Techno-Economic Assessment of Battery Electric Trains and Recharging Infrastructure Alternatives Integrating Adjacent Renewable Energy Sources
Abstract
:1. Introduction
1.1. Background
1.2. Positioning of Recharging Infrastructure and Sector Coupling with Adjacent RES
1.3. Research Objectives and Approach
2. Railway Energy Supply Alternatives
2.1. State of the Art—Railway Energy Supply Systems
2.2. Trackside Electrification Alternatives
2.3. BEMU Energy Supply Schemes
3. Materials and Methods
3.1. Model-Based Approach
3.1.1. Multiple Unit Energy Demand and Trackside Electrification Alternatives
3.1.2. Dimensioning of Recharging Infrastructure
3.1.3. On-Site Battery Storage and Local RES
3.1.4. Relevant Lifecycle Costs
3.2. Case-Study Regional Rail Passenger Transport—Rail Line RB26
3.2.1. Rail Line and Schedule Sided Boundary Conditions
3.2.2. Multiple-Unit Specification
3.2.3. Electrification and Energy Supply Alternatives
- “Full electrification”: Full electrification with OHL along the complete rail-line, equipping non-electrified track with OHL at otherwise already electrified Terminus stations Berlin–Ostkreuz (using existing substation), construction of new converter substation at stop Müncheberg
- “OHLE max”: necessary additional electrification through extension of existing OHL starting from station Berlin–Lichtenberg
- “OHLI Werbig”: OHL island and substation at station Werbig
- “OHLI Müncheberg”: OHL island and substation at station Müncheberg
3.2.4. Local Wind Power Production
4. Results
4.1. Energy Consumption and Recharging Characteristics
4.2. Relevant LCC of the Electrification Alternatives
4.3. Site Specific Energy and Energy-Related Infrastructure Costs
4.4. Impact of Service Frequency
4.5. Sensitivity Analysis
5. Discussion
5.1. General Findings
5.2. Recharging Infrastructure
5.3. Vehicle Costs
5.4. Competitiveness of Sector Coupling with Local RES with Substation
5.5. Critical Review of Model-Based Approach and Case-Study
6. Conclusions
Outlook and Managerial Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Power demand of HVAC consumers | |
Number of cars in the multiple unit | |
Ambient temperature | |
Actual traction power | |
Power demand of secondary auxiliary consumers | |
Stop time | |
Driving time | |
Power at catenary | |
Discretization step | |
Energy demand of the multiple unit per round trip | |
Energy demand for acceleration | |
Energy demand for auxiliaries | |
Recharging energy to the traction battery | |
Energy recuperated to the catenary | |
Energy of the traction battery / on-site battery | |
Efficiency of the drivetrain from catenary to battery | |
/ | Efficiency of battery re-/discharging (traction battery / on-site battery) |
Number of tracks | |
Multi traction | |
Nominal catenary voltage | |
Maximum catenary current | |
Efficiency of catenary | |
Maximum capacity feeding into the OHL | |
Efficiency of substation | |
Nominal capacity of substation (connected to the grid) | |
Energy produced by local RES | |
Energy consumed from grid | |
Energy fed to the grid | |
Energy demand of recharged BEMU | |
Battery capacity | |
Energy re-/discharged to the on-site battery storage | |
Full cycle equivalent | |
Relevant lifecycle costs | |
Initial CAPEX | |
Effective interest rate | |
Maintenance costs | |
Energy costs | |
