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Abstract: The coronavirus disease 2019, known as COVID-19, has generated an imminent necessity
for personal protective equipment (PPE) that became essential for all populations and much more
for health centers, clinics, hospitals, and intensive care units (ICUs). Considering this fact, one of
the main issues for cities’ governments is the distribution of PPE to ICUs to ensure the protection of
medical personnel and, therefore, the sustainability of the health system. Aware of this challenge,
in this paper, we propose a simheuristic approach for supplying personal protective equipment to
intensive care units which is based on the location-routing problem (LRP). The objective is to provide
decision makers with a decision support tool that considers uncertain demands, distribution cost,
and reliability in the solutions. To validate our approach, a case study in Bogotá, Colombia was
analyzed. Computational results show the efficiency of the usage of alternative safety stock policies
to face demand uncertainty in terms of both expected stochastic costs and reliabilities.

Keywords: COVID-19; location-routing; uncertain demands; simheuristic

1. Introduction

COVID-19 has generated many challenges for governments and all economic activities.
For the health sector and logistics industries, the challenge is undeniable considering
variations of demands (i.e., people infected), needs of supplies, hospital capacities, among
others. Therefore, the efficiency of all logistics and supply chain management activities,
especially during pandemics and risk events, has a crucial role to play [1].

Considering the growing rate of confirmed cases of COVID-19, in certain countries,
the occupancy of intensive care units (ICUs) has augmented. In Colombia, according to
the 21 June 2021 report, the city with the highest number of confirmed cases was Bogotá,
representing 29% of confirmed cases of the country and 97.43% of the occupation of the
ICUs [2]. In addition, Bogotá is Colombia’s biggest city with a surface of 685 mi2, and
a population of around 11.2 million inhabitants [3]. The health system is composed of
both public and private institutions from which 53 have ICUs allocated to serve COVID-
19 patients. Currently, the number of habilitated ICU beds is 2261 while the number of
COVID-19 confirmed cases is up to 1.29 million [2].

Due to the high exposure of health care workers at ICUs, personal protective equip-
ment (PPE) such as masks, face shields, and gloves are essential for preventing the spread
of COVID-19 [4]. Considering this fact, the Bogotá local government is concerned with
the distribution of PPE to ICUs. Therefore, in this paper, we propose an approach for the
location of potential facilities to distribute PPE to ICUs and the subsequent route planning.
This problem could be represented by the location-routing problem (LRP) which is an
NP-hard problem [5].

The decision-making of the LRP considers two types of problems, i.e., the facility loca-
tion problem (strategic decision term) and the vehicle routing problem (tactical/operational
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decision term). Generally, due to the complexity of the facility location and the vehicle
routing problem, most works in the literature tend to deal with each problem separately;
however, this approach can provide infeasible or suboptimal solutions. Thus, dealing with
these problems in an integrated way can provide better results considering the interde-
pendency of the two problems [6]. As stated by Akpunar and Akpinar [7], the LRP has
become a relevant and active research area in the last years that has considered different
applications, for example, waste management collection, humanitarian context, urban
delivery, multimodal transportation network, among others.

Regarding logistic challenges of the COVID-19, some works can be found, princi-
pally for preventing the spreading of the virus, for example, Pachecho and Laguna [8]
addressed the vehicle routing for the urgent delivery of face shields. The work done by
Zhang et al. [9] considered vehicle scheduling for transferring high-risk individuals in
epidemic areas. The contribution provided by Yu et al. [10] introduced the reverse logistics
network design for the effective management of medical waste in epidemic outbreaks and
works from Valizadeh and Mozafari [11] and Sukseea and Sindhuchao [12] deal with waste
management problems.

However, despite the importance of supplying personal protective equipment to
intensive care units during the COVID-19 outbreak, few works have studied this prob-
lem [13]. In particular, this work is based on the LRP with uncertain demands. To handle
the uncertain version of the LRP, different approaches are available to model uncertainty,
e.g., probability and fuzzy variables [14], and to solve this type of problem, e.g., simheuris-
tics [15,16] and robust optimization [17].

In our study, we handle the location and routing decisions with uncertain demands
through a simheuristic approach as an alternative to deal with the supply of PPE to ICUs.
Therefore, the main contributions of our paper are:

(i) We attend an emerging real-life problem for supplying PPE to ICUs.
(ii) We consider one of the cities in a country (i.e., Bogotá, Colombia) with more infected

people and deaths due to the pandemic.
(iii) Real data of facilities and ICUs are considered.
(iv) Demand uncertainty due to daily variation of COVID-19 patients was estimated using

historical data of ICUs occupancy in Bogotá.
(v) A simheuristic approach is proposed to facilitate the reliability analysis during the

assessment of alternative high-quality solutions integrating an iterated local search
with a Monte Carlo simulation.

(vi) Different safety stock policies were evaluated for dealing with uncertain demand.
(vii) Assessment of solutions considering distribution cost and reliability are provided.

The remaining sections of this paper are organized as follows: Section 2 gives the
literature review; the problem is specified in Section 3; Section 4 presents the simheuristic
approach; in Section 5 computational experiments are conducted; finally, Section 6 presents
the concluding remarks, conclusions, and future research.

2. Literature Review

The LRP integrates the following decision-making problems: the number of facilities
and their location, the allocation of the customers to the opened facilities, and the cor-
responding vehicle routing to serve customers [7,18]. As stated by Nagy and Salhi [19],
the LRP is defined as an NP-hard problem.

