms. Overall, the simulations reproduced the
increasing trend of blooms from 2002 to 2015 (Figure 10), as well as the maximum peaks in
2011 and 2015.

Severity

max 30-day avg. CYANO Concentration (ug L‘1)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 10. Observed western Lake Erie bloom severity index [55] compared to simulated maximum 30-day average

cyanobacteria concentration.
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4. Discussion

The physical and biogeochemical state variables were simulated with similar RMSE to
those from shorter-term simulations as reported in the literature. This provides confidence
in model-output over the entire 1980 to 2015 simulation (Figure 11) and in the ability
of the model to evaluate nutrient reduction management scenarios. Model results show
interannual variation in simulated water temperature, but a long-term trend in temperature
was not evident. Both PO4 and TP have spikes in concentration that are visually more
evident during the early 1980s and after 2000 (Figure 11). Similarly, total Chl-a and
cyanobacteria concentrations were elevated during these times; however, cyanobacteria
were also simulated to increase during the late 1980s to early 1990s. The simulated long-
term TP concentrations were typically lower than 0.02 mg L™}, as expected for the target
TP load of 11,000 MTA established by GLWQA in 1978 [57].
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Figure 11. Long-term simulations of daily depth-averaged water temperature, PO4, TP, total Chl-a,
and cyanobacteria concentrations in the western basin.
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The Maumee River is the major phosphorus source for the western basin [1,50]. For
example, during 2007 (1 October 2006-30 September 2007), the Maumee River delivered the
largest phosphorus and nitrogen loads to the western basin in 33 years of monitoring [58].
Increases in TP and cyanobacteria were strongly related to the increased POy loads from the
Maumee River during 1996-2006 [9]. However, modelling results show that elevated PO,
does not occur in the lake during bloom years (2008, 2011, 2013, 2014, and 2015; Figure 11).
We believe this is because all available PO, goes to phytoplankton uptake, causing low
water-column PO, concentrations within the blooms. This inverse relationship has also
been modeled in Lake Erie [19], where the lakewide highest Chl-a (~50 mg m~3) was
associated with the lowest POy (~5 mg m~3). Hence, to give insight into the correlation
between algal blooms and nutrients in the western basin, researchers must consider influent
POy loads, as opposed to in situ concentrations.

Maumee River PO, loads were primarily delivered through spring runoff. Due
to the discrete nature of storm events, both discharge and PO, load were integrated
(Figure 12a,b), following Richards et al. [58]. The cumulative discharge and POy load were
largest in 2015 and 2011, which correspond to the bloom years with the highest simulated
cyanobacteria concentration (Figure 11). High discharge leads to high loads, consistent
with Baker et al. [59], and the 2015 discharge was nearly two times higher than the 35-year
average. The hydrological water year begins in March, whereas, in Richards et al. [58], the
water year began in October, resulting in the largest flow, TP, and POy loads in 2007 [58],
which was not a bloom year (Figure 10), thereby suggesting POy loads in spring are
more impactful on summer bloom severity, compared to those during the preceding fall
and winter.
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Figure 12. Hydrological water year (a) cumulative discharge and (b) PO4 load for the Maumee River from 1980 to 2015
(grey lines show discharge and PO4 load for the other 34 simulated years), (c) air temperature comparisons among monthly
climate normal and algal bloom years, and (d) daily water temperature versus simulated daily depth-averaged cyanobacteria

concentration. The optimal growth temperature for cyanobacteria is indicated.

In terms of algal biovolume, bloom area, and duration, the bloom area in 2011 [55]
was more than two times higher than that in 2008, and about four times greater than that
from 2002-2010 [11,60]. The blooms in 2011 and 2015 were similar, while the PO, loads in
2011 were much lower than in 2015, suggesting other factors, such as air temperature, also
played an important role in bloom development [61,62].