Costs for battery cell chance | |
CAPEX of the on-site battery storage | |
Specific battery capacity costs | |
Specific battery power electronic costs | |
Nominal power of the on-site battery storage |
Abbreviations
AC | alternating current |
BEMU | battery electric multiple unit |
BoL | Begin-of-Life |
CAPEX | capital expenditures |
DC | direct current |
DMU | diesel multiple unit |
EMU | electric multiple unit |
EoL | End-of-Life |
FCEMU | fuel-cell electric multiple unit |
HVAC | heating, ventilation and air conditioning |
LCC | lifecycle costs/costing |
LCOE | levelized costs of electricity |
MMDC | multi modular direct converters |
OHL | overhead line |
OHLE | overhead line extension |
OHLI | overhead line island |
OPEX | operational expenditures |
PPA | power purchase agreements |
RES | renewable energy sources |
Stor | Battery storage |
Veh | Vehicle, i.e., multiple unit |
WPP | wind power plants |
Appendix A. Self-Consumption and Direct Marketing Opportunities
Appendix B. Train Battery Operation Strategy
- ➢
- Given parameters
- Efficiencies (static)
- Battery to traction inverter:
- Battery to auxiliary consumers:
- Catenary to traction inverter:
- Catenary to auxiliary consumers:
- Useable battery capacity:
- Maximum power from catenary:
- ➢
- Input from trajectory
- Duration from previous to actual position step:
- Energy consumption at traction inverter:
- Braking energy at traction inverter:
- Energy consumption of HVAC:
- Energy consumption of secondary auxiliaries:
- ➢
- If under catenary (for each position step i)
- ➢
- Else if without catenary (for each position step i)
- 0
- Boundary conditions
- 1
- Recuperation to battery
- 2
- Maximum charging energy (at station and driving)
- 3
- Battery energy
- 4
- Charging energy
- 5
- State of charge
- 6
- Energy recuperated to catenary
Appendix C. Grid Charges
Grid Connection | Grid Charges (ct) (Operating Hours < 2500 h/a) | Grid Charges (ct) (Operating Hours > 2500 h/a) |
---|---|---|
Mid voltage | 0.0PkW−1 + 6.28EkWh−1 | 11,002PkW−1 + 1.87EkWh−1 |
High voltage | 1963PkW−1 + 6.00EkWh−1 | 15,888PkW−1 + 0.43EkWh−1 |
Appendix D. Impact of Service Frequency
Number of Trainsets Per Hour | ||||
---|---|---|---|---|
Scenario | Cost Share | 0.5 | 1.0 | 2.0 |
“Full electrification” | vehicle 1 | 32.8% | 46.5% | 59.6% |
energy consumption | 9.2% | 12.5% | 14.1% | |
infrastructure | 58.0% | 41.0% | 26.3% | |
“OHLE max” | vehicle 1 | 64.4% | 73.6% | 80.4% |
energy consumption | 10.8% | 12.3% | 11.9% | |
infrastructure | 24.7% | 14.1% | 7.7% | |
“OHLI Werbig—wind (old)” | vehicle 1 | 66.7% | 76.8% | 82.8% |
energy consumption | 8.5% | 9.0% | 9.5% | |
infrastructure | 24.7% | 14.2% | 7.7% | |
“OHLI Werbig—grid” | vehicle 1 | 68.1% | 75.6% | 79.9% |
energy consumption | 12.3% | 13.5% | 14.3% | |
infrastructure | 19.6% | 10.9% | 5.8% |
References
- Pagenkopf, J.; Schirmer, T. Marktanalyse Alternativer Antriebe im Deutschen Schienenpersonennahverkehr; NOW GmbH: Berlin, Germany, 2019. [Google Scholar]
- Bundesministerium für Verkehr und Digitale Infrastruktur. Mit der Elektrobahn Klimaschonend in die Zukunft—Das Bahn-Elektrifizierungsporgramm des Bundes. Available online: https://www.bmvi.de/SharedDocs/DE/Artikel/E/schiene-aktuell/elektrobahn-klimaschonend-zukunft-bahn-elektrifizierungsprogramm.html (accessed on 31 March 2021).
