Review of Remediation Solutions for Acid Mine Drainage Using the Modified Hill Framework
Abstract
:1. Introduction
2. Evaluation of AMD Treatment Options against the Modified Hill Framework
2.1. Chemical Treatment
2.1.1. Conventional Neutralisation
2.1.2. High Density Sludge
2.1.3. Chemical Desalination
2.1.4. Evaluation of Chemical Treatment Methods
Criteria | Conventional Neutralisation | High Density Sludge | Chemical Desalination |
---|---|---|---|
pH neutralisation of acidic AMD pH = 2.0, acidity = 2000 mg/L | Effective Treated pH > 8 | Effective Treated pH > 8 | Effective Treated pH > 8 |
Removal of Total Fe removal Fe = 2800 mg/L | Effective Treated Fe < 1 mg/L | Effective Treated Fe < 1 mg/L | Effective Treated Fe < 1 mg/L |
Removal of Al removal Al = 500 mg/L | Effective Treated Al < 1 mg/L | Effective Treated Al < 1 mg/L | Effective Treated Al < 1 mg/L |
Removal of SO4 removal SO4 = 8000 mg/L | Limited Treated SO4 > 2500 mg/L | Limited Treated SO4 > 1900 mg/L | Effective Treated SO4 < 200 mg/L |
Removal of Zn removal Zn = 210 mg/L | Effective Treated Zn < 1 mg/L | Effective Treated Zn < 1 mg/L | Effective Treated Zn < 1 mg/L |
Removal of Mn removal Mn = 120 mg/L | Effective Treated Mn < 5 mg/L | Effective Treated Mn < 5 mg/L | Effective Treated Mn < 5 mg/L |
Removal of Mg removal Mg = 300 mg/L | Ineffective at changing Mg concentration | Ineffective at changing Mg concentration | Effective Treated Mg < 50 mg/L |
Estimate operational costs | USD 1–0.5 | USD 1–0.5 | USD 0.25–0.75 |
References | [30,32,55] | [30,45,46,55] | [5,30,32,50] |
2.2. Wetlands
2.2.1. Aerobic Wetlands
2.2.2. Anaerobic Wetlands
2.2.3. Evaluation of Wetlands
Criteria | Aerobic Wetlands | Anaerobic Wetlands |
---|---|---|
pH neutralisation of acidic AMD pH = 2.0, acidity = 2000 mg/L | Ineffective Limited to treating net alkaline AMD | Ineffective at treating pH of 2 Limited to treating pH > 4.5 |
Removal of Total Fe removal Fe = 2800 mg/L | Effective Fe < 1 mg/L | Ineffective at changing concentration Pre-treatment required |
Removal of Al removal Al = 500 mg/L | Ineffective at changing concentration Pre-treatment required | Ineffective at changing concentration Pre-treatment required |
Removal of SO4 removal SO4 = 8000 mg/L | Ineffective at changing concentration Pre-treatment required | Ineffective at changing concentration Pre-treatment required |
Removal of Zn removal Zn = 210 mg/L | Ineffective at changing concentration Pre-treatment required | Ineffective at changing concentration Pre-treatment required |
Removal of Mn removal Mn = 120 mg/L | Ineffective at changing concentration Pre-treatment required | Ineffective at changing concentration Pre-treatment required |
Removal of Mg removal Mg = 300 mg/L | Ineffective at changing concentration Pre-treatment required | Ineffective at changing concentration Pre-treatment required |
Estimate operational costs | No direct cost | No direct cost |
References | [11,23,30] | [11,31,64] |
2.3. Membrane Treatment
2.3.1. Membrane Desalination
2.3.2. Membrane Distillation
2.3.3. Evaluation of Membrane Treatment
Criteria | Membrane Desalination | Reverse Osmosis-HiPRO Process |
---|---|---|
pH neutralisation of acidic AMD pH = 2.0, acidity = 2000 mg/L | Ineffective at pH correction Pre-treatment required | Effective Treated pH between 7–8 |
Removal of Total Fe removal Fe = 2800 mg/L | Effective Treated Fe < 0.3 mg/L | Effective Treated Fe < 0.3 mg/L |
Removal of Al removal Al = 500 mg/L | Effective Treated Al < 0.3 mg/L | Effective Treated Al < 0.3 mg/L |
Removal of SO4 removal SO4 = 8000 mg/L | Effective Treated SO4 < 250 mg/L | Effective Treated SO4 < 250 mg/L |
Removal of Zn removal Zn = 210 mg/L | Effective Treated Zn < 5 mg/L | Effective Treated Zn < 5 mg/L |
Removal of Mn removal Mn = 120 mg/L | Effective Treated Mn < 0.4 mg/L | Effective Treated Mn < 0.4 mg/L |
Removal of Mg removal Mg = 300 mg/L | Effective Treated Mg < 120 mg/L | Effective Treated Mg < 120 mg/L |
Estimate operational costs | Cost ≥ USD 1 | Cost ≥ USD 1 |
References | [88,89] | [30,32,76,90] |
2.4. Biological Treatment
2.4.1. Active Anaerobic Digestion
2.4.2. Passive Bioreactors
2.4.3. Evaluation of Active Biological Treatment
Criteria | Anaerobic Digestor | Passive Bioreactors |
---|---|---|
pH neutralisation of acidic AMD pH = 2.0, acidity = 2000 mg/L | Ineffective at low pH Pre-treatment neutralisation required | Ineffective at low pH Pre-treatment neutralisation required |