Considering the practical impact on industries, the LRP became relevant. Thus,
different variations and applications are found in the literature. Broadly, variations of the
problem consider characteristics of depots, vehicles, or the consideration of uncertainty [20].
Readers are referred to Drexl and Schneider [21], Prodhon and Prins [6], and Nagy and
Salhi [19], as key surveys of the LRP.

Generally, contributions about LRPs consider deterministic parameters [20]. However,
in real case applications, uncertain parameters are an issue, regarding data availability.
In the literature, uncertainty in the LRP is commonly associated with demands, travel times,
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time windows, among others, and modeled as single or multiple uncertain parameters.
In terms of the LRP with uncertain demands, the type of uncertainty is mainly considered
as fuzzy and stochastic.

Regarding fuzzy uncertainty, Ghaffari-Nasab et al. [22] tackle the LRP with fuzzy
demands. The authors proposed a fuzzy chance-constrained and a hybrid simulated an-
nealing with stochastic simulation. Nadizadeh and Nasab [23] studied the dynamic capaci-
tated location-routing problem with fuzzy demands. To solve the problem, fuzzy chance-
constrained programming is designed with a hybrid heuristic algorithm that contemplates
stochastic simulation and local search. Mehrjerdi and Nadizadeh [24] studied the capacitated
LRP with fuzzy demands. The authors proposed a fuzzy chance-constrained programming
model with a greedy clustering method which includes the stochastic simulation.

Another study of the LRP with uncertain demand is presented in Fazayeli et al. [25].
The authors considered a multimodal transportation network with time windows and
fuzzy demands and developed a genetic algorithm. Nadizadeh and Kafash [26] addressed
the fuzzy capacitated LRP with demand uncertainty in pickup and delivery. To model
the problem, a fuzzy chance-constrained programming model and a greedy clustering
method were developed. In the same way, Zhang et al. [27] tackled the LRP with fuzzy
demands. A fuzzy chance-constrained programming approach and a hybrid PSO algorithm,
including stochastic simulation and local search based on variable neighborhood search
(VNS), were introduced.

Concerning stochastic uncertainty, Albareda-Sambola et al. [28] cope with the stochas-
tic location-routing problem. The authors modeled uncertainty as a vector of independent
random variables following the Bernoulli distribution. Then, a two-phase heuristic is de-
veloped with an iteratively local search procedure. Zhang et al. [29] addressed the electric
vehicle battery swap station location-routing problem with stochastic demands. A hybrid
VNS algorithm was proposed and integrated with the binary PSO.

Additionally, Rabbani et al. [30] tackled the stochastic multi-period industrial haz-
ardous waste location-routing problem with uncertain demands. The authors formulated a
multi-objective stochastic mixed-integer nonlinear programming model, a non-dominated
sorting genetic algorithm-II, and a Monte Carlo simulation. Quintero et al. [16] investigated
the capacitated LRP with stochastic demands. They proposed four versions of a VNS
metaheuristic hybridized with Monte Carlo simulations. Tordecilla et al. [20] studied the
flexible-size LRP considering both stochastic and fuzzy approaches to model uncertain
demands. The authors proposed a simheuristic combining an iterated local search (ILS)
metaheuristic with a Monte Carlo simulation for the stochastic version.

Recently, an LRP with stochastic demand is found in Martínez-Reyes et al. [13]. The au-
thors developed a preliminary version of a simheuristic in which an iterated local search
(ILS) algorithm was enhanced through a Monte Carlo simulation to face demand uncer-
tainty in supplying the intensive care units with personal protective equipment. Tirkolaee
et al. [31] formulated multi-trip location-routing for medical waste management in the
COVID-19 pandemic.

Similarly, Valizadeh et al. [32] studied waste collection management during the pan-
demic. To solve the problem the authors proposed a Benders decomposition method and
generated stochastic scenarios of the outbreak for evaluating decision-making. Moreover,
they introduced a cooperative game theory method for solving the problem. Pasha et al. [33]
proposed the “Factory-in-a-box” concept which has applications to the delivery of products
with urgent demands, such as PPE. In addition, the authors proposed a mixed-integer
linear programming model and four metaheuristics to solve the associated routing problem.
Chen et al. [34] proposed a hybrid metaheuristic to solve the contactless joint distribution
of food for closed gated communities.

Other approaches for dealing with uncertainty are through robust optimization, for
example, Kahfi et al. [35] presented a mathematical modeling approach to tackle the
location-arc routing problem with time windows and uncertain demand in a bank case
study. Even though the LRP with uncertain demand is broadly studied, few works con-
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sider real applications and just one considers the LRP for providing personal protective
equipment to intensive care units during the COVID-19 pandemic [13]. Thus, the relevance
of this work can provide a real impact in society.

3. Problem Definition

In this section, we introduce a model for supplying PPE to ICUs in Bogotá. The idea is
to find a set of locations for warehouses to provide PPE to the different ICUs belonging to
the health system in Colombia’s capital. It is clear that many sources of uncertainty can
appear in this situation (travel times, arc disruptions, among others). However, as we are
facing the COVID-19 pandemic, we decided to focus on demand uncertainty because in the
current situation it is critical to guarantee that the amount of PPE delivered to the different
ICUs will satisfy the expected demands. Taking into consideration the above-mentioned,
the problem is formally defined as a location-routing problem with stochastic demands
(LRP-SD), considering the behavior of patients with COVID-19 at ICUs.