We compared the monthly average air temperature in 2011 and 2015 to the 1981-2010
climate normal (Figure 12¢). During summer (Jul.—Sep.), when cyanobacteria growth was
rapid, the air temperature in 2011 was 1.2 °C higher than the 1981-2010 climate normal,
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and, in July and August 2011, the air was close to the optimal growth temperature for
cyanobacteria (24 °C) leading to a strong bloom. The average air temperature in late
summer (Jul.-Sep.) of 2015 was 21.8 °C, lower than that in 2011 (22.4 °C) but higher than
1981-2010 (21.2 °C). Since the POy loads in 2015 were much higher than in 2011, the blooms
in 2015 were still high, similar to 2011. The interplay between loads and temperature
(Figure 12d) shows modelled cyanobacteria to peak in years when both air temperature
and nutrient loads (Figure 12b) are high (2011 and 2015). Warm air/water or high loads, in
isolation, were insufficient (e.g., 2010 or 2012).

Nutrient-Reduction Scenarios

An abundance of literature has recommended that P mitigation can control eutrophi-
cation in western Lake Erie [14,17,63]. The USEPA [12] established the target of limiting
March-July dissolved reactive phosphorus loading from the Maumee River to 186 metric
tonnes and total phosphorus loading to 860 metric tonnes, an approximately 40% reduction
from 2008 loads (closest to the original 1978 Annex 3 target of 11,000 MT), in order to reach
‘mild bloom’ threshold of 9600 MTA [42]. Nutrient loads may be controlled by BMPs (best
management practices) in the Maumee River watershed to reduce the P loads entering
into the western basin [14,41]. However, the direct effect of the loads recommended in the
Annex 4 targets, as well as the direct effect of achievable loads from the implementation of
BMPs, has not been simulated over decadal timescales.

The 17,030 km? Maumee River watershed receives 934 mm yr~! precipitation and
is comprised of 76% row-crop, 11% urban, 8% forested, and 5% hay [14]. We parameter-
ized the effects of reducing tillage, planting cover crops, and the addition of edge-of-field
filter strips (Table 5) by scaling our Maumee River loads to match the changes given
in the Bosch et al. [14] reduction scenarios. This was preferable to directly applying the
Bosch et al. modelled loads, as they differed from observed loads by 3—4%. When BMPs
were considered, the simulated maximum 30-day average cyanobacteria concentrations,
POy, and TP loads were smaller than those under current conditions, causing the western
Lake Erie cyanobacteria to be lowest under the source-combined scenario (Figure 13a,c,e).
For the different BMP scenarios, the cyanobacteria biomass was reduced by 1.98-12.21%.
No-till was the least effective among individual BMPs (Table 6), potentially facilitating
fertilizer accumulation in the surface soil layer, which is then flushed into the lake by
runoff [64]. The source-combined BMP scenario reduced TP, POy, TN, NO3, Chl-a, and
CYANO average annual concentrations by 3.6%, 1.7%, 2.0%, 2.0%, 0.68%, and 12.2%, respec-
tively (Table 6). The relatively small change in nutrients arose because the source-combined
scenario only reduced POy4 and TP loads by 7% and 8%, respectively. Implementing BMPs
to 100% of all row-crop land in the Maumee watershed above the moderate BMP level
considered feasible gave a reduction in P yield of 30% [14]. Therefore, a 10-20% BMP
reduction in P yield seems reasonably achievable but is considerably less than the Annex
4 recommended P reduction of 40%.