Removal of Total Fe removal Fe = 2800 mg/L | Ineffective at changing concentration Pre-treatment neutralisation required | Ineffective at changing concentration Pre-treatment neutralisation required |
Removal of Al removal Al = 500 mg/L | Ineffective at changing concentration Pre-treatment neutralisation required | Ineffective at changing concentration Pre-treatment neutralisation required |
Removal of SO4 removal SO4 = 8000 mg/L | Effective Treated SO4 < 200 mg/L | Effective with high retentions times Treated SO4 < 1000 mg/L |
Removal of Zn removal Zn = 210 mg/L | Ineffective at changing concentration Pre-treatment neutralisation required | Ineffective at changing concentration Pre-treatment neutralisation required |
Removal of Mn removal Mn = 120 mg/L | Ineffective at changing concentration Pre-treatment neutralisation required | Ineffective at changing concentration Pre-treatment neutralisation required |
Removal of Mg removal Mg = 300 mg/L | Ineffective at changing concentration Pre-treatment neutralisation required | Ineffective at changing concentration Pre-treatment neutralisation required |
Operational costs | Cost ≥ USD 1 per m3 | No direct cost |
References | [7,40,62,97] | [59,69,100] |
2.5. Permeable Reactive Barriers
2.5.1. Zero-Valent Iron
2.5.2. Pervious Concrete
2.5.3. Organic Matter
2.5.4. Evaluation of PRB Methods
Criteria | Zero-Valent Iron PRB with Alkaline Reagent | Pervious Concrete PRB | Organic Matter with Alkaline Reagent |
---|---|---|---|
pH neutralisation of acidic AMD pH = 2.0, acidity = 2000 mg/L | Effective Treated pH > 7 | Effective Treated pH > 8 | Not effective Pre-treatment required |
Removal of Total Fe removal Fe = 2800 mg/L | Effective Treated Fe < 10 mg/L | Effective Treated Fe < 10 mg/L | Not effective Pre-treatment required |
Removal of Al removal Al = 500 mg/L | Effective Treated Al < 10 mg/L | Effective Treated Al < 10 mg/L | Not effective Pre-treatment required |
Removal of SO4 removal SO4 = 8000 mg/L | Limited Treated SO4 > 2500 mg/L Post treatment required | Limited Treated SO4 > 2500 mg/L Post treatment required | Effective at very long retentions. Treated SO4 > 250 mg/L |
Removal of Zn removal Zn = 210 mg/L | Effective Zn < 10 mg/L | Effective Zn < 10 mg/L | Not effective Pre-treatment required |
Removal of Mn removal Mn = 120 mg/L | Not effective Pre-treatment required | Effective Mn < 10 mg/L | Not effective Pre-treatment required |
Removal of Mg removal Mg = 300 mg/L | Not effective Pre-treatment or post treatment required | Not effective, Concentrations can increase | Not effective Pre-treatment required |
Operational costs | Cost < USD 0.5 per m3 | Cost < USD 0.5 per m3 | Cost < USD 0.5 per m3 |
References | [108,115,126,127] | [107,109,115,120] | [124,125] |
3. Future Prospective and Research Needs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Braungardt, C.B.; Achterberg, E.P.; Elbaz-Poulichet, F.; Morley, N.H. Metal geochemistry in a mine-polluted estuarine system in Spain. Appl. Geochem. 2003, 18, 1757–1771. [Google Scholar] [CrossRef]
- Byrne, P.; Wood, P.J.; Reid, I. The impairment of river systems by metal mine contamination: A review Including remediation options. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2017–2077. [Google Scholar] [CrossRef]
- Msagati, T.A.; Nkambule, T.I.; Kefeni, K.; Mamba, B. Synthesis and application of hematite nanoparticles for acid mine drainage treatment. J. Environ. Chem. Eng. 2018, 6, 1865–1874. [Google Scholar]
- Soni, A.K.; Mishra, B.; Singh, S. Pit lakes as an end user of mining: A review. J. Min. Environ. 2014, 5, 99–111. [Google Scholar]
- de Beer, M.; Maree, J.P.; Wilsenach, J.; Motaung, S.; Bologo, L.; Radebe, V. Acid Mine Water Reclamation using the ABC Process. In Proceedings of the International Mine Water Association Symposium, Sydney, NS, Canada, 4–9 September 2010; p. 6. [Google Scholar]
- Johnson, B.D.; Hallberg, K.B. Acid Mine Drainage Remediation Options: A Review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Rose, P. Long-term sustainability in the management of acid mine drainage wastewaters—development of the Rhodes BioSURE Process. Water SA 2013, 39, 582. [Google Scholar] [CrossRef] [Green Version]
- Thisani, S.K.; Kalllon, D.V.V.; Byrne, P. Geochemical Classification of Global Mine Water Drainage. Sustainability 2020, 12, 10244. [Google Scholar] [CrossRef]