The LRP-SD is defined in a directed graph G = (V, A). V denotes the set of nodes
comprising m possible depot locations (W is the subset of potential locations and S is a
subset of nodes) and n ICUs (I is the subset of ICUs), while A is the set of arcs a = (i, j)
with a cost Ca. δ− (S) and δ+(S) denote the set of arcs entering and leaving S, respectively,
and L(S) the set of arcs ending in S. Each depot is associated to a fixed capacity Qw and an
opening cost Ow. The ICUs have a stochastic demand Di > 0 and its variation is defined
in a probability distribution. To deal with the uncertain demand, a safety stock %SS is
considered. A fleet of K of homogeneous vehicles with capacity h is available for supplying
the PPE to ICUs. A variable cost related to fuel consumption is considered per vehicle
considering the traversed distance performed in a single route. The following binary
decision variables are used: Yw is used to represent the opening of depot w, fak represents
if vehicle k traverses arc a, or not and, finally, Xiw is to represent if ICU i is assigned to
depot w or not.

A solution of the LRP-SD is a set of open depot locations with allocated ICUs and
vehicle routes for supplying the PPE to ICUs from the assigned depot. The LRP-SD
aims at minimizing the total expected cost while ensuring the reliability of the solution.
The total expected cost includes: (i) the opening facility cost, (ii) the cost of visiting all
ICUs, (iii) the cost of vehicles -U-, and (iv) the corrective -ρ- cost of a solution when the
demand surpasses the vehicle capacity due to the stochastic nature of the ICUs’ demand.
Additionally, the reliability considers when a route failure occurs because of the demand
uncertainty. As part of the constraints, the demand Di must be attended by a vehicle.
The total demand of the ICUs must be respected. Each route starts and ends at the opened
depot. Depots and routes must respect the depot and vehicle capacity, respectively.

The proposed model for the LRP-SD is based on previous works done by Martínez-
Reyes et al. [13], Prins et al. [36], and Quintero et al. [16], and is formulated as follows:

min z = ∑
w∈W

OwYw + ∑
k∈K

∑
a∈δ+(M)

Ufak + ∑
k∈K

E[Rk] (1)

Rk =


∑

a∈A
Cafak If ∑

i∈I
∑

a∈δ−(i)
E[Di]fak ≤ (1−%SS)h

∑
a∈A

Cafak + ρ otherwise
(2)

∑
k∈K

∑
a∈δ−(i)

fak = 1 ∀i ∈ I (3)

∑
i∈I

∑
a∈δ−(i)

E[Di] fak ≤ (1−%SS)h ∀k ∈ K (4)

∑
a∈δ∓(j)

fak − ∑
a∈δ−(j)

fak = 0 ∀k ∈ K, ∀j ∈ V (5)
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∑
a∈δ∓(j)

fak ≤ 1 ∀k ∈ K, ∀i ∈ I (6)

∑
a∈L(s)

fak ≤ |S| − 1 ∀S ⊆ I, ∀k ∈ K (7)

∑
a∈δ+(w)∩δ−(I)

fak − ∑
a∈δ−(i)

fak ≤ 1 + xiw ∀i ∈ I, ∀w ∈W, ∀k ∈ K (8)

∑
a∈L(s)

E[Di]xiw ≤ Qw yw ∀w ∈W (9)

fak, xiw, yw ∈ {0, 1} ∀a ∈ A, ∀k ∈ K, ∀i ∈ I, ∀w ∈W (10)

Equation (1) is the objective function consisting in the minimization of the opening,
routing, and failure costs. Equation (2) computes the failure costs. Constraints (3) ensure
that each arc is traversed once. Constraints (4) guarantee that expected demands served by
each route respect the reduced capacity of each vehicle (i.e., the capacity once the safety
stock policy is applied). Constraints (5) ensure the continuity of each route and combined
with Constraints (6) force the vehicle to return to its departure warehouse. Inequalities (7)
avoid sub-tours. Constraints (8) ensure that ICUs are assigned to a facility only if there are
routes starting at that facility. Constraints (9) respect depot capacity. Finally, expressions
(10) define our decision variables.

The LRP-SD is illustrated in Figure 1. The problem considers potential distribution
center locations (circles) and the ICUs (squares). Figure 1 shows an initial solution setting
(top-left), the selection of the depots to be opened (top-right), the allocation of ICUs to the
opened depots (bottom-left), and the routing from the opened depot to its allocated ICUs
(bottom-right) while satisfying the set of constraints.
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Figure 1. Graphical representation of a complete LRP solution. Source: the authors.

It is well known that location decisions have a huge impact on routing plans. Thus, the
problem of supplying PPE to the ICUs must be addressed through the LRP with stochastic
demands. However, daily, the situation could derive into a multi-depot vehicle routing
problem with stochastic demands. Therefore, our algorithm is flexible to handle both
situations with minor adjustments.
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4. Solving Approach

To deal with the LRP-SD, we have developed a hybrid method belonging to the
so-called simheuristics paradigm. It consists of an ILS algorithm [37] combined with a
Monte Carlo simulation (MCS). The optimization part of the procedure is carried out
by the ILS framework while the simulation is used to assess the quality of the provided
solutions under the stochastic setting of the problem. ILS is a well-known and powerful
local search-based approach to cope with deterministic problems. Thus, we need to use
a protection strategy (safety stock policy) to face demand uncertainty and, therefore, to
obtain better results in the stochastic scenario.