- Müller, A. Wissenschaftliche Bewertung von Alternativen, Emissionsarmen Antriebskonzepten für den Bayerischen; SPNV: Dresden, Germany, 2017. [Google Scholar]
- Mueller, F.; Guerster, M.; Obrenović, N.; Bierlaire, M. Can regional railway become emission-free with recently announced vehicles?—A case study of Bavaria. Eur. J. Transp. Infrastruct. Res. 2020, 20, 286–305. [Google Scholar] [CrossRef]
- Herwartz, S.; Pagenkopf, J.; Streuling, C. Sector coupling potential of wind-based hydrogen production and fuel cell train operation in regional rail transport in Berlin and Brandenburg. Int. J. Hydrogen Energy 2021. [Google Scholar] [CrossRef]
- Klebsch, W.; Heininger, P.; Martin, J. Alternativen zu Dieseltriebzügen im Schienenpersonennahverkehr: Einschätzung der Systemischen Potenziale; VDE Verband der Elektrotechnik Elektronik Informationstechnik: Frankfurt, Germany, 2019. [Google Scholar]
- Ebrecht, B.; Walter, D.; Zedlitz, I.; Zimmermann, U. Methodik einer Machbarkeitsstudie zum Einsatz batterieelektrischer Triebwagen (BEMU) am Beispiel des VVO-Dieselnetzes. J. Mobil. Verk. 2020, 11–20. [Google Scholar] [CrossRef]
- Royston, S.J.; Gladwin, D.T.; Stone, D.A.; Ollerenshaw, R.; Clark, P. Development and Validation of a Battery Model for Battery Electric Multiple Unit Trains. In Proceedings of the IECON 2019, 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 4563–4568. [Google Scholar]
- Thielmann, A.; Sauer, A.; Isenmann, R.A.; Wietschel, M. Technologie-Roadmap Stationäre Energiespeicher 2030; Fraunhofer ISI: Karlsruhe, Germany, 2015. [Google Scholar]
- Kunith, A.; Mendelevitch, R.; Goehlich, D. Electrification of a city bus network—An optimization model for cost-effective placing of charging infrastructure and battery sizing of fast-charging electric bus systems. Int. J. Sustain. Transp. 2017, 11, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Rogge, M.; Wollny, S.; Sauer, D. Fast Charging Battery Buses for the Electrification of Urban Public Transport—A Feasibility Study Focusing on Charging Infrastructure and Energy Storage Requirements. Energies 2015, 5, 4587–4606. [Google Scholar] [CrossRef] [Green Version]
- Vilppo, O.; Markkula, J. Feasibility of Electric Buses in Public Transport. World Electr. Veh. J. 2015, 7, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Bundesministerium für Wirtschaft und Energie (BMWi). Zeitreihen zur Entwicklung der Erneuerbaren Energien in Deutschland; Bundesministerium für Wirtschaft und Energie: Berlin, Germany, 2021. [Google Scholar]
- Kiessling, F.; Puschmann, R.; Schmieder, A. Fahrleitungen Elektrischer Bahnen: Planung, Berechnung, Ausführung, Betrieb, 3rd ed.; Publicis Publishing: Erlangen, Germany, 2014. [Google Scholar]
- DIN EN 50163:2004. Bahnanwendungen-Speisespannungen von Bahnnetzen; Deutsches Institut für Normung e.V.: Berlin, Germany, 2005.
- Steimel, A. Electric Traction—Motion Power and Energy Supply: Basics and Practical Experience; Oldenbourg Industrieverlag: Essen, Germany, 2007. [Google Scholar]
- Dschung, F. Laden von Batterietriebzügen mit 50 Hz. Eb Elektrische Bahnen 2019, 11, 442–450. [Google Scholar]
- Herz, S.; Hennig, B. Eigenversorgung, Direktlieferung, Power-to-X und Regelenergie-Sonstige Erlösoptionen Außerhalb EEG; German Wind Energy Association: Berlin, Germany, 2017. [Google Scholar]
- Bundesministerium für Wirtschaft und Energie. Erneuerbare Energien Gesetz (EEG 2017); Bundesministerium für Wirtschaft und Energie: Berlin, Germany, 2017. [Google Scholar]
- Uibeleisen, M.; Groneberg, S. Der wirtschaftliche Betrieb von Erneuerbare-Energien-Anlagen außerhalb des EEG-Förderrahmens—PPAs als Konkurrenz zum System staatlicher Fördergelder. RdE Recht Der Energiewirtschaft. 2018, 18, 114–122. [Google Scholar] [CrossRef]
