Agrometeorological Requirements of Maize Crop Phenology for Sustainable Cropping—A Historical Review for Romania
Abstract
:1. Introduction
2. Assessment of Maize Growth and Development—Plant Phenology
3. Temperature Requirements
4. Precipitation Requirements
5. Contradictory Concepts on GDD for Maize Crop in the Romanian Literature
No. | Indicator Name | Abbreviation | Formula | Observations | Procedure/Source |
---|---|---|---|---|---|
1. | Growth degrees days | GDD | Average daily temperatures > 10 °C T > 30 °C => T = 30 °C t < 10 °C => t = 10 °C n—observed growing season length | Classic procedure [41] | |
2. | Degrees sum | DS | ) | Daily maximum temperatures 10–30 °C Night temperatures > 5.5 °C n—observed growing season length The most exactly results | Canadian Ontario procedure [41] |
3. | Heat stress degrees sum | HS | T = maximum temperature ≤ 30 °C, when T > 30 °C => T = 30 °C—(Tmax—30 °C) t = minimum temperature > 10°C. when t < 10 °C => t = 10 °C n—observed growing season length | Heat stress method [41] | |
4. | Useful temperature sum | SUT | t1 = air temperature at 1 o’clock t2 = air temperature at 7 o’clock t3 = air temperature at 13 o’clock t4 = air temperature at 19 o’clock ∑ of daytime temperatures (from April–October) | Sum of useful temperatures [23] | |
5. | Sum degrees | SD | T°max > 30 °C => T = 30 °C T °10 < 10 °C => T = 10 °C n—observed growing season length | NOAA method [23] | |
6. | Useful thermal units | UTU | −10 | t1 = air temperature at 1 o’clock t2 = air temperature at 7 o’clock t3 = air temperature at 13 o’clock t4 = air temperature at 19 o’clock n—observed growing season length | Thermic unit need [24] |
7. | Thermic constant | TBA | Tef = effective temperature, expressed as average daily temperature, averaged between maximum daily temperature and minimum daily temperature Tb = base temperature or biological threshold (Tb < 10 °C) | Sum of biologically active temperatures, recorded during the vegetation period (thermal constant) [85] |
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leff, B.; Ramankutty, N.; Foley, J.A. Geographic Distribution of Major Crops across the World. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Andersen, S. Dyrkning Af Korn. In Landbrugsplanterne, 2nd ed.; DSR Forlaget Inc.: Frederiksberg, Denmark, 2000; pp. 106–144. [Google Scholar]
- Jiang, Z.; Liu, C.; Ganapathysubramanian, B.; Hayes, D.J.; Sarkar, S. Predicting County-Scale Maize Yields with Publicly Available Data. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Butts-Wilmsmeyer, C.J.; Seebauer, J.R.; Singleton, L.; Below, F.E. Weather during Key Growth Stages Explains Grain Quality and Yield of Maize. Agronomy 2019, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. 2019. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 15 April 2021).
- Bennetzen, E.H.; Smith, P.; Porter, J.R. Agricultural Production and Greenhouse Gas Emissions from World Regions—The Major Trends over 40 Years. Glob. Environ. Chang. 2016, 37, 43–55. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Nisbett, N.; Pretty, J.; Robinson, S.; Toulmin, C.; Whiteley, R. The Future of the Global Food System; The Royal Society: London, UK, 2010. [Google Scholar]
- Kogo, B.K.; Kumar, L.; Koech, R.; Kariyawasam, C.S. Modelling Climate Suitability for Rainfed Maize Cultivation in Kenya Using a Maximum Entropy (MaxENT) Approach. Agronomy 2019, 9, 727. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of Food and Agriculture 2001; Food & Agriculture Org: Rome, Italy, 2001. [Google Scholar]