Our simheuristic algorithm comprises a multi-start procedure to obtain a set of initial
solutions. Next, these solutions are passed through an MCS engine to estimate their quality
in stochastic settings. Then, the top-ranked promising solutions are improved within
an iterated local search framework. Finally, we carry out two MCS processes to refine
the estimations on the quality of the obtained solutions in the stochastic scenario setting.
Once the complete algorithm is finished, we report the top 10 obtained solutions (see
Algorithm 1).

Algorithm 1. Pseudocode of our approach. Source: the authors.

Procedure Sim-Heuristic (LS_op, Div_op)
For iter← 1 to max_iter do

Multi_Start_LRP (MS_pool) // Construct MS_pool of random initial solutions.

Next
Simulation (Short_iter, MS_pool)
Simulation (Long_iter, Top10_MS_pool)

ILS (ILS_Pool, Top10_MS_pool, LS_op, Div_op) //ILS algorithm for every solution in
Top10_MS_pool.

Simulation (Short_iter, ILS_pool)
Simulation (Long_iter, Top10_ILS_pool)

Report Top10_ILS_Pool solutions
End Procedure

In the following, we will give a detailed explanation of each component of our solving
approach. The multi-start procedure is divided into three stages:

(i) Opening of depots—depots to be opened are randomly selected until there is enough
available capacity to serve the total expected demands.

(ii) ICUs’ allocation to open depots—a non-allocated ICU is randomly chosen, and it is
allocated to its nearest open depot with available capacity to serve the demand of the
selected ICU; this process is executed until all ICUs have been allocated. In the case
that a subset of ICUs could not be assigned because of capacity constraints, a closed
depot is randomly selected, set as open, and the non-allocated ICUs are assigned to it.

(iii) Route planning—to create routes, from each open depot, the first ICU to be visited is
randomly selected, while the next ICUs are added using the nearest neighbor heuristic
until capacity is satisfied, then the vehicle is sent back to the depot and new routes
are added using the same logic until all ICUs are visited.

The aforementioned stages are executed during a certain number of iterations while
keeping the top solutions found so far. An outline of the multi-start procedure can be seen
in Algorithm 2.
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Algorithm 2. Pseudocode of the multi-start algorithm to obtain feasible solutions. Source:
the authors.

Procedure Multi_Start_LRP (MS_Pool)
MS_Pool← ∅

Location () // Open depots randomly.
Clustering () // Random choice of ICU to be allocated to the nearest

depot with available capacity.
Routing () // Construct routes for each opened depot using NNH

modified algorithm.
Include s and F(s) in MS_pool

End Procedure

Once the multi-start procedure is executed, two simulation stages are carried out.
The first one is a short simulation to have a first approximation of the expected stochastic
costs and reliabilities for each solution. Next, a more intensive simulation (i.e., with more
simulation runs) is performed to refine the previous estimations for the top 10 solutions
according to their estimated stochastic costs. It is important to note that stochastic costs
are computed as the required cost to serve a given ICU when its demand cannot be fully
served, i.e., the cost of a round-trip from the corresponding ICU to the depot to fully
reload the vehicle and going back to serve the ICU. Every time that a route cannot serve all
customers, the number of route failures is increased by one. Then, the estimated reliability
of each route can be computed as one minus the quotient among route failures and the
total simulation runs, as shown in Equation (11).

reliabr =

(
1− ∑TotalSimulationRuns

n=0 RouteFailures
TotalSimulationRuns

)
× 100% (11)

Accordingly, the reliability for a given solution s conformed by R routes is computed

as
R
∏

r=1
reliabR.

After the second simulation process, the top 10 solutions are improved using an ILS
framework (see Algorithm 3) in which we first apply a local search on each solution, then
we apply perturbation to the solution and again apply local search. To do so, two different
perturbation operators and four different local search operators were implemented. The
perturbation operators are: (i) switching of open and closed depots—one depot is randomly
selected among the opened ones and is interchanged with one randomly selected closed
depot with equal or higher capacity to satisfy the demand of the corresponding ICUs,
i.e., the ICUs previously allocated to the closed depot next the ICUs are allocated to the
recently opened depot and routes are planned using the routing heuristic explained within
the multi-start procedure (see Figure 2, top). (ii) Customer reallocation among different
depots—a given percentage of nodes, ranging from 20 to 50%, is randomly selected and
exchanged among the opened depots (breaking of ICUs’ allocation) and, the next routes
are created with the already mentioned routing heuristic (see Figure 2, bottom). Regarding
the four local search operators, they are: (i) exchange of two-node chains among routes
from the same depot, (ii) exchange of two-node chains among routes from different depots,
(iii) exchange of two non-consecutive nodes among routes from the same depot, and (iv)
exchange of two non-consecutive nodes among routes from different depots.
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Algorithm 3. ILS framework. Source: the authors.