To test the effect of 20%, 40%, and 60% P load reduction scenarios, the TP, PO,4, DOP,
and POP concentrations in the Maumee River were all reduced accordingly (Figure 13b,d,f).
The resultant simulated maximum 30-day average cyanobacteria biomass indicated that
significant P reductions in the Maumee River can lead to decreases in cyanobacteria
biomass by limiting growth through P limitation [65]. When the TP and POy spring
loads were reduced by 40% (849 and 181 MTA in 2008, respectively), the maximum 30-
day average cyanobacteria biomass was below the ‘mild bloom’ threshold of 9600 MTA
during most years (from 2005 to 2015) (Figure 13b,d,f). The 20% reduction scenario, which
approximates the presently feasible maximum BMP impact, shows the maximum 30-day
average cyanobacteria biomass was to be above 9600 MTA continuously from 2008 through
the end of the simulation, having an insufficient effect on severity of the blooms during
this time (Figure 10).
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Table 5. Scenario descriptions for the BMPs applied to the Maumee River watershed. Our load reductions were obtained by

scaling Maumee River P concentrations to match those achieved in Bosch et al. [14].

Scenario Name Scenario Description Change in TP Load (%)  Change POy Load (%)
No-till No-till COI‘? and soybean 1mP1emented in 1046 154
random 25% of row-crop agricultural land
Rye cover crop planted between soybean and
Cover corn crop in random 25% of row-crop —2.37 —1.66
agricultural land
Filter Filter strip (100m with 25% trapp.mg efficiency) in 297 _3.08
random 20% of row-crop agricultural land
Combination of three BMPs on same 25% of
Random combined Maumee row-crop agricultural land; randomly —0.88 —4.41
distributed among sub-watersheds
Combination of three BMPs on same 25% of
Source combined Maumee row-crop agricultural land; distributed —6.92 —8.04
in high source sub-watersheds
Combination of three BMPs on same 25% of
Mouth combined Maumee row-crop agricultural land; distributed —0.86 —0.18
in sub-watersheds near river mouth
10 10*
% 3a) ; ; ] 3 : . .
i
> A
2 4| 960 MTA A\ 1%MTM,C\ VANERVIRV NG
[
0 s ‘ ‘ . X . 0 X ‘ ‘ :
(:% 1980 1985 1990 1995 2000 2005 2010 2015 1980 1985 1990 1995 2000 2005 2010 2015
=
= 3 . . . \ a . . . .
3 s00f j| s00r
- - A ‘
g [isemra ' /\/ - oo mra PN /A 4\\//\\ J
A o~ Qe AA A Y
0 ; ‘ ‘ . , . 0 ‘ ‘ . ! .
D2 {980 1985 1990 1995 2000 2005 2010 2015 1980 1985 1990 1995 2000 2005 2010 2015
YN N ey
1000 L) sotrra /7 //\//A\\/\ /\ /7= ool JAN /\\_%A\/\ /A\ A J
>3 \ / \ ' = \—U\\‘V/\V/ A W‘“ V"
n- D L .7_7 L L 1 1 1 O 1
1980 1985 1990 1995 2000 2005 2010 2015 1980 1985 1990 1995 2000 2005 2010 2015
Current Mo-till Cover Filter Random combined Source combined Mouth combined Current 20% reduction 40%reduction 60%reduction

Figure 13. Maximum 30-day average cyanobacteria (a,b), average annual (Mar.—Jul.) DRP and TP loads (c—f) from Maumee
River under BMPs (a,c,e) and simple percentage P reduction scenarios (20%, 40%, and 60% P load reductions) (b,d,f).

Table 6. Average annual TP, PO4, TN, NO3, Chl-a, and CYANO concentrations in western Lake Erie for various BMP

implementation conditions from May 1979 to December 2015.