- Shirley, R.; Pope, E.; Bartlett, M.; Oliver, S.; Quadrianto, N.; Hurley, P.; Duivenvoorden, S.; Rooney, P.; Barrett, A.B.; Kent, C. An Empirical, Bayesian Approach to Modelling the Impact of Weather on Crop Yield: Maize in the US. arXiv 2020, arXiv:2001.02614. [Google Scholar]
- Walthall, C.L.; Anderson, C.J.; Baumgard, L.H.; Takle, E.; Wright-Morton, L. Climate Change and Agriculture in the United States: Effects and Adaptation; Iowa State University: Ames, IA, USA, 2013. [Google Scholar]
- Hatfield, J.L.; Antle, J.; Garrett, K.A.; Izaurralde, R.C.; Mader, T.; Marshall, E.; Nearing, M.; Robertson, G.P.; Ziska, L. Indicators of Climate Change in Agricultural Systems. Clim. Chang. 2018, 1719–1732. [Google Scholar] [CrossRef] [Green Version]
- Melillo, J.M.; Richmond, T.C.; Yohe, G.W. (Eds.) Climate change impacts in the United States: The Third National Climate Assessment. In U.S. Global Change Research Program; Springer Nature: Cham, Switzerland, 2014; pp. 150–174. Available online: http://nca2014.globalchange.gov/report (accessed on 23 March 2021). [CrossRef]
- Peng, B.; Guan, K.; Pan, M.; Li, Y. Benefits of Seasonal Climate Prediction and Satellite Data for Forecasting US Maize Yield. Geophys. Res. Lett. 2018, 45, 9662–9671. [Google Scholar] [CrossRef]
- Warren, F.B. Forecasting Corn Ear Weights from Daily Weather Data; New Prairie Press: Manhattan, KS, USA, 1989. [Google Scholar]
- Reyer, C.P.; Silveyra Gonzalez, R.; Dolos, K.; Hartig, F.; Hauf, Y.; Noack, M.; Lasch-Born, P.; Rötzer, T.; Pretzsch, H.; Meesenburg, H. The PROFOUND Database for Evaluating Vegetation Models and Simulating Climate Impacts on European Forests. Earth Syst. Sci. Data 2020, 12, 1295–1320. [Google Scholar] [CrossRef]
- Popescu, A. Maize and Wheat-Top Agricultural Products Produced, Exported and Imported by Romania. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2018, 18, 339–352. [Google Scholar]
- Dinca, C.S.; Ion, I.M.D.; Bratoveanu, D.B.; Stanciu, S. Aspects Regarding Maize Crops in the Southeast Region of Romania. Econ. Appl. Inform. 2020, 122–128. [Google Scholar] [CrossRef]
- European Union Common Agricultural Policy. Available online: https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy_en (accessed on 15 April 2021).
- Ceglar, A.; Croitoru, A.-E.; Cuxart, J.; Djurdjevic, V.; Güttler, I.; Ivančan-Picek, B.; Jug, D.; Lakatos, M.; Weidinger, T. PannEx: The Pannonian Basin Experiment. Clim. Serv. 2018, 11, 78–85. [Google Scholar] [CrossRef]
- Gruia, F. Cultura Porumbului; Centrul de Material Didactic şi Propagandă Agricolă: Bucureşti, Romania, 1986; pp. 8–40. [Google Scholar]
- Salontai, A.; Muntean, L. Curs de fitotehnie. In Tipo Agronomia; IA Timişoara: Cluj Napoca, Romania, 1982. [Google Scholar]
- Bîlteanu, G.; Fazecaş, I.; Salontai, A. Fitotehnie; Editura Didactică şi Pedagogică: Bucureşti, Romania, 1983. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A Decimal Code for the Growth Stages of Cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Large, E.C. Growth Stages in Cereals Illustration of the Feekes Scale. Plant Pathol. 1954, 3, 128–129. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants; BBCH Monograph: Braunschweig, Germany, 2018. [Google Scholar] [CrossRef]
- Niemeyer, H.M. Hydroxamic Acids Derived from 2-Hydroxy-2 H-1, 4-Benzoxazin-3 (4 H)-One: Key Defense Chemicals of Cereals. J. Agric. Food Chem. 2009, 57, 1677–1696. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Richter, A.; Jander, G. Beyond Defense: Multiple Functions of Benzoxazinoids in Maize Metabolism. Plant Cell Physiol. 2018, 59, 1528–1537. [Google Scholar] [CrossRef] [PubMed]