Procedure ILS (ILS_Pool, Top10_MS_pool, LS_op, Div_op)
ILS_Pool← ∅
SBest← ∅

For i← 1 to Top10_MS_pool size do
S0 ← Top10_MS_pooli

S*← Local_Search (S0, LS_op)
Include S* and F(S*) in ILS_pool
if ILS_pool is full then

delete the worst solution in pool (S”) if F(S*) < F(S”)
end if

if F(S*) < F(SBest) or SBest = ∅ then
SBest ← S*
F(SBest)← F(S*)

end if
For j← 1 to LS_iter size do

S*← Local_Search (SBest, LS_op)

Include S* and F(S*) in ILS_pool

if ILS_pool is full then
delete the worst solution in pool (S”) if F(S*) <

F(S”)
end if

if F(S*) < F(SBest) or SBest = ∅ then
SBest ← S*
F(SBest)← F(S*)

end if
Next
For iter to max_iter_Div do

S′ ← Diversification (S*, Div_op)

Include S′ and F(S′) in ILS_pool
if ILS_pool is full then

delete the worst solution in pool (S”) if F(S′) <
F(S”)
end if
For j← 1 to LS_iter size do

S*← Local_Search (S′, LS_op)
Include S* and F(S*) in ILS_pool
if ILS_pool is full then

delete the worst solution in pool (S”) if
F(S*) < F(S”)

end if
if F(S*) < F(S′) then

S′ ← S*
F(S′)← F(S*)

end if
Next

Next
Next

End Procedure
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Promising solutions obtained so far are then passed through a short simulation process,
after which they are sorted by their expected stochastic costs. Next, the top 10 stochastic
solutions go through an intensive (long) simulation process to refine the estimates on
both expected stochastic costs and reliabilities. It is worth mentioning that safety stocks
(%SS) are used when planning routes to reduce the possibility of not serving some ICUs,
when performing the routing tasks, due to demand uncertainty. However, after a certain
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value (too conservative) of safety stock, expected costs could be increased due to excessive
deterministic (fixed) costs. The idea, then, is to find the most convenient safety stock policy,
i.e., the value that provides the best trade-off between expected costs and reliability.

5. Computational Settings

The experiments were performed on a personal windows PC with Intel® CoreTM i7
6th generation and 8Gb RAM. The LRP was modeled and solved using modeling language,
with Cplex 12.8.0.0 as solver and a time limit of 8 h (28,800 s). To do so, we have adapted the
LRP-SD formulation proposed by Quintero et al. [16], to represent the deterministic version,
by eliminating the failure costs, assuming deterministic demands, and using %SS = 0. The
proposed simheuristic for the LRP-SD was coded in Visual Basic for Applications (VBA)
language in MS Excel 2013. Spreadsheet-based solutions are considered due to their
interface familiarity, ease of use, flexibility, accessibility, and low cost, which may generate
important savings for enterprises, especially in non-developed countries [13,38].

The set of instances was generated considering the location of ICUs and possible
locations of DCs in Bogotá, Colombia. Locations were retrieved from Google Maps with
their corresponding latitude and longitude coordinates. The distance for each arc (i, j)
was retrieved using the Google Distances API. The expected value for demands (ED)
corresponds to the PPE kit, i.e., mask, gloves, and impermeable coveralls, required for each
ICU assuming that each patient is served by a team consisting of one physician, one nurse,
and one therapist. The team visits each patient once per hour, so 24 visits are required
during a complete day [13].

For the LRP-SD, uncertain demand related to the PPE is modeled with a probability
distribution according to the August 31, 2020 report of confirmed cases of COVID-19 in
Bogotá and the occupation of the total ICUs [2]. Distribution fitting is done using IBM SPSS
Statistics version 26 to select the statistical distribution that best fits the demand. As a result,
the Weibull distribution with parameters a = 13.8 and = 1.4 was obtained, where a is scale
and b is shape. Thus, variation of demands Di are generated with the following equation:

Di = b× (−LN(RAND())̂(1/a) (12)

The capacity of DCs guarantee the total demand satisfaction. The Oi for each DC
corresponds to the real month rent costs in Bogotá in USD (USD 4.7/m2 per month).
The fleet capacity Q = 2218 K, and fuel consumption (11.4 Km/gallon) correspond to the
real-load information of the Chevrolet NHR [39]. Each PPE kit weighs 1 Kg, and the fuel
cost is USD 2.1/gallon. All instances are available in https://cutt.ly/obASjVa (accessed on
2 June 2021). The file names are defined as MQS-BOG#, where # identifies the number of
the instance.

6. Results and Analysis

For the set of instances, two scenarios are evaluated, i.e., the deterministic version of
the LRP and the LRP-SD. The detailed results for the deterministic case are provided in
Table 1. The table shows, per each instance, the number of possible depots, the number of
ICUs, the GAMS results, the best deterministic solution reported by our algorithm (OBDS),
and the GAP between the OBDS and the GAMS results. We have compared the results
provided with GAMS against our proposed method. It is worth mentioning that none
of the solutions provided by GAMS was proven to be optimal in the defined time limit
(i.e., 28,800 s).

https://cutt.ly/obASjVa
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Table 1. Results—deterministic case. Source: the authors.