- Chon, H.; Hwang, J. Geochemical Characteristics of the Acid Mine Drainage in the Water System in the Vicinity of the Dogye Coal Mine in Korea. Environ. Geochem. Health 2000, 22, 155–172. [Google Scholar] [CrossRef]
- Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage verus neutral mine drainage. Mine Water Environ. 2009, 28, 30–49. [Google Scholar] [CrossRef]
- Pat-Espadas, A.M.; Portales, R.L.; Amabilis-Sosa, L.E.; Gomez, G.; Vidal, G. Review of Constructed Wetlands for Acid Mine Drainage Treatment. Water 2018, 10, 1685. [Google Scholar] [CrossRef] [Green Version]
- Edwards, K.J.; Gihring, T.M.; Banfield, J.F. Seasonal Variations in the Microbial Populations and Environmental Conditions in an Extreme Acid Mine Drainage Environment. Appl. Environ. Microbiol. 1999, 65, 3627–3632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarmiento, A.M.; Nieto, J.M.; Olias, M.; Canovas, C.R. Hydrochemical characteristics and seasonal influence on the pollution by acid mine drainage in the Odiel river Basin (SW Spain). Appl. Geochem. 2009, 24, 697–714. [Google Scholar] [CrossRef]
- Davies, H.; Weber, P.; Lindsay, P.; Craw, D.; Pope, J. Characterisation of acid mine drainage in a high rainfall mountain environment, New Zealand. Sci. Total. Environ. 2011, 409, 2971–2980. [Google Scholar] [CrossRef] [PubMed]
- Edraki, M.; Golding, S.D.; Baublys, K.A.; Lawrence, M.G. Hydrochemistry, mineralogy and sulfur isotope geochemistry of acid mine drainage at the Mt. Morgan mine environment, Queensland, Australia. Appl. Geochem. 2005, 20, 789–805. [Google Scholar] [CrossRef]
- Gurkiran, K.; Sara, J.; Couperthwaite, B.W.; Hatton-Jones, G.J.M. Alternative neutralisation materials for acid mine drainage treatment. J. Water Process. Eng. 2018, 22, 46–58. [Google Scholar]
- International Institute for Environment and Development, Breaking New Ground—Mining, Minerals, and Sustainable Development. In IIED and World Business Council for Sustainable Development (WBCSD) Publication; Earthscan Publications Ltd., London and Sterling: Sterling, VA, USA, 2002; p. 441.
- Opitz, J.; Timms, W. Mine water discharge quality—A review of classification frameworks. In Proceedings of the International Mine Water Association, IMWA, Leipzig, Germany, 11–15 July 2016; pp. 11–15. [Google Scholar]
- RoyChowdhury, A.; Sarkar, D.; Datta, R. Remediation of Acid Mine Drainage-Impacted Water. Curr. Pollut. Rep. 2015, 1, 131–141. [Google Scholar] [CrossRef]
- van Hille, R.; Rose, P.; Boshoff, G.A.; Duncan, J.R. A Continuous Process for the Biological Treatment of Heavy Metal Contaminated Acid Mine Water. Resour. Conserv. Recycl. 1999, 27, 157–167. [Google Scholar] [CrossRef] [Green Version]
- MacIngova, E.; Luptakova, A. Recovery of metals from acid mine drainage. Chem. Eng. Trans 2012, 28, 109–114. [Google Scholar]
- Sun, R.; Li, Y.; Lin, N.; Ou, C.; Wang, X.; Zhang, L.; Jiang, F. Removal of heavy metals using a novel sulfidogenic AMD treatment system with sulfur reduction: Configuration, performance, critical parameters and economic analysis. Environ. Int. 2020, 136, 105457. [Google Scholar] [CrossRef]
- Taylor, J.; Pape, S.; Murphy, N. A summary of passive and active treatment technologies for acid and metalliferous drainage (AMD). In Proceedings of the Fifth Australian Workshop on Acid Drainage, Frementle, Australia, 29–31 August 2005. [Google Scholar]
- Kefani, K.K.; Msagati, T.A.; Mamba, B.B. Acid mine drainage: Prevention, treatment option, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Moodley, I.; Sheridan, C.M.; Kappelmeyer, U.; Akcil, A. Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products. Miner. Eng. 2018, 126, 207–220. [Google Scholar] [CrossRef]
- Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. [Google Scholar] [CrossRef]
- Skousen, J.; Zipper, C.E.; Rose, A.; Ziemkiewicz, P.F.; Nairn, R.; McDonald, L.M.; Kleinmann, R.L. Review of passive systems for acid mine drainage treatment. Mine Water Environ. 2017, 36, 133–153. [Google Scholar] [CrossRef] [Green Version]
- Ziemkiewicz, P.F.; Skousen, J.G.; Simmons, J. Long-term Performance of Passive Acid Mine Drainage Systems. Mine Water Environ. 2003, 22, 118–129. [Google Scholar] [CrossRef]
- Fork, K.L. Passive Treatment Systems for Acid Mine Drainage. U.S. Bur. Land Manag. Pap. 2003, 19, 1–13. [Google Scholar]