BMP Scenarios TP (mmol m—3) PO; (mmol m—3) TN (mmolm—3) NOj; (mmol m—3) Chl-a (ug L-1) CYANO (ugL-1)
Baseline 0.56 0.07 63.54 32.84 17.58 10.17
No-till 0.57 0.07 63.70 32.98 17.56 9.96
Cover 0.55 0.07 62.84 32.43 17.55 9.76
Filter 0.55 0.07 63.15 32.65 17.54 9.80
cliir:kii?d 0.56 0.07 62.74 3238 17.51 9.42
Source combined 0.54 0.07 62.28 32.17 17.46 8.93
Mouth combined 0.55 0.07 62.90 32.54 17.56 9.87
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These simulated results are consistent with the Great Lakes Water Quality Agreement
Annex 4 recommendation that a mild bloom can be achieved by limiting DRP and TP loads
from the Maumee River during March and July to 186 and 860 MTA, respectively, which
was approximately a 40% reduction from 2008 values [66]. Zhang et al. [10] explored the
impacts of reducing TP and PO, loads (by reducing concentrations) from the Maumee
River by 20%, 40%, 60%, and 80% on the changes in P pools and fluxes, as well as algal
biomass in western Lake Erie. The 80% P load reduction gave 65 and 88% decreases
in total algal biomass in late June of 1997 and from June to October in 1998. Similar
work by Verhamme et al. [17] found that lower Maumee River March—July TP loads of
approximately 400 MTA were necessary to achieve a bloom with a maximum 30-day
average biomass equivalent to the bloom in 2012.

Our 1D model indeed shows P to be the limiting nutrient from May through December,
which is in agreement with observations of P limitation in the north of the western basin
(Pigeon Bay, [67]). Our 1D model was, however, unable to capture spatial gradients in nu-
trient limitation. For example, near the mouth of the Maumee River, phytoplankton growth
has been observed to be P-replete during wet years, but with low or no correspondence
between nitrogen limitation and size of the cyanobacterial bloom [68].

Similar to our findings, application of the 3D model ELCOM-CAEDYM to Edmon-
ton (Canada) stormwater ponds Nakhaei [22] simulated that a reduction of influent
P and N fractions by at least 50% was required to improve the trophic state of each
pond from mesotrophic/eutrophic to oligotrophic/mesotrophic. Simulation of Lake
Raven (Denmark; [32]) with 1D DYRESM-CAEDYM also predicted that a substantial
(40-50%) reduction in external TP loading would be required to meet phytoplankton
biomass requirements.

However, some model applications have suggested N control may also be necessary.
Application of 0D WASP to Lake Winnipeg (Canada; [40]) showed that a 10% reduction
in P loads decreased cyanobacteria and peak chlorophyll-a concentrations but promoted
growth of non-N-fixing cyanobacteria. They modelled that increasing N:P loading ratio (P
reduction > 12% and N reduction < 7%) would be effective for improving water quality in
the lake. Modelling of Lake Okaro (New Zealand; [69]) suggests that N loading reduction
may be more successful than reducing P loading alone, because N was modelled to be a
major limiting factor for cyanobacteria growth. Given the observations of N limitation
near the Maumee River [68], future modelling exercises should assess combined N and P
reduction scenarios.

5. Conclusions

AED-GLM reproduced the long-term temperature and water quality in western Lake
Erie without model drift, yielding RMSE that was comparable to single year simulation
studies in the literature. The algal blooms in the early 1990s and recent years (2005-
2015) were simulated, without a need to reinitialize or recalibrate in individual years.
In agreement with Annex 4, a 40% reduction in P loads from the Maumee River was
necessary to achieve a ‘mild bloom” during most years. However, by scaling Maumee River
concentrations to account for the documented effect of BMPs, the achievable reductions of
10-20% in PO4 and TP loads would not be sufficient to achieve the bloom reduction goal
in Annex 4 for western Lake Erie. We recommend future modelling efforts link long-term
simulations directly to output from watershed models and consider combined N and P
reduction scenarios.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su13147516/s1, Figure S1: Calculated RMSE temperature at Sta. W1,2 for 1994 (a) and STN357
for 2008 (b), from time series shown in Figure 3, Table S1: Summary of Water Quality Data Sources for
the Detroit River, Table S2: Summary of Water Quality Data Sources for the Maumee River, Table S3:
Description, default and assigned values of the parameters in GLM, Table S4: Description, default
and assigned values of the parameters in AED, Table S5: Description, default and assigned values of
phytoplankton parameters in AED.
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