- Efeoğlu, B.; Ekmekçi, Y.; Çiçek, N. Physiological Responses of Three Maize Cultivars to Drought Stress and Recovery. S. Afr. J. Bot. 2009, 75, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Diaconu, P.; Burloi, G.; Cremenescu, G.; Negrea, I.; Ceaușu, C. Agrofitotehnie; Editura Didactică și Pedagocică: București, Romania, 1978; p. 250. [Google Scholar]
- Rogojanu, V.; Chisel, H. Manualul Inginerului Agronom; Ed. Tehnica: București, Romania, 1952; Volume I. [Google Scholar]
- Taindel, A.; Vrinceanu, V. Fitotehnia; Editura Agro-Silvica: București, Romania, 1962. [Google Scholar]
- Dincă, D.; Moscalu, T. Cultura Porumbului; Editura Agro-Silvica: București, Romania, 1967. [Google Scholar]
- Ministerul Agriculturii. Cultura Porumbului; Ministerul Agriculturii, Ed.; Agro-Silvică: București, Romania, 1961. [Google Scholar]
- Popescu, M.; Popescu, V. Cultura Cerealelor; Ed. Fermierul Roman: București, Romania, 1995. [Google Scholar]
- Hera, G.; Sin, G. Metode Agrotehnice în Cultura Plantelor Agricole; Ed Științifică și Enciclopedică: București, Romania, 1980. [Google Scholar]
- Coculescu, G.; Ișfan, D. Aplicarea îngrășămintelor la grîu și Porumb pe Principalelel Tipuri de sol; Ed. Agro-Silvică: București, Romania, 1967. [Google Scholar]
- Teaci, D. Bonitarea Terenurilor Agricole (Farming Land Evaluation); Ed. Ceres: Bucureşti, Romania, 1980. [Google Scholar]
- Cristea, M.; Scurtu, D.; Reichbuch, L. Porumbul Timpuriu; Ed. Ceres: Bucuresti, Romania, 1976. [Google Scholar]
- Bîlteanu, G.; Bîrnaure, V.; Miclea, E.; Bălașa, M.; Negrilă, A.; Oprea, D.D. Memorator Pentru Producția Vegetală, 2nd ed.; Ed. Ceres: Bucureşti, Romania, 1974. [Google Scholar]
- Holzkämper, A.; Calanca, P.; Fuhrer, J. Identifying Climatic Limitations to Grain Maize Yield Potentials Using a Suitability Evaluation Approach. Agric. For. Meteorol. 2013, 168, 149–159. [Google Scholar] [CrossRef]
- Mueller, B.; Hauser, M.; Iles, C.; Rimi, R.H.; Zwiers, F.W.; Wan, H. Lengthening of the Growing Season in Wheat and Maize Producing Regions. Weather Clim. Extrem. 2015, 9, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Liu, J.; Li, T.; Wang, X.; Peng, A.; Chen, C. Effect of High-Temperature Events When Heading into the Maturity Period on Summer Maize (Zea mays L.) Yield in the Huang-Huai-Hai Region, China. Atmosphere 2020, 11, 1291. [Google Scholar] [CrossRef]
- Gornall, J.; Betts, R.; Burke, E.; Clark, R.; Camp, J.; Willett, K.; Wiltshire, A. Implications of Climate Change for Agricultural Productivity in the Early Twenty-First Century. Philos. Trans. Royal Soc. B: Biol. Sci. 2010, 365, 2973–2989. [Google Scholar] [CrossRef]
- Van Bussel, L.G.J.; Stehfest, E.; Siebert, S.; Müller, C.; Ewert, F. Simulation of the Phenological Development of Wheat and Maize at the Global Scale. Glob. Ecol. Biogeogr. 2015, 24, 1018–1029. [Google Scholar] [CrossRef]
- Urban, D.; Roberts, M.J.; Schlenker, W.; Lobell, D.B. Projected Temperature Changes Indicate Significant Increase in Interannual Variability of US Maize Yields. Clim. Chang. 2012, 112, 525–533. [Google Scholar] [CrossRef]
- Cicchino, M.; Edreira, J.R.; Otegui, M.E. Heat Stress during Late Vegetative Growth of Maize: Effects on Phenology and Assessment of Optimum Temperature. Crop Sci. 2010, 50, 1431–1437. [Google Scholar] [CrossRef]
- Tiwari, Y.K.; Yadav, S.K. High Temperature Stress Tolerance in Maize (Zea mays L.): Physiological and Molecular Mechanisms. J. Plant Biol. 2019, 62, 93–102. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, Y.; Zhang, H.; Han, W.; Li, G.; Tang, J.; Peng, X. Maize Canopy Temperature Extracted from UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring. Front. Plant Sci. 2019, 10, 1270. [Google Scholar] [CrossRef]
