Valorisation of Organic Waste By-Products Using Black Soldier Fly (Hermetia illucens) as a Bio-Convertor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outcomes
2.1.1. Growth Performance of BSFL Fed Identified Organic Materials
2.1.2. BSFL Bioconcentration and Modification of Fatty Acid Profile
2.1.3. Valorisation of Organic Waste By-Products via BSFL Treatment
2.2. Processing Organic Waste Materials
2.3. BSFL Production
2.4. Nutritional Analyses of BSFL Pre-Pupae Fed Each Organic Material
2.5. Data Analyses
2.6. Value Estimation of BSFL Outputs
2.7. Statistical Analysis
3. Results
3.1. BSFL Growth, Performance and Substrate Reduction
3.2. BSFL Nutrient Bioconcentration
3.2.1. Organic Waste Material and BSFL Meal Profiles
3.2.2. BSFL Bioconcentration of Nutrients
3.3. Valorisation of BSFL Products
3.3.1. Value of BSFL Meals as Aquaculture Feed Ingredients
- BSFL fed fish trimmings = GBP 824 per tonne
- BSFL fed sugar beet pulp = GBP 743 per tonne
- BSFL fed bakery waste = GBP 792 per tonne
- BSFL fed fruit and vegetable = GBP 792 per tonne
- BSFL fed cheese waste = GBP 787 per tonne
- BSFL fed fish feed waste = GBP 822 per tonne
- BSFL fed brewer’s grains and yeast = GBP 819 per tonne
3.3.2. Quality and Value of BSFL Frass
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
(a) | ||||||||||
Diet Component | Average 65% Protein Fishmeal | High Protein Soybean Meal | Fish Trimmings | Sugar Beet Pulp | Bakery Waste | Fruit and Vegetable Waste | Cheese Waste | Fish Feed Waste | Brewer’s Grains and Yeast | |
Proximate analyses (% DM) | Crude Protein (% DM) | 70.7 | 55.2 | 46.62 | 43.15 | 43.07 | 36.03 | 43.18 | 45.7 | 51.05 |
Lipid (crude fat) (% DM) | 10 | 1.7 | 35.05 | 35.49 | 37.63 | 40.3 | 36.94 | 35.22 | 27 | |
Essential amino acids (% protein) | Arginine (Arg) | 6.21 | 7.30 | 4.42 | 4.15 | 4.27 | 3.97 | 4.52 | 4.68 | 3.84 |
Histidine (His) | 2.50 | 2.7 | 3.07 | 3.11 | 3.04 | 2.80 | 3.01 | 3.15 | 2.62 | |
Isoleucine (Ile) | 4.14 | 4.6 | 4.23 | 4.26 | 4.09 | 4.02 | 4.21 | 4.35 | 4.13 | |
Leucine (Leu) | 7.17 | 7.7 | 8.26 | 8.30 | 6.48 | 6.33 | 6.60 | 6.89 | 6.46 | |
Lysine (Lys) | 7.50 | 6.2 | 5.17 | 5.08 | 5.60 | 5.47 | 5.51 | 5.54 | 6.17 | |
Methionine (Met) | 2.72 | 1.4 | 1.87 | 1.81 | 1.83 | 1.75 | 1.90 | 1.75 | 1.67 | |
Cystine (Cys) | 0.86 | 1.6 | 0.62 | 0.63 | 0.77 | 0.80 | 0.53 | 0.48 | 0.72 | |
Phenylalanine (Phe) | 3.90 | 5.1 | 3.71 | 3.92 | 4.20 | 4.19 | 4.28 | 4.49 | 4.78 | |
Tyrosine (Tyr) | 3.04 | 3.5 | 4.35 | 4.43 | 4.55 | 4.11 | 12.23 | 12.54 | 10.66 | |
Threonine (Thr) | 4.14 | 3.8 | 3.60 | 3.62 | 3.74 | 3.55 | 3.80 | 3.94 | 3.76 | |
Tryptophan (Try/Trp) | 1.00 | 1.4 | - | - | - | - | - | - | - | |
Valine (Val) | 4.98 | 4.8 | 5.73 | 5.84 | 6.08 | 5.86 | 6.11 | 6.37 | 5.95 | |