- Schenker, M.; Schirmer, T.; Dittus, H. Application and improvement of a direct method optimization approach for battery electric railway vehicle operation. J. Rail Rapid Transit 2020. [Google Scholar] [CrossRef]
- Bomhauer-Beins, A.; Schranil, S.; Weidmann, U. Einflüsse auf den Bahnenergiebedarf und diesbezügliche Potentiale der Automatisierung. Eisenb. Rev. Int. 2018, 3, 140–144. [Google Scholar]
- Melzer, M. Entwicklung von Werkzeugen zur Automatisierten Traktionsspeicherdimensionierung auf Dieselelektrisch Angetriebenen Schienenfahrzeugen. Ph.D. Dissertation, Technische Universität Dresden, Dresden, Germany, 2013. [Google Scholar]
- Stephan, I.A.; Hammer, S.; Albrecht, A.; Holfeld, M.; Körner, S. Machbarkeitsstudie zur Verknüpfung von Bahn und Energieleitungsinfrastrukturen: Ergebnisbericht zu Los 2 “Technische Machbarkeit der Dezentralisierung des Bahntsromnetzes”; Technische Universität Dresden: Dresden, Germany, 2012. [Google Scholar]
- Gerhardt, N.; Valov, B.; Trost, T.; Degner, T.; Lehnert, W.; Rostankowski, A. Bahnstrom Regenerativ—Analyse und Konzept zur Erhöhung des Anteils der Regenerativer Energie des Bahnstroms; Fraunhofer IWES: Kassel, Germany, 2011. [Google Scholar]
- Steimel, A. Power-electronic grid supply of AC railway systems. In Proceedings of the OPTIM—13th International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, 24–26 May 2012; pp. 16–25. [Google Scholar] [CrossRef]
- Siemens AG Mobility Division. Produktinformation Sitras SFC Plus: Statischer Frequenzumrichter Für Die AC-Bahnstromversorgung No. 1.0.3; Siemens: München, Germany, 2016. [Google Scholar]
- Cupertino, A.F.; Pereira, H.A.; Seleme, S.I.; Teodorescu, R. On Inherent Redundancy of MMC-Based STATCOMs in the Overmodulation Region. IEEE Trans. Power Deliv. 2020, 35, 1169–1179. [Google Scholar] [CrossRef]
- DIN EN 50367:2012. Bahnanwendungen—Zusammenwirken der Systeme: Technische Kriterien Für Das Zusammenwirken zwischen Stromabnehmer und Oberleitung Für Einen Freien Zugang; Deutsches Institut für Normung e.V.: Berlin, Germany, 2013.
- Mofair e.V; Netzwerk Privatbahnen e.V. Kurzstudie: Wie Die Deutsche Bahn Wettbewerber Beim Bahnstrom Diskriminiert. 2010. Available online: https://www.netzwerk-bahnen.de/assets/files/veroeffentlichungen/pdf/2010-09-14_Kurzstudie_mofair_und_NP_Bahnstrom.pdf (accessed on 31 March 2021).
- Swierczynski, M.; Stroe, D.I.; Stan, A.-I.; Teodorescu, R.; Sauer, D.U. Selection and Performance-Degradation Modeling of LiMO2/Li4Ti5O12 and LiFePO4/C Battery Cells as Suitable Energy Storage Systems for Grid Integration with Wind Power Plants: An Example for the Primary Frequency Regulation Service. IEEE Trans. Sustain. Energy 2014, 5, 90–101. [Google Scholar] [CrossRef]
- Hauer, I.; Balischewski, S.; Ziegler, C. Design and operation strategy for multi-use application of battery energy storage in wind farms. J. Energy Storage 2020, 31. [Google Scholar] [CrossRef]
- Klebsch, W.; Guckes, N.; Heininger, P. Bewertung Klimaneutraler Alternativen zu Dieseltriebzügen; VDE Verband der Elektrotechnik Elektronik Informationstechnik: Frankfurt, Germany, 2020. [Google Scholar]
- ITP Intraplan Consult GmbH. Standardisierte Bewertung von Verkehrswegeinvestitionen im Schienengebunden Öffentlichen Personennahverkehr; ITP Intraplan Consult GmbH: München, Germany, 2016. [Google Scholar]
- Statistisches Bundesamt. Verbraucherpreisindex Für Deutschland. Available online: https://www.destatis.de/DE/Themen/Wirtschaft/Preise/Verbraucherpreisindex/Publikationen/Downloads-Verbraucherpreise/verbraucherpreisindex-lange-reihen-pdf-5611103.html (accessed on 22 February 2021).