Instance
Name

Available
Depots

Opened
Depots ICUs GAMS/cplex (1) OBDS (2) Time to Find

Best Solution

Total Com-
putational

Time

GAP%
(2)−(1)

MQS-BOG1 5 2 30 44,889.30 44,873.22 1.2 23.6 −0.04%

MQS-BOG2 5 2 35 53,853.77 53,819.30 0.9 26.0 −0.06%

MQS-BOG3 5 3 40 59,881.04 59,837.62 29.1 30.0 −0.07%

MQS-BOG4 5 4 45 82,393.23 79,592.58 7.8 32.1 −3.40%

MQS-BOG5 5 3 50 101,602.15 79,978.69 1.4 39.2 −21.28%

MQS-BOG6 5 3 53 92,227.30 91,243.88 22.4 37.4 −1.07%

MQS-BOG7 7 2 30 53,829.25 53,818.07 13.0 22.5 −0.02%

MQS-BOG8 7 2 35 62,773.60 57,566.13 5.3 26.6 −8.30%

MQS-BOG9 7 3 40 62,753.39 58,956.63 6.9 30.5 −6.05%

MQS-BOG10 7 2 45 92,202.79 69,725.26 21.5 32.5 −24.38%

MQS-BOG11 7 3 50 97,794.08 76,236.93 23.7 36.9 −22.04%

MQS-BOG12 7 3 53 110,441.48 87,012.70 23.3 38.0 −21.21%

MQS-BOG13 9 2 30 49,635.79 49,597.50 23.2 25.2 −0.08%

MQS-BOG14 9 2 35 69,746.49 53,822.32 20.5 25.5 −22.83%

MQS-BOG15 9 3 40 75,367.08 69,288.43 0.7 30.4 −8.07%

MQS-BOG16 9 3 45 75,372.46 69,293.43 1.0 33.7 −8.07%

MQS-BOG17 9 3 50 95,046.09 75,377.60 24.5 37.5 −20.69%

MQS-BOG18 9 4 53 N/A 79,549.95 1.0 45.8 -

AVERAGE −9.862%

As can be seen, our approach outperforms GAMS for all instances, with percentual
gaps ranging from −24.38% to −0.02%. On average, our gap represents a reduction of
9.86% compared with GAMS results. In addition, it is important to mention that our
algorithm requires short computational times to be executed (around 46 s on average per
instance in the worst-case scenario). This is a key factor of our method since the available
time for the associated decision-making is scarce (2–3 h in real life).

Results for the stochastic case are presented in Tables 2 and 3. The behavior of
expected stochastic costs and reliabilities for each instance when using six different safety
stock policies (0, 3, 6, 9, 12, and 15%) is analyzed. For each safety stock policy, the best
stochastic solution (OBS), the average of our top 10 stochastic solutions (OTTAS,) and the
expected reliability of the OBS (Avg. Reliability) and the gaps between OTTAS and OBS, are
reported. According to these gaps, we can see that our algorithm provides consistent results
independently of the instance size, i.e., the OTTAS is quite near the OBS for each instance.

Moreover, a graphic example based on a representative instance is presented in
Figure 4 for analyzing the behavior of the expected stochastic costs and reliabilities using
the different safety stock policies. As expected, in the case of not considering any type of
protection (i.e., 0% of safety stock), the associated reliability is the lowest among all policies.
Once the protective policy is increased, the corresponding value of expected reliability
tends to increase as well. Regarding stochastic costs, we can see their augmentation when
considering the lowest values of protective policies (below 9%) because of the increase
in fixed vehicle costs that do not compensate the diminution in corrective costs (those
associated with the round-trip from ICU to the corresponding depot to reload the vehicle,
serve the ICU and resume the original planned route). After the 9% policy, the costs due to
route failures become too small in such a way that total stochastic cost tends to fall when
increasing the percentage of safety stock.
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Table 2. Results for 0 to 6% safety stock policies—stochastic case. Source: the authors.

Safety Stock
Policy 0% 3% 6%

Instance
Name OBS OTTAS Reliability Gap OBS OTTAS Reliability Gap OBS OTTAS Reliability Gap