- Novhe, O.; Yibas, B.; Coetzee, H.; Atanasova, M.; Netshitungulwana, R.; Modiba, M.; Mashalane, T. Long-Term Remediation of Acid Mine Drainage from Abandoned Coal Mine Using Integrated (Anaerobic and Aerobic) Passive Treatment System, in South Africa: A Pilot Study. In Proceedings of the International Mine Water Association, Leipzig, Germany, 11–15 July 2016; pp. 668–674. [Google Scholar]
- Expert Team of the Inter Ministerial Committee. Mine Water Management in the Witwatersrand Gold Fields with Special Emphasis on Acid Mine Drainage-Report to the Inter-Ministerial Committee on Acid Mine Drainage; Council of Geoscience: Pretoria, South Africa, 2010. [Google Scholar]
- Younger, P.L.; Banwart, S.A.; Hedin, R.S. Mine Water: Hydrology, Pollution, Remediation; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A critical review on remediation. reuse, and resource recovery from acid mine drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef]
- Aubé, B.; Lee, D. The High Density Sludge (HDS) Process and Sulphate Control. In Proceedings of the 10th International Conference on Acid Rock Drainage and IMWA Conference 2015–Agreeing on Solutions for More Sustainable Mine Water Management, Santiago, Chile, 21 April 2015. [Google Scholar]
- Skousen, J.; Hilton, T.; Faulkner, B. Overview of acid mine drainage treatment with chemicals. Green Lands 1996, 26, 36–45. [Google Scholar]
- Dinu, L.; Stefanescu, M.; Balaiu, M.; Cosma, I.; Criste, C.; Badescu, V. Acid mine water treatment using the high density sludge technology. J. Environ. Prot. Ecol. 2014, 15, 1700–1717. [Google Scholar]
- Marcello, R.R.; Galato, S.; Peterson, M.; Riella, H.G.; Bernardin, A.M. Inorganic pigments made from the recycling of coalmine drainage treatment sludge. J. Environ. Manag. 2008, 88, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Kalin, M.; Fyson, A.; Wheeler, W.N. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Sci. Total. Environ. 2006, 366, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Pionapen, J.; Wentzel, M.C.; Ekama, G.A. Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed (UASB) reactor—Part 1: Feasibility study. Water SA 2009, 35, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Yan, B.; Lei, C.; Xiao, X. Pollution control and metal resource recovery for acid mine drainage. Hydrometallurgy 2014, 147, 112–119. [Google Scholar] [CrossRef]
- Rodriguez-Galan, M.; Baena-Moreno, F.; Vazquez, S.; Arroyo-Torralvo, F.; Vilches, L.F.; Zhang, Z. Remediation of acid mine drainage. Environ. Chem. Lett. 2019, 17, 1529–1538. [Google Scholar] [CrossRef]
- Cunha, M.P.; Ferraz, R.M.; Sancinetti, G.P.; Rodriguez, R.P. Long-term performance of a UASB reactor treating acid mine drainage: Effects of sulfate loading, hydraulic retention time, and COD/SO4 ratio. Biodegredation 2019, 30, 47–58. [Google Scholar] [CrossRef]
- Aubé, B.; Zinck, J.M. Comparison of AMD Treatment Processes and Their Impact on Sludge Characteristics, 1st ed.; Noranda Income Technology Centre: Sudbury, QC, Canada, 1999. [Google Scholar]
- Sukati, B.H.; de Jager, P.C.; Annandale, J.G.; Tanner, P.D. The hazardous status of high density sludge from mine drainage neutralization. Sustainability 2018, 10, 4185. [Google Scholar] [CrossRef] [Green Version]
- Kuyucak, N.; Lindvall, M.; Serrano, J.A.R.; Oliva, A.F. Implementation of a High Density Sludge “HDS” Treatment Process at the Boliden Apirsa Mine Site; International Mine Water Association: Sevilla, Spain, 1999. [Google Scholar]
- Stewart, D.R. Water Filtration Innovation to Optimize Recovery and Lower TCO. J. Int. Mine Water Assoc. 2013, 1, 735–740. [Google Scholar]
- Maree, J.P.; Strydom, W.F.; Adlem, C.J.; de Beer, M.; van Tonder, G.J.; van Dijk, B.J. Neutralization of Acid Mine Water and Sludge Disposal; WRC Report No 1057/1/04; Water Research Commission: Pretoria, South Africa, 2004. [Google Scholar]
- Maree, J.P.; Mujuru, M.; Bologo, V.; Mpholoane, D. Neutralisation Treatment of AMD at Affordable Cost. Water SA 2013, 39, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Bologo, V.; Maree, J.P.; Carlsson, F. Application of magnesium hydroxide and barium hydroxide for the removal of metals and sulphate from mine water. Water SA 2012, 38, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Swanepoel, H. Sulphate Removal from Industrial Effluents Through Barium Sulphate Precipitation; North-West University: Potchefstroom, South Africa, 2011. [Google Scholar]