- Fleer, J.; Zurmühlen, S.; Badeda, J.; Stenzel, P.; Hake, J.-F.; Sauer, D.U. Model-based Economic Assessment of Stationary Battery Systems Providing Primary Control Reserve. Energy Procedia 2016, 99, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Komarnicki, P. Energy storage systems: Power grid and energy market use cases. Arch. Electr. Eng. 2016, 65, 495–511. [Google Scholar] [CrossRef]
- DB Netze. Bahnstrompreisregelung ab 01.01.2020 Für Die Rückfallversorgung. Available online: https://www.dbenergie.de/resource/blob/4716334/7cac268bb5adc192bcb29f0e905bae30/Bahnstrom-PB-Rueckfallversorgung-2020-data.pdf (accessed on 31 March 2021).
- Kost, C.; Shammugam, S.; Jülch, V.; Nguyen, H.-T.; Schlegl, T. Stromgestehungskosten Erneuerbare Energien; Fraunhofer ISE: Freiburg, Germany, 2018. [Google Scholar]
- Wallasch, A.-K.; Lüers, S.; Rehfeldt, K. Weiterbetrieb von Windenergieanlagen Nach 2020; Deutsche WINDGUARD: Varel, Germany, 2016. [Google Scholar]
- DB Netze. Preisblatt für die Nutzung des 16,7-Hz-Bahnstromnetztes Gültig ab 01.01.2020. Available online: https://www.dbenergie.de/resource/blob/5286010/45c9cb79cfc3038b982f26229f80858d/Preisblatt-Netznutzung-2020-data.pdf (accessed on 31 March 2021).
- Niederbarnimer Eisenbahn Betriebsgesellschaft. Fahrplan RB26—Oderlandbahn (ab 13.12.2020). Available online: https://www.neb.de/fileadmin/redakteure/Fahrpl%C3%A4ne/2021/RB26_Fahrplan2021_web.pdf (accessed on 24 February 2021).
- Niederbarnimer Eisenbahn Betriebsgesellschaft. Fahrzeuge—Der Pesa Link. Available online: https://www.neb.de/unternehmen/fahrzeuge/link/ (accessed on 24 February 2021).
- Ernst, J. Energy Baseline: Report for the FINE1-Project (D3.1); European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Open Street Map. Streckentopologie RB26. Available online: https://www.openstreetmap.org/way/423708103#map=17/52.56434/14.40985 (accessed on 24 February 2021).
- flOSM: Stromnetze Mit Umspannwerken und Detaillierter Infrastruktur. Available online: https://www.flosm.de/html/Stromnetz.html?lat=52.5550501&lon=14.3700936&r=6150.2762&st=0&sw=generator,powerbiofuel,powerbiogas,powerbiomass,powercoal,powergeothermal,powerhydro,powerline380k,powerline400k,powerline420k,powerline750k,powerline765k,powerlinedchigh,powernuclear,poweroil,powersolar,powertidal,powerwaste,powerwind (accessed on 26 February 2021).