MQS-BOG1 44,872.79 44,872.93 96.52% 0.0003% 44,875.11 44,875.23 98.03% 0.0003% 44,875.17 44,875.20 98.19% 0.0001%

MQS-BOG2 53,820.53 53,821.06 97.38% 0.0010% 53,817.14 53,820.59 99.06% 0.0064% 53,820.03 53,820.92 94.50% 0.0017%

MQS-BOG3 59,837.75 59,837.83 88.04% 0.0001% 59,837.56 59,837.81 87.78% 0.0004% 59,835.35 59,835.80 92.76% 0.0007%

MQS-BOG4 79,593.46 79,593.71 70.14% 0.0003% 79,592.76 79,593.87 70.56% 0.0014% 79,593.01 79,593.47 81.78% 0.0006%

MQS-BOG5 79,983.40 79,984.18 90.64% 0.0010% 79,983.02 79,983.69 68.65% 0.0008% 79,982.34 79,984.14 57.85% 0.0023%

MQS-BOG6 91,245.51 91,246.39 79.12% 0.0010% 91,245.49 91,246.72 79.67% 0.0014% 91,245.48 91,246.05 88.75% 0.0006%

MQS-BOG7 53,817.45 53,817.90 94.55% 0.0008% 53,817.79 53,818.27 97.36% 0.0009% 53,817.62 53,818.32 98.80% 0.0013%

MQS-BOG8 57,565.79 57,566.55 94.31% 0.0013% 57,565.66 57,566.16 94.18% 0.0009% 57,566.95 57,567.26 97.01% 0.0005%

MQS-BOG9 58,955.90 58,956.26 93.00% 0.0006% 58,956.34 58,957.03 98.56% 0.0012% 58,955.30 58,955.94 92.98% 0.0011%

MQS-BOG10 69,722.11 69,725.33 71.96% 0.0046% 69,725.74 69,727.42 69.63% 0.0024% 69,727.60 69,728.15 78.75% 0.0008%

MQS-BOG11 76,236.10 76,238.09 35.36% 0.0026% 76,236.16 76,238.06 46.27% 0.0025% 76,235.71 76,238.49 59.07% 0.0036%

MQS-BOG12 87,009.98 87,011.58 87.24% 0.0018% 87,010.16 87,010.99 88.16% 0.0010% 87,010.42 87,010.93 93.10% 0.0006%

MQS-BOG13 49,599.43 49,599.75 80.94% 0.0006% 49,599.03 49,600.61 89.06% 0.0032% 49,600.36 49,600.77 81.00% 0.0008%

MQS-BOG14 53,822.45 53,822.87 95.80% 0.0008% 53,822.77 53,822.79 82.06% 0.0000% 53,823.42 53,824.62 80.84% 0.0022%

MQS-BOG15 69,288.51 69,288.79 80.45% 0.0004% 69,288.27 69,289.02 80.76% 0.0011% 69,289.07 69,289.41 87.86% 0.0005%

MQS-BOG16 69,290.82 69,292.28 80.82% 0.0021% 69,289.65 69,290.62 80.09% 0.0014% 69,293.84 69,294.27 87.84% 0.0006%

MQS-BOG17 76,237.71 76,238.75 88.55% 0.0014% 76,235.55 76,238.16 81.38% 0.0034% 76,237.68 76,238.92 81.16% 0.0016%

MQS-BOG18 79,548.20 79,549.12 72.47% 0.0011% 79,548.64 79,549.59 76.48% 0.0012% 78,688.90 79,033.96 69.78% 0.4385%

Table 3. Results for 9% to 15% safety stock policies—stochastic case. Source: the authors.

Safety Stock
Policy 9% 12% 15%

Instance
Name OBS OTTAS Reliability Gap OBS OTTAS Reliability Gap OBS OTTAS Reliability Gap

MQS-BOG1 44,874.96 44,875.22 96.60% 0.0006% 44,875.12 44,875.18 98.64% 0.0001% 44,872.86 44,873.44 99.44% 0.0013%

MQS-BOG2 53,820.79 53,821.16 94.26% 0.0007% 53,819.79 53,821.89 97.40% 0.0039% 53,821.40 53,822.23 94.60% 0.0015%

MQS-BOG3 59,839.85 59,840.09 93.12% 0.0004% 59,844.47 59,844.56 97.35% 0.0002% 59,842.27 59,842.28 99.60% 0.0000%

MQS-BOG4 79,595.61 79,596.43 80.90% 0.0010% 79,596.84 79,597.16 89.26% 0.0004% 79,596.19 79,596.40 89.24% 0.0003%

MQS-BOG5 79,982.87 79,983.72 93.73% 0.0011% 79,983.61 79,983.62 71.77% 0.0000% 79,983.43 79,983.44 81.97% 0.0000%

MQS-BOG6 91,246.63 91,247.28 70.44% 0.0007% 91,247.72 91,248.67 87.21% 0.0010% 91,250.07 91,251.34 92.61% 0.0014%

MQS-BOG7 53,817.73 53,818.83 98.90% 0.0020% 53,818.35 53,818.65 98.84% 0.0006% 53,818.76 53,819.47 99.02% 0.0013%

MQS-BOG8 57,564.59 57,565.12 97.10% 0.0009% 57,566.10 57,567.73 97.20% 0.0028% 57,566.79 57,567.29 98.80% 0.0009%

MQS-BOG9 58,957.83 58,957.85 93.97% 0.0000% 58,955.86 58,956.90 98.66% 0.0018% 58,958.16 58,958.58 99.88% 0.0007%

MQS-BOG10 69,727.41 69,728.70 87.21% 0.0019% 69,730.17 69,731.13 84.29% 0.0014% 69,728.18 69,729.13 83.71% 0.0014%

MQS-BOG11 76,235.07 76,238.45 57.81% 0.0044% 76,239.91 76,241.62 71.14% 0.0022% 76,237.24 76,239.20 81.47% 0.0026%

MQS-BOG12 87,011.12 87,011.72 92.69% 0.0007% 87,010.46 87,010.85 96.52% 0.0004% 87,008.45 87,009.53 97.09% 0.0012%

MQS-BOG13 49,599.69 49,600.27 88.60% 0.0012% 49,600.33 49,600.35 90.34% 0.0000% 49,600.78 49,601.10 93.98% 0.0006%

MQS-BOG14 53,822.53 53,823.02 89.22% 0.0009% 53,823.61 53,824.25 81.14% 0.0012% 53,824.00 53,824.29 97.46% 0.0005%

MQS-BOG15 69,287.80 69,288.74 88.47% 0.0013% 69,286.15 69,287.49 93.74% 0.0019% 69,286.10 69,287.13 94.17% 0.0015%

MQS-BOG16 69,293.35 69,293.96 81.46% 0.0009% 69,290.80 69,293.15 87.98% 0.0034% 69,293.23 69,293.23 94.56% 0.0000%

MQS-BOG17 76,235.91 76,237.80 81.56% 0.0025% 76,237.32 76,238.86 81.68% 0.0020% 76,238.08 76,239.45 80.87% 0.0018%

MQS-BOG18 78,687.33 79,036.47 70.08% 0.4437% 78,687.14 78,692.49 93.02% 0.0068% 79,549.12 79,550.91 88.83% 0.0022%
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Moreover, we have compared the best deterministic solution for a given instance
against the top two solutions obtained in the stochastic scenario. As can be seen in Figure 5,
both stochastic solutions, i.e., the ones with protective (safety stock) policies, outperform
the deterministic one in the stochastic case, in terms of expected stochastic costs. There is
also a slightly lower variability of the results obtained during the 5000 simulation runs.
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Results show the robustness of our method for supplying PPE to ICUs during the
COVID-19 outbreak, which face uncertain and variable demands. Moreover, this method
can be adapted to other cities or zones dealing with the same problem or even in other