- Bassu, S.; Fumagalli, D.; Toreti, A.; Ceglar, A.; Giunta, F.; Motzo, R.; Niemeyer, S. Potential Maize Yields in a Mediterranean Environment Depend on Conditions around Flowering. In Proceedings of the ICROPM2020: Second International Crop Modelling Symposium, Montpellier, France, 3–5 February 2020. [Google Scholar]
- Naveed, S.; Aslam, M.; Maqbool, M.A.; Bano, S.; Zaman, Q.U.; Ahmad, R.M. Physiology of High Temperature Stress Tolerance at Reproductive Stages in Maize. J. Anim. Plant Sci. 2014, 24, 1141–1145. [Google Scholar]
- Hou, P.; Liu, Y.; Xie, R.; Ming, B.; Ma, D.; Li, S.; Mei, X. Temporal and Spatial Variation in Accumulated Temperature Requirements of Maize. Field Crops Res. 2014, 158, 55–64. [Google Scholar] [CrossRef]
- Croitoru, A.-E.; Man, T.C.; Vâtcă, S.D.; Kobulniczky, B.; Stoian, V. Refining the Spatial Scale for Maize Crop Agro-Climatological Suitability Conditions in an Area with Complex Topography towards a Smart and Sustainable Agriculture. Case Study: Central Romania (Cluj County). Sustainability 2020, 12, 2783. [Google Scholar] [CrossRef] [Green Version]
- Kumudini, S.; Andrade, F.H.; Boote, K.J.; Brown, G.A.; Dzotsi, K.A.; Edmeades, G.O.; Gocken, T.; Goodwin, M.; Halter, A.L.; Hammer, G.L. Predicting Maize Phenology: Intercomparison of Functions for Developmental Response to Temperature. Agron. J. 2014, 106, 2087–2097. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the Growth and Development of Maize and Rice: A Review. Glob. Chang. Biol. 2014, 20, 408–417. [Google Scholar] [CrossRef]
- Templ, B.; Koch, E.; Bolmgren, K.; Ungersböck, M.; Paul, A.; Scheifinger, H.; Busto, M.; Chmielewski, F.-M.; Hájková, L.; Hodzić, S. Pan European Phenological Database (PEP725): A Single Point of Access for European Data. Int. J. Biometeorol. 2018, 62, 1109–1113. [Google Scholar] [CrossRef]
- Rosemartin, A.; Denny, E.G.; Gerst, K.L.; Marsh, R.L.; Posthumus, E.E.; Crimmins, T.M.; Weltzin, J.F. USA National Phenology Network Observational Data Documentation. US Geol. Surv. Open-File Rep. 2018, 24, 1018–1060. [Google Scholar]
- Shim, D.; Lee, K.-J.; Lee, B.-W. Response of Phenology-and Yield-Related Traits of Maize to Elevated Temperature in a Temperate Region. Crop J. 2017, 5, 305–316. [Google Scholar] [CrossRef]
- Rockström, J.; Karlberg, L.; Wani, S.P.; Barron, J.; Hatibu, N.; Oweis, T.; Bruggeman, A.; Farahani, J.; Qiang, Z. Managing Water in Rainfed Agriculture—the Need for a Paradigm Shift. Agric. Water Manag. 2010, 97, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Meyers, T.P.; Hollinger, S.E. An Assessment of Storage Terms in the Surface Energy Balance of Maize and Soybean. Agric. For. Meteorol. 2004, 125, 105–115. [Google Scholar] [CrossRef]
- Kaya, C.; Tuna, L.; Higgs, D. Effect of Silicon on Plant Growth and Mineral Nutrition of Maize Grown under Water-Stress Conditions. J. Plant Nutr. 2006, 29, 1469–1480. [Google Scholar] [CrossRef]
- Hu, Y.; Burucs, Z.; von Tucher, S.; Schmidhalter, U. Short-Term Effects of Drought and Salinity on Mineral Nutrient Distribution along Growing Leaves of Maize Seedlings. Environ. Exp. Bot. 2007, 60, 268–275. [Google Scholar] [CrossRef]
- Redactia De Propaganda Tehnica Agricola. Îndrumări Tehnice Pentru Lucrătorii din Agricultură-Producția Vegetală; Ministerul Agriculturii și Alimentației–Direcția Tehnică și Învățământ, Centrul de Material Didactic și propaganda Agricolă–Redacția de Propagandă Tehnică Agricolă: București, Romania, 1990. [Google Scholar]