- Staffell, I.; Pfenninger, S. Using bias-corrected reanalysis to simulate current and future wind power output. Energy 2016, 114, 1224–1239. [Google Scholar] [CrossRef] [Green Version]
- Zenith, F.; Isaac, R.; Hoffrichter, A.; Thomassen, M.; Møller-Holst, S. Techno-economic analysis of freight railway electrification by overhead line, hydrogen and batteries: Case studies in Norway and USA. J. Rail Rapid Transit 2019, 23, 791–802. [Google Scholar] [CrossRef] [Green Version]
- Aufschläger, F.; Stephan, A.; Dölling, A. Modellierung der Lebenszykluskosten von Oberleitungsanlagen. EI Der Eisenbahningenieur. 2019, 8, 12–17. [Google Scholar]
Criterion | OHLE | OHLI | |
---|---|---|---|
ID of alternative | A | B.1 | B.2 |
OHL system | 15 kV/16.7 Hz | 15 kV/16.7 Hz | |
Grid connection of substation | MV/HV 1 | MV | MV |
Main energy supply | public/railway grid | public grid | local RES |
Energy tariff | grid tariff | grid tariff | on-site PPA |
Component | Unit | Value | Reference |
---|---|---|---|
OHL frequency | (Hz) | 16.7 | DIN EN 50163 [15] |
OHL voltage limit | (kV) | 15 | DIN EN 50163 [15] |
OHL current limit | (A) | 80 | DIN EN 50367 [29] |
Efficiency of OHL | (%) | 97 | [30] |
Efficiency of direct transformer | (%) | 98.8 | [17] |
Efficiency of converter | (%) | 95.0 | [17] |
Efficiency MMDC | (%) | 93.9 | Calculated 1 |
Parameter | Unit | Value | Reference |
---|---|---|---|
Vehicle operating life | (a) | 30 | [33] |
Recharging infrastructure operating life | (a) | 30 | [34] |
Nominal interest rate | (%) | 2.0 | [3,33] |
Annual inflation (Germany) | (%) | 1.3 | [35] |
Effective interest rate | (%) | 0.7 | - |
Parameter | Unit | EMU | BEMU | Reference |
---|---|---|---|---|
CAPEX | EUR M/p. | 5.0 | 6.5 | assumption |
OPEX—mileage-dependent maintenance | EUR/(1000 t × km 1) | 5.8 | 5.8 | [34] |
OPEX—time-dependent maintenance (main inspection) | EUR/(t × a) | 390 | 390 | [34] |
Traction battery replacement | EUR/km | - | 0.35 | [3] |
Parameter | Unit | Value | Reference |
---|---|---|---|
CAPEX OHL equipment (for each track) | (EUR M/km) | 0.61 | [3] |
CAPEX—direct line (mid-voltage) 1 | (EUR/km) | 60,000 | [25] |
CAPEX converter substation (15 MW module) 2 | (EUR M/module) | 8.0 | assumption |
OPEX | (%CAPEX/a) | 1.4 | [34] |
Parameter | Unit | Value | Reference |
---|---|---|---|
CAPEX—battery | (EUR/kWh) | 400 | [32,36,37] |
CAPEX—power electronics | (EUR/kW) | 180 | [32,36,37] |
CAPEX—storage connection to substation 1 | (EUR) | 350,000 | Based on [25] |
OPEX—battery storage | (%CAPEX/a) | 1.5 | [32] |
Pricing Item | Grid Tariff (ct/kWh) | On-Site PPA (ct/kWh) |
---|---|---|
Energy production price | dt: 6.9, nt: 5.8 [38] 1 | WPPnew: 6.25/WPPold: 3.24 [39,40] 2 |
“EEG-Umlage” (reduced 3) | 1.3512 [19] | |
Energy tax | 1.142 | |
Cumulated fees and levies 4 | 0.222 | - |
Feed-in renumeration | 2.73 [41] | same as purchase price (assumption) |
Parameter | Unit | Value | Reference |
---|---|---|---|
Rail line length | (km) | 83.5 | Openrailwaymap.org |
Existing electrified section (length) | (km) | 78.7–81.4 (2.7) | Openrailwaymap.org |
Start/end time of operation | 04:00–0:00 (a.m.) | [42] | |
Number of journeys per direction | (1/h) | 1 | [42] |
Number of trainsets in service | 6 | assumption | |
Multi-traction 1 | double | assumption | |
Number of multiple-units 2 | 12 | assumption | |
Daily journeys per direction 3 | 19 | [42] |
Parameter | Unit | Value |