- Akinwekomi, V.; Maree, J.P.; Wolkersdorfer, C. Using Calcium Carbonate/Hydroxide and Barium Carbonate to Remove Sulphate from Mine Water. Mine Water Environ. 2017, 36, 264–272. [Google Scholar] [CrossRef]
- Ali, A.M.; Messaoud, H. Barium Sulphate Deposits. Energy Procedia 2019, 157, 879–891. [Google Scholar] [CrossRef]
- Patroni, J.; Mackay, E.J.; Vazquez, O.; Boak, L.S.; Singleton, M.; Ross, G. The Cost and Value of Field, Laboratory, and Simulation Data for Validating Scale Inhibitor Treatment Models. In Proceedings of the SPE International Oilfield Scale Conference, Aberdeen, UK, 28–29 May 2008. [Google Scholar]
- Skousen, J.G.; Sextone, A.; Ziemkiewicz, P.F. Acid mine drainage control and treatment. Reclam. Drastically Disturb. Lands 2000, 41, 131–168. [Google Scholar]
- de Klerk, A.R.; Oberholster, P.J.; van Wyk, J.H.; Truter, J.C.; Schaefer, L.M.; Botha, A.M. The Effect of Rehabilitation Measures on Ecological Infrustructure in Response to Acid Mine Drainage from Coal Mining. Ecol. Eng. 2016, 95, 463–474. [Google Scholar] [CrossRef]
- Sheoran, A.S.; Sheoran, V. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Miner. Eng. 2006, 19, 105–116. [Google Scholar] [CrossRef]
- Dean, A.P.; Lynch, S.; Rowland, P.; Toft, B.D.; Pittman, J.K.; White, K.N. Natural Wetlands are efficient at provide long-term metal remediation of freshwater systems polluted by acid mine drainage. Environ. Sci. Technol. 2013, 47, 12029–12036. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Sahinhaya, E. Review of sulfate reduction based bioprocesses for acid mine drainage treatment and metals recovery. Eng. Life Sci. 2007, 7, 541–564. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B. Pitfalls of passive mine water treatment. Rev. Environ. Sci. Bio/Technol. 2002, 1, 335–343. [Google Scholar] [CrossRef]
- Neda, A.; Whittington-Jones, K.; Rose, P.D. Salinity, Sanitation and Sustainability Vol. 4: The Rhodes BioSURE Process; Water Research Commission: Pretoria, South Africa, 2007; Volume 4. [Google Scholar]
- Caraballo, M.A.; Maclas, F.; Rotting, T.S.; Nieto, J.M.; Ayora, C. Long term remediation of highly polluted acid mine drainage: A sustainable approach to restore the environmental quality of the Odiel river basin. Environ. Pollut. 2011, 159, 3613–3619. [Google Scholar] [CrossRef] [PubMed]
- Nyquist, J.; Greger, M. A field study of constructed wetlands for preventing and treating acid mine drainage. Ecol. Eng. 2009, 35, 630–642. [Google Scholar] [CrossRef]
- Ville, M.A.; Wieder, R.K. Alkalinity generation by Fe(III) reduction versus sulfate reduction in wetlands constructed for acid mine drainage treatment. Water Air Soil Pollut. 1993, 69, 425–441. [Google Scholar] [CrossRef]
- Zipper, C.; Skousen, J.; Jage, C. Passive Treatment of Acid-Mine-Drainage; Virginia Cooperative Extension: Blacksburg, VA, USA, 2011; pp. 133–460. [Google Scholar]
- Fripp, J.; Ziemkiewicz, P.F.; Charkavorki, H. Acid Mine Drainage Treatment; EMRRP Technical Notes Collection (ERDC TN-EMRRP-SR-14); U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2000. [Google Scholar]
- Papirio, S.; Villa-Gomez, D.K.; Esposito, G.; Pirozzi, F.; Lens, P.N. Acid Mine Drainage Treatment in Fluidized Bed Bioreactors by Sulfate Reducing Bacteria: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2545–2580. [Google Scholar] [CrossRef]
- Brooks, C.S. Metal Recovery Recovery from Industrial Industrial Wastes; Lewis Publishers: Chelsea, MI, USA, 1991. [Google Scholar]
- Veeken, A.H.; Akoto, L.; Pol, L.W.H.; Weijma, J. Control of the sulfide (S2-) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor. Water Res. 2003, 37, 3709–3717. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef] [PubMed]
- Simate, S.G.; Ndlovu, S. Acid mine drainage: Challenges and opportunities. J. Environ. Chem. Eng. 2014, 2, 1785–1803. [Google Scholar] [CrossRef]
- Bhagwan, J. Turning Acid Mine Drainage Water into Drinking Water: The eMalahleni Water Recycling Project; Environmental Protection Agency: Washington, DC, USA, 2012. [Google Scholar]
- Hutton, B.; Kahan, I.; Naidu, T.; Gunther, P. Operating and Maintenance Experience at the Emalahleni Water Reclamation Plant. In Proceedings of the International Mine Water Conference, Pretoria, South Africa, 19–23 October 2009; pp. 415–428. [Google Scholar]