- Hatfield, J.L.; Dold, C. Climate Change Impacts on Corn Phenology and Productivity. Corn Prod. Hum. Health Chang. Clim. 2018, 95. [Google Scholar] [CrossRef] [Green Version]
- Berti, A.; Maucieri, C.; Bonamano, A.; Borin, M. Short-Term Climate Change Effects on Maize Phenological Phases in Northeast Italy. Ital. J. Agron. 2019, 14, 222–229. [Google Scholar] [CrossRef]
- Streck, N.A.; Silva, S.D.; da Langner, J.A. Assessing the Response of Maize Phenology under Elevated Temperature Scenarios. Rev. Bras. Meteorol. 2012, 27, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sachs, M.M.; Subbaiah, C.C.; Saab, I.N. Anaerobic Gene Expression and Flooding Tolerance in Maize. J. Exp. Bot. 1996, 47, 1–15. [Google Scholar] [CrossRef]
- Kang, S.; Shi, W.; Zhang, J. An Improved Water-Use Efficiency for Maize Grown under Regulated Deficit Irrigation. Field Crops Res. 2000, 67, 207–214. [Google Scholar] [CrossRef]
- Veron, S.R.; Paruelo, J.M.; Oesterheld, M. Assessing Desertification. J. Arid Environ. 2006, 66, 751–763. [Google Scholar] [CrossRef]
- Le Houérou, H.N. Climate Change, Drought and Desertification. J. Arid Environ. 1996, 34, 133–185. [Google Scholar] [CrossRef] [Green Version]
- Ao, S.; Russelle, M.P.; Feyereisen, G.W.; Varga, T.; Coulter, J.A. Maize Hybrid Response to Sustained Moderate Drought Stress Reveals Clues for Improved Management. Agronomy 2020, 10, 1374. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Y.; Ge, Q. Spatiotemporal Differentiation of Changes in Maize Phenology in China from 1981 to 2010. J. Geogr. Sci. 2019, 29, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Guo, E.; Zhang, J.; Wang, Y.; Alu, S.; Wang, R.; Li, D.; Ha, S. Assessing Non-Linear Variation of Temperature and Precipitation for Different Growth Periods of Maize and Their Impacts on Phenology in the Midwest of Jilin Province, China. Theor. Appl. Clim. 2018, 132, 685–699. [Google Scholar] [CrossRef]
- Neild, R.E. Temperature and Rainfall Influences on the Phenology and Yield of Grain Sorghum and Maize: A Comparison. Agric. Meteorol. 1982, 27, 79–88. [Google Scholar] [CrossRef]
- Vina, A.; Gitelson, A.A.; Rundquist, D.C.; Keydan, G.; Leavitt, B.; Schepers, J. Monitoring Maize (Zea mays L.) Phenology with Remote Sensing. Agron. J. 2004, 96, 1139–1147. [Google Scholar] [CrossRef]
- Oteros, J.; García-Mozo, H.; Botey, R.; Mestre, A.; Galán, C. Variations in Cereal Crop Phenology in Spain over the Last Twenty-Six Years (1986–2012). Clim. Chang. 2015, 130, 545–558. [Google Scholar] [CrossRef]
- Zia, S.; Romano, G.; Spreer, W.; Sanchez, C.; Cairns, J.; Araus, J.L.; Müller, J. Infrared Thermal Imaging as a Rapid Tool for Identifying Water-Stress Tolerant Maize Genotypes of Different Phenology. J. Agron. Crop Sci. 2013, 199, 75–84. [Google Scholar] [CrossRef]
- Tonnang, H.E.; Makumbi, D.; Craufurd, P. Methodological Approach for Predicting and Mapping the Phenological Adaptation of Tropical Maize (Zea mays L.) Using Multi-Environment Trials. Plant Methods 2018, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, X.; Liu, Z.; Bai, F.; Sun, S.; Nie, J.; Gao, J.; Ming, B.; Xie, R.; Li, S. Spatio-Temporal Characteristics of Agro-Climatic Indices and Extreme Weather Events during the Growing Season for Summer Maize (Zea mays L.) in Huanghuaihai Region, China. Int. J. Biometeorol. 2020, 64, 827–839. [Google Scholar] [CrossRef]
- Yang, Y.; Anderson, M.C.; Gao, F.; Johnson, D.M.; Yang, Y.; Sun, L.; Dulaney, W.; Hain, C.R.; Otkin, J.A.; Prueger, J. Phenological Corrections to a Field-Scale, ET-Based Crop Stress Indicator: An Application to Yield Forecasting across the US Corn Belt. Remote Sens. Environ. 2021, 257, 112337. [Google Scholar] [CrossRef]