---|---|---|
Multiple unit length | (m) | 42 |
Multiple unit empty mass | (t) | 91 |
Multiple unit number of seats | (t) | 120 |
Multiple unit max. velocity | (km/h) | 140 |
Max. traction power (from battery/catenary) | (kW) | 1200 |
Nominal battery capacity | (kWh) | 500 |
Useable battery capacity 1 | (%) | 64 |
Max. PHVAC (at −15 °C) 2 | (kW) | 78.4 |
Average PHVAC (at 5 °C) | (kW) | 30.4 |
Psec (% of traction Power) | (%) | 6 |
Efficiencies of drivetrain components 3 [1] | ||
Transformer | () | 0.95 |
DCDC-converter | () | 0.975 |
Line-converter | () | 0.975 |
Battery—dis-/recharge | () | 0.95 |
Auxiliary-converter | () | 0.975 |
Parameter | Unit | Energy Supply Alternatives | ||||
---|---|---|---|---|---|---|
Trackside electrification | “Full electrification” | “OHLE max” | “OHLI Werbig” | “OHLI Werbig” | “OHLI Müncheberg” | |
Energy supply alternative (ID) | A | A | B.1 | B.2 | B.1 | |
Additional converter substation | 1 | - | 1 | 1 | 1 | |
OHL system | 15 kV/16.7 Hz | |||||
Main energy supply | public grid | public grid | public grid | local RES 1 | public grid | |
On-site battery storage | [MWh] | - | - | - | 2.0 | - |
Voltage level of grid connection | mid voltage (20 kV) | |||||
energy tariff | grid tariff | grid tariff | grid tariff | on-site PPA | grid tariff | |
OHLE number of tracks | 1 | |||||
OHLE charges per hour | [1/h] | 2 | ||||
OHLI number of tracks | - | - | 1 | 1 | 1 | |
OHLI charges per hour | [1/h] | - | - | 2 | 2 | 2 |
Unit | “Full electrification” | “OHLE max” | “OHLI Werbig” | “OHLI Müncheberg” | |
---|---|---|---|---|---|
Total (OHLE + OHLI) | |||||
Length OHL extension | (km) | 80.8 | 30.4 | 8.3 | 8.4 |
Net energy consumption (Tamb = 5 °C) | (kWh/rt) | 334.2 | 369.9 | 386.9 | 396.3 |
Recuperation to OHL | (kWh/rt) | 212.6 | 60.5 | 7.9 | 4 |
OHLE | |||||
OHL extended sections (OHL length) | (km) ((km)) | 0.0–78.7, 81.4–83.5 (80.8) | 50.4–78.7, 81.4–83.5 (30.4) | 81.4–83.5 (2.1) | 81.4–83.5 (2.1) |
Gross energy consumption (Tamb = 5 °C) | (kWh/rt) | 546.8 | 430.4 | 192.2 | 178.7 |
OHLI | |||||
OHL extended sections (OHL length) | (km) ((km)) | - | - | 11.2–17.4 (6.2) | 36.6–42.9 (6.3) |
Gross energy consumption (Tamb = 5 °C) | (kWh/rt) | - | - | 202.7 | 221.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Streuling, C.; Pagenkopf, J.; Schenker, M.; Lakeit, K. Techno-Economic Assessment of Battery Electric Trains and Recharging Infrastructure Alternatives Integrating Adjacent Renewable Energy Sources. Sustainability 2021, 13, 8234. https://doi.org/10.3390/su13158234
Streuling C, Pagenkopf J, Schenker M, Lakeit K. Techno-Economic Assessment of Battery Electric Trains and Recharging Infrastructure Alternatives Integrating Adjacent Renewable Energy Sources. Sustainability. 2021; 13(15):8234. https://doi.org/10.3390/su13158234
Chicago/Turabian StyleStreuling, Christoph, Johannes Pagenkopf, Moritz Schenker, and Kim Lakeit. 2021. "Techno-Economic Assessment of Battery Electric Trains and Recharging Infrastructure Alternatives Integrating Adjacent Renewable Energy Sources" Sustainability 13, no. 15: 8234. https://doi.org/10.3390/su13158234
APA StyleStreuling, C., Pagenkopf, J., Schenker, M., & Lakeit, K. (2021). Techno-Economic Assessment of Battery Electric Trains and Recharging Infrastructure Alternatives Integrating Adjacent Renewable Energy Sources. Sustainability, 13(15), 8234. https://doi.org/10.3390/su13158234