- Aguiar, A.O.; Andrade, L.H.; Ricci, B.C.; Pires, W.L.; Miranda, G.A.; Amaral, M.C.S. Gold acid mine drainage treatment by membrane separation processes: An evaluation of the main operational conditions. Sep. Purif. Technol. 2016, 170, 360–369. [Google Scholar] [CrossRef]
- Karakatasanis, E.; Cogho, V.E. Drinking water from mine water using the HiPRO Process-Optimum coal mine water reclamation plant. In Proceedings of the Mine Water and Innovative Thinking, Proceedings of the IMWA Symposium, Sydney, NS, Canada, 6 September 2010; pp. 135–138. [Google Scholar]
- Perry, R.H.; Green, D.W. Perry’s Chemical Engineers’ Handbook, 7th ed.; McGraw Hil: New York, NY, USA, 1997. [Google Scholar]
- Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
- Ali, S.A.; Kazi, I.W.; Rahman, F. Synthesis and evaluation of phosphate-free antiscalants to control CaSO4·2H2O scale formation in reverse osmosis desalination plants. Desalination 2015, 357, 36–44. [Google Scholar] [CrossRef]
- McDonald, J.; Christophersen, D.; Howell, C. Reduce Reverse Osmosis Membrane Fouling with Good CIP Procedures. Ultrapure Water 2004, 21, 17–20. [Google Scholar]
- Blankert, B.; Vrouwenvelder, S.; Witkamp, G.; Ghaffour, N. Minimum Net Driving Temperature Concept for Membrane Distillation. Membranes 2020, 10, 100. [Google Scholar] [CrossRef]
- Lawson, K.W.; Lloyd, D.R. Membrane distillation. J. Membr. Sci. 1997, 124, 1–25. [Google Scholar] [CrossRef]
- Ryu, S.; Naidu, G.; Johir, M.A.; Choi, Y.; Jeong, S.; Vigneswaran, S. Acid mine drainage treatment by integrated submerged membrane distillationesorption system. Chemosphere 2019, 218, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Alsaadi, A.S.; Maab, L.; Amy, G.L.; Ghaffour, N. Evaluation of air gap membrane distillation process running under sub-atmospheric conditions: Experimental and simulation studies. J. Membr. Sci. 2015, 489, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- Deshmukh, A.; Boo, C.; Karanikola, V.; Lin, S.; Straub, A.P.; Tong, T.; Warsingerab, D.M.; Elimelech, M. Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges. Energy Environ. Sci. 2018, 11, 1177–1196. [Google Scholar] [CrossRef]
- Kesieme, U.K.; Milne, N.; Aral, H.; Cheng, C.; Duke, M. Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation. Desalination 2013, 323, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Lui, C.; Martin, A. Membrane Distillation Application for Water Purification in Thermal Cogeneration—A Pre Study; VARMEFORSK Service AB: Stockholm, Sweden, 2005. [Google Scholar]
- Günther, P.; Mey, W. Selection of Mine Water Treatment Technologies for the eMalahleni (Witbank) Water Reclamation Project. Available online: https://www.researchgate.net/publication/228406602_Selection_of_mine_water_treatment_technologies_for_the_eMalahleni_Witbank_Water_Reclamation_Project (accessed on 15 July 2021).
- Aiyuk, S.; Forrez, I.; Lieven, D.K.; van Haandel, A.; Verstraete, W. Anaerobic and complementary treatment of domestic seweage in regions with hot-climates—A review. Bioresour. Technol. 2006, 97, 2225–2241. [Google Scholar] [CrossRef]
- Farhadian, M.; Borghei, M.; Umrania, V.V. Treatment of beer sugar wastewater by UAFB bioprocess. Bioresour. Technol. 2007, 98, 3080–3083. [Google Scholar] [CrossRef] [PubMed]
- Greben-Wiersema, H.A. Biowaste as Energy Source for Biological Sulphate Removal. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2007. [Google Scholar]
- Visser, A. The Anaerobic Treatment of Sulphate Containing Wastewater. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1995. [Google Scholar]
- Opollo, S.O. Integrated Anaerobic Digestion and UV Photocatalytic Treatment of Industrial Wastewater in Fluidized Bed Reactors. Ph.D. Thesis, Vaal University of Technology, Vanderbjilpark, South Africa, 2016. [Google Scholar]
- Isa, Z.; Grusenmeyer, S.; Verstraete, W. Sulphate reduction relative to methane production in high rate anaerobic digestion: Microbiological aspects. Appl. Environ. Microbiol. 1986, 51, 580–587. [Google Scholar] [CrossRef] [Green Version]
- Akinpelu, E.A.; Ntwampe, K.O.; Fosso-Kankeu, E.; Waanders, F. Comparative analysis of brewing wastewater and lactate as carbon sources for microbial community treating acid mine drainage in anaerobic MBBR systems. Environ. Technol. 2020. [Google Scholar] [CrossRef]
- Thisani, S.K.; Daramy, D.V.V.; Byrne, P. A Fixed Bed Pervious Concrete Anaerobic Bioreactor for Biological Sulphate Remediation of Acid Mine Drainage Using Simple Organic Matter. Sustainability 2021, 13, 6529. [Google Scholar] [CrossRef]