- Sah, R.P.; Chakraborty, M.; Prasad, K.; Pandit, M.; Tudu, V.K.; Chakravarty, M.K.; Narayan, S.C.; Rana, M.; Moharana, D. Impact of Water Deficit Stress in Maize: Phenology and Yield Components. Sci. Rep. 2020, 10, 1–15. [Google Scholar]
- Pandžić, M.; Ljubičić, N.; Mimić, G.; Pandžić, J.; Pejak, B.; Crnojević, V. A Case Study of Monitoring Maize Dynamics in Serbia by Utilizing SENTINEL-1 Data and Growing Degree Days. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 3, 117–124. [Google Scholar] [CrossRef]
- Bîlteanu, G.; Fazekaș, I.; Salontai, A.; Bîrnaure, V.; Ciobanu, F.; Vasilică, C. Fitotehnie; Ed. Didactică și Pedagogică: Bucureşti, Romania, 1979. [Google Scholar]
- Ion, V. Fitotehnie; Editura USAMV: Bucureşti, Romania, 2010. [Google Scholar]
Source | Salontai and Muntean, 1982 [23]. | Bîlteanu, 1983 [24]. | Gruia, 1986 [22]. | ||
---|---|---|---|---|---|
No.crt. | Description | Phases | Description | Stages | Description |
1. | germination–emergence | 0 | germination–emergence | Stage 0 | germination–emergence |
2. | emergence–the formation of the 3rd leaf | 0.5–1 | 2–4 leaves | Stage 0.5 | 2 leaves (initial leaves formation) |
3. | the formation of the 3rd leaf—the first internode | 1.5–2 | 6–8 leaves | Stage 1 | 4 leaves |
4. | growth cone formation | 2.5–3 | 10–12 leaves | Stage 1.5 | 6 leaves |
5. | growth, elongation and differentiation segments of tassel | 3.5–4 | 14–16 leaves | Stage 2 | 8 leaves |
6. | differentiation spikelets in tassel | 5 | appearance of stigmas-pollination | Stage 2.5 | 10 leaves |
7. | differentiation flowers in spikelet | 6 | beginning of grain filling | Stage 3 | 12 leaves |
8. | pollen differentiation | 7 | milk grain | Stage 3.5 | 14 leaves |
9. | the first internode–formation | 8 | beginning of ripening | Stage 4 | tassel emergence |
10. | tassel formation–stigmata formation | 9 | full ripening | Stage 5 | silk emergence and the shaking of pollen |
11. | stigmata appearance–milk grain | 10 | physiological maturity | Stage 6 | grain filling |
12. | milk grain–ripening | Stage 7 | milk grain | ||
13. | ripening–full ripening | Stage 8 | beginning of ripening | ||
14. | Stage 9 | full ripening | |||
15. | Stage 10 | physiological maturity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vâtcă, S.D.; Stoian, V.A.; Man, T.C.; Horvath, C.; Vidican, R.; Gâdea, Ș.; Vâtcă, A.; Rotaru, A.; Vârban, R.; Cristina, M.; et al. Agrometeorological Requirements of Maize Crop Phenology for Sustainable Cropping—A Historical Review for Romania. Sustainability 2021, 13, 7719. https://doi.org/10.3390/su13147719
Vâtcă SD, Stoian VA, Man TC, Horvath C, Vidican R, Gâdea Ș, Vâtcă A, Rotaru A, Vârban R, Cristina M, et al. Agrometeorological Requirements of Maize Crop Phenology for Sustainable Cropping—A Historical Review for Romania. Sustainability. 2021; 13(14):7719. https://doi.org/10.3390/su13147719
Chicago/Turabian StyleVâtcă, Sorin Daniel, Valentina Ancuța Stoian, Titus Cristian Man, Csaba Horvath, Roxana Vidican, Ștefania Gâdea, Anamaria Vâtcă, Ancuța Rotaru, Rodica Vârban, Moldovan Cristina, and et al. 2021. "Agrometeorological Requirements of Maize Crop Phenology for Sustainable Cropping—A Historical Review for Romania" Sustainability 13, no. 14: 7719. https://doi.org/10.3390/su13147719
APA StyleVâtcă, S. D., Stoian, V. A., Man, T. C., Horvath, C., Vidican, R., Gâdea, Ș., Vâtcă, A., Rotaru, A., Vârban, R., Cristina, M., & Stoian, V. (2021). Agrometeorological Requirements of Maize Crop Phenology for Sustainable Cropping—A Historical Review for Romania. Sustainability, 13(14), 7719. https://doi.org/10.3390/su13147719