Sustainability 2021, 13, 7822 14 of 16

types of applications handling the LRP-SD. To do so, historical cases of infected people
need to be analyzed to define the demand probability distribution, as well as the number
of ICUs to be attended, the number of available facilities, the fleet size, the vehicle capacity,
the safety stock policies, distances between arc connections of nodes, i.e., facilities and
ICUs, the opening facility cost, the cost of visiting all ICUs, the cost of vehicles, and the
corrective cost of a solution when the demand exceeds the vehicle capacity due to the
uncertain nature of the ICUs’ demand.

7. Conclusions

This article has studied an imminent necessity of supplying personal protective equip-
ment to intensive care units during the COVID-19 outbreak in Bogotá, Colombia, defined
as a location-routing problem with stochastic demands. As the number of infected people
may vary from day to day, and consequently the number of ICU patients, we have gath-
ered real data from ICUs in the city to estimate the associated stochastic distribution and,
consequently, estimate the needs for PPEs at each ICU. To cope with this complex problem,
we proposed a simheuristic approach that considers uncertain demands, distribution cost,
and reliabilities in the solutions. Our simheuristic algorithm combines a Monte Carlo
simulation with iterated local search. The proposed method was coded in VBA and tested
using eighteen different instances generated with data retrieved from Google Maps to
characterize the geographical distribution of both warehouses and ICUs in Colombia’s
biggest city.

In terms of results, different safety stock policies are considered as protection against
demand uncertainty. Our results were compared to the ones obtained by GAMS in the
deterministic version of the problem, showing promising results. In the stochastic setting
of the problem, our method provides an estimation of the expected stochastic costs and
reliabilities when using different safety stock policies for each instance. As expected, when
no protection is considered, there are many route failures due to demand uncertainty,
and higher costs and lower reliability are obtained. On the other hand, once the value
of the safety stock policy reaches the ideal value, costs tend to decrease while reliability
increases. These results on a realistic application can be used to ensure the sustainability
of the health system of the city in terms of guaranteeing the supply of a critical product
to protect physicians, nurses, and therapists of the front line, who are struggling with the
current pandemic.

Regarding future directions of this work, there is an opportunity to evaluate sustain-
able criteria for dealing with emergency decision-making. In addition, since our model
considered the Weibull distribution for representing the demand’s behavior, other distribu-
tions could be adapted for evaluating the robustness of our proposed method. Considering
that uncertainty may affect the decision-making in humanitarian crisis, other methods (e.g.,
robust optimization), and sources of uncertainties (e.g., uncertain travel times, uncertain
time windows, imperative pickup, and delivery loads) could be implemented. Finally,
equity and cost deprivation are also criteria to be considered for attending the total demand
in a crisis context.

Author Contributions: Conceptualization, C.L.Q.-A. and E.L.S.-C.; methodology, A.M.-R., C.L.Q.-A.
and E.L.S.-C.; software, A.M.-R. and C.L.Q.-A.; validation, A.M.-R., C.L.Q.-A. and E.L.S.-C.; formal
analysis, A.M.-R., C.L.Q.-A. and E.L.S.-C.; writing—original draft preparation, C.L.Q.-A. and E.L.S.-
C.; writing—review and editing, C.L.Q.-A. and E.L.S.-C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Master Program in Operations Management and the
General Direction of Research from Universidad de La Sabana, grant number EICEA-112-2018.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Sustainability 2021, 13, 7822 15 of 16

Acknowledgments: This work has been partially supported by the Master Program in Operations
Management and the General Direction of Research from Universidad de La Sabana, grant EICEA-
112-2018.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Illahi, U.; Mir, M.S. Maintaining efficient logistics and supply chain management operations during and after coronavirus

(COVID-19) pandemic: Learning from the past experiences. Environ. Dev. Sustain. 2021, 23, 11157–11178. [CrossRef]
2. Secretaría Distrital de Salud. Casos Confirmados de COVID-19|SALUDATA. Available online: https://saludata.saludcapital.gov.

co/osb/index.php/datos-de-salud/enfermedades-trasmisibles/covid19/ (accessed on 5 July 2021).
3. Population Stat. Bogota, Colombia Population (2021)—Population Stat. Available online: https://populationstat.com/colombia/

bogota (accessed on 5 July 2021).
4. Das, S.; Rajalingham, S. Personal Protective Equipment (PPE) and Its Use in COVID-19: Important Facts. Indian J. Surg. 2020,

82, 282–283. [CrossRef]
5. Salhi, S.; Rand, G.K. The effect of ignoring routes when locating depots. Eur. J. Oper. Res. 1989, 39, 150–156. [CrossRef]
6. Prodhon, C.; Prins, C. A survey of recent research on location-routing problems. Eur. J. Oper. Res. 2014, 238, 1–17. [CrossRef]
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