- Foucher, S.; Battaglia-Brunet, S.; Ignatiadis, I.; Morin, D. Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery. Chem. Eng. Sci. 2001, 56, 1639–1645. [Google Scholar] [CrossRef]
- Deng, D.; Weidhaas, J.L.; Lin, L. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage. J. Hazard. Mater. 2016, 305, 200–208. [Google Scholar] [CrossRef] [PubMed]
- McCauley, C.A.; O’Sullivan, A.D.; Milke, M.W.; Weber, P.A.; Trumm, D.A. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. Water Res. 2009, 43, 961–970. [Google Scholar] [CrossRef]
- Lefticariu, L.; Walters, E.V.; Pugh, C.W.; Bender, K.S. Sulfate reducing bioreactor dependence on organic substrates for remediation of coal-generated acid mine drainage: Field experiments. Appl. Geochem. 2015, 63, 70–82. [Google Scholar] [CrossRef]
- Elliot, P.; Ragusa, S.; Catcheside, D. Growth of sulphate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treament system for acid mine drainage. Water Res. 1998, 32, 3724–3730. [Google Scholar] [CrossRef]
- Gusek, J.J. Design Challenges for Large Scale Sulfate Reducing Bioreactors. In Contaminated Soils, Sediments and Water; Calabrese, E.J., Kostecki, P.T., Dragun, J., Eds.; Springer: Boston, MA, USA, 2005. [Google Scholar]
- Tilson, J.W. Removal of Dissolved Metals from Stormwater Runoff Using Pervious Concrete. Ph.D. Dissertation, Washington State University, Pullman, DC, USA, 2013. [Google Scholar]
- Westholm, L.J.; Repo, E. Filter materials for metal removal from mine drainage. Environ. Sci. Pollut. Res. 2014, 21, 9109–9128. [Google Scholar] [CrossRef] [Green Version]
- Shabalala, A.N.; Ekolu, S.O.; Diop, S.; Solomon, F. Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage—Column study. J. Hazard. Mater. 2017, 353, 641–653. [Google Scholar] [CrossRef]
- Fu, F.; Dionysiou, D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014, 267, 194–205. [Google Scholar] [CrossRef]
- Mafanya, L. Flow Model for Treatment of Acid Mine Drainage Using Pervious Concrete. Master’s Dissertation, University of Johannesburg, Johannesburg, South Afirca, 2020. [Google Scholar]
- Obiri-Nyarko, F.; Grajales-Mesa, S.; Malina, G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 2014, 111, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.H. Permeable reactive barriers: A sustainable technology for cleaning contaminated groundwater in developing countries. Desalination 2009, 248, 352–359. [Google Scholar] [CrossRef]
- Carey, M.A.; Fretwell, B.A.; Mosley, N.G.; Smith, J.W. Guidence on the Use of Permeable Reactive Bariers for Remediating Contaminated Groundwater; National Groundwater Contaminated Land Centre Report NC/01/51; UK Environmental Agency: Bristol, UK, 2002.
- AFCEE. Technical Protocol for Enhanced Anaerobic Bioremediation Using Permeable Mulch Biowalls and Bioreactors; Air Force Center for Engineering and the Environment: Denver, CO, USA, 2008. [Google Scholar]
- Farage, R.M.P.; Quina, M.J.; Gando-Ferreira, L.; Silva, C.M.; de Souza, J.L.L.; Torres, C.M.M.E. Kraft pulp mill dregs and grits as permeable reactive barrier for permeable reactive barrier for acid mine drainage. Sci. Rep. 2020, 10, 4083. [Google Scholar] [CrossRef] [PubMed]
- Ekolu, S.O.; Bitandi, L.K. Prediction of Longevities of ZVI and Pervious Concrete Reactive Barriers Using the Transport Simulation Model. J. Environ. Eng. 2018, 144, 1–10. [Google Scholar] [CrossRef]
- Shabalala, A.N.; Ekolu, S.O.; Diop, S. Permeable reactive barriers for acid mine drainage treatment: A review. Const. Mater. Struct. 2014, 1416–1426. [Google Scholar] [CrossRef]
- Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.; Bennett, T.A.; Puls, R.W. Treatment of inorganic contaminants using permeable reactive barriers. J. Contam. Hydrol. 2000, 45, 123–137. [Google Scholar] [CrossRef]
- Gibert, A.; Rötting, T.; Cortina, J.L.; de Pablo, J.; Ayora, C.; Carrera, J. In-situ remediation of acid mine drainage using a permeable reactive barrier in Aznalcóllar (Sw Spain). J. Hazard. Mater. 2011, 191, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Shabalala, A.N.; Ekolu, S. Quality of water recovered by treating acid mine drainage using pervious concrete adsorbent. Water SA 2019, 45, 638–647. [Google Scholar] [CrossRef] [Green Version]
- Ekolu, S.O.; Azane, F.Z.; Diop, S. A concrete reactive barrier for acid mine drainage treatment. In Proceedings of the Institution of Civil Engineers-Water Management; Thomas Telford Ltd.: London, UK, 2015; Volume 167, pp. 373–380. [Google Scholar]
- Mafanya, L.; Kallon, D.V.V.; Simelane, S.P. Chemical Analysis of AMD Properties Based on Factorial Method. OIC 2019, 399–403. [Google Scholar]
- Golab, A.N.; Indraratna, B.; Peterson, M. Selection of permeable reactive barrier materials for treating acid mine groundwater in sulphate soil terrains based on laboratory column tests. Environ. Earth Sci. 2009, 59, 241–254. [Google Scholar] [CrossRef]
- Mafanya, L.; Kallon, D.V.V.; Simelane, S.P. Flow Properties Upon Treatment of Acid Mine Drainage Using Pervious Concrete. In Proceedings of the SAIIE NeXXXt 21, Gqeberha, South Africa, 30 September–2 October 2019; pp. 399–403. [Google Scholar]
- Waybrant, K.R.; Blowes, D.W.; Ptacek, C.J. Selection of Reactive Mixtures for use in Permeable Reactive Walls for Treatment of Mine Drainage. Environ. Sci. Technol. 1998, 32, 1972–1979. [Google Scholar] [CrossRef]
- Zaal, S.M. Passive Treatment of Acid Mine Drainage through Permeable Concrete and Organic Filtration; University of Witwatersrand: Johannesburg, South Africa, 2016. [Google Scholar]
- Perez, N.; Schwarz, A.O.; Barahona, E.; Sanhueza, P.; Diaz, I.; Urrutia, H. Performance of two differently designed permeable reactive barriers with sulfate and zinc solutions. Sci. Total Environ. 2018, 642, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Kallin, M.; Smith, M.P. The development of floating Typha mats. In Proceedings of the International Specialist Conference on Wetland Systems in Water Pollution Control, “Wetlands Downunder”, Sydney, Australia, 30 November 1992. [Google Scholar]
- Chen, Z.; Cuervo, D.P.; Müller, J.A.; Wiessner, A.; Köser, H.; Vymazal, J.; Kästner, M.; Kuschk, P. Hydroponic root mats for wastewater treatment—a review. Environ. Sci. Pollut. Res. 2016, 23, 15911–15928. [Google Scholar] [CrossRef]
- Liang, L.; Sullivan, A.B.; West, O.R.; Moline, G.R.; Kamolpornwijit, W. Predicting the precipitation of mineral phases in permeable reactive barriers. Environ. Eng. Sci. 2003, 20, 635–653. [Google Scholar] [CrossRef]
- Department Of Water Affairs, South Africa. Feasibility Study for a Long-Term Solution to Address the Acid Mine Drainage Associated with the East, Central and West Rand Underground Mining Basins: Treatment Technology Options, 1st ed.; Study Report No. 5.4 P RSA 000/00/16512/4; Department of Water Affairs: Pretoria, South Africa, 2013.
Class | Class Description | Thresholds | ||
---|---|---|---|---|
Class 0 ** | Highly concentrated and acidic mine drainage ** | pH = 0.5–3 ** Acidity = 5–45 g/L ** | Total Fe = 1000–12,000 mg/L ** | SO4 = 10–60 g/L ** Al = 1000–18,000 mg/L ** |
Class I | Acid Mine Drainage | pH = 2.0–4.5 Acidity = 0 **–15 g/L | Fe2+ = 0 **–10,000 mg/L Fe3+ = 0 mg/L | SO4 = 0 **–20 g/L Al = 0–2000 mg/L |
Class II | Partially oxidised and/or neutralised | pH = 3.5–6.6 Acidity = 0–1 g/L | Fe2+ = 0–500 mg/L Fe3+ = 0–1.000 mg/L | SO4 = 500–10,000 mg/L Al = 0–20 mg/L |
Class III | Neutral and not oxidised | pH = 6.5–8.5 Acidity = 0 mg/L | Fe2+ = 0–500 mg/L Fe3+ = 0 mg/L | SO4 = 500–10,000 mg/L Al = 0–2000 mg/L |
Class IV | Oxidised and neutralised/alkaline | pH = 6.5–8.5 Acidity = 0 mg/L | Fe2+ = 0 mg/L Fe3+ = 0 mg/L | SO4 = 500–10,000 mg/L Al = 0 mg/L |
Cytotoxic metals indicator ** | Low = Zinc ≤ 1 mg/L ** | Mid = Zinc ≤ 25 mg/L ** | High = Zinc > 25 mg/L ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thisani, S.K.; Kallon, D.V.V.; Byrne, P. Review of Remediation Solutions for Acid Mine Drainage Using the Modified Hill Framework. Sustainability 2021, 13, 8118. https://doi.org/10.3390/su13158118
Thisani SK, Kallon DVV, Byrne P. Review of Remediation Solutions for Acid Mine Drainage Using the Modified Hill Framework. Sustainability. 2021; 13(15):8118. https://doi.org/10.3390/su13158118
Chicago/Turabian StyleThisani, Sandisiwe Khanyisa, Daramy Vandi Von Kallon, and Patrick Byrne. 2021. "Review of Remediation Solutions for Acid Mine Drainage Using the Modified Hill Framework" Sustainability 13, no. 15: 8118. https://doi.org/10.3390/su13158118
APA StyleThisani, S. K., Kallon, D. V. V., & Byrne, P. (2021). Review of Remediation Solutions for Acid Mine Drainage Using the Modified Hill Framework. Sustainability, 13(15), 8118. https://doi.org/10.3390/su13158118