Non-essential amino acids (% protein) | Alanine (Ala) | 6.29 | 4.3 | 6.31 | 6.77 | 6.52 | 6.55 | 6.39 | 6.37 | 8.74 |
Aspartic acid (Asp) | 9.09 | 11.3 | 8.28 | 8.71 | 9.03 | 8.60 | 8.55 | 9.02 | 7.93 | |
Glutamic acid (Glu) | 12.57 | 17.9 | 9.59 | 9.87 | 10.15 | 9.66 | 10.19 | 9.63 | 10.05 | |
Glycine (Gly) | 6.65 | 4.2 | 5.56 | 5.45 | 5.46 | 5.11 | 5.49 | 5.71 | 5.19 | |
Proline (Pro) | 4.34 | 5 | 5.68 | 5.72 | 5.39 | 5.30 | 6.67 | 6.50 | 6.56 | |
Serine (Ser) | 3.89 | 4.6 | 3.93 | 4.01 | 3.95 | 3.69 | 3.91 | 4.00 | 3.80 | |
Tryptophan was not analysed. | ||||||||||
(b) | ||||||||||
Diet Component | Average 65% Protein Fishmeal | High Protein Soybean Meal | Fish Trimmings | Sugar Beet Pulp | Bakery Waste | Fruit and Vegetable Waste | Cheese Waste | Fish Feed Waste | Brewer’s Grains and Yeast | |
Essential fatty acids (% total fatty acids) | C18:2n-6 (Linoleic acid) | 2.1 | 54 | 6.53 | 3.61 | 5.61 | 4.09 | 3.44 | 5.68 | 13.22 |
C18:3n-3 (α-linolenic acid) | 1.9 | 7.2 | 0.94 | 0.51 | 0.80 | 0.89 | 0.62 | 0.80 | 1.56 | |
C20:4n-6 (Arachidonic acid) | 2.4 | 0.40 | <LOD | <LOD | 0.10 | 0.14 | 0.09 | 0.07 | ||
C20:5n-3 (Eicosapentaenoic acid (EPA)) | 9 | 3.42 | 0.25 | 0.11 | 0.20 | 0.49 | 2.21 | 1.96 | ||
C22:6n-3 (Docosahexaenoic acid (DHA)) | 6.6 | 0.91 | <LOD | <LOD | <LOD | <LOD | 0.17 | 0.26 | ||
Non-essential fatty acids (% total fatty acids) | C8:0 (Caprylic acid) | <LOD | <LOD | <LOD | <LOD | 0.03 | <LOD | <LOD | ||
C10:0 (Capric acid) | 0.97 | 0.99 | 0.90 | 0.69 | 1.00 | 1.36 | 0.85 | |||
C12:0 (Lauric acid) | 35.92 | 57.40 | 52.62 | 38.19 | 33.43 | 47.44 | 26.59 | |||
C14:0 (Myristic acid) | 6 | 0.2 | 6.65 | 10.40 | 10.31 | 8.41 | 9.72 | 8.43 | 6.78 | |
C14:1n-5 (Myristelaidic acid) | 0.17 | 0.25 | 0.21 | 0.69 | 0.84 | 0.23 | 0.22 | |||
C15:0 (Pentadecanoic acid) | 0.37 | <LOD | 0.11 | 0.20 | 0.60 | 0.17 | 0.30 | |||
C16:0 (Palmitic acid) | 17.8 | 11.2 | 13.44 | 12.09 | 12.60 | 14.19 | 20.01 | 10.25 | 17.04 | |
C16:1n-7 (Palmitoleic acid) | 7.2 | 0.1 | 6.36 | 2.73 | 2.79 | 5.11 | 4.87 | 3.35 | 4.96 | |
C16:2n-6 | 0.11 | <LOD | <LOD | <LOD | <LOD | 0.06 | <LOD | |||
C18:0 (Stearic acid) | 3.6 | 3.8 | 1.57 | 1.55 | 1.81 | 1.81 | 2.57 | 1.25 | 2.56 | |
C18:1n-5 | <LOD | <LOD | <LOD | <LOD | <LOD | 0.06 | 0.04 | |||
C18:1n-9 (Elaidic acid, Oleic acid) | 12.3 | 23.1 | 15.86 | 8.51 | 10.60 | 22.01 | 18.08 | 11.73 | 15.67 | |
C18:1n-7 (cis-vaccenic acid) | 1.20 | <LOD | 0.29 | 0.30 | 0.62 | 0.74 | 1.41 | |||
C18:2n-4 | <LOD | <LOD | <LOD | <LOD | 0.11 | 0.03 | <LOD | |||
C18:3n-6 (Gamma-linolenic acid (GLA)) | 0.09 | <LOD | <LOD | <LOD | 0.05 | 0.03 | 0.04 | |||
C18:4n-3 (Stearidonic acid (SDA)) | 1.5 | 0.66 | <LOD | <LOD | <LOD | 0.03 | 0.62 | 0.63 | ||
C20:0 (Arachidic acid) | <LOD | 0.11 | <LOD | <LOD | 0.08 | 0.09 | 0.22 | |||
C20:1n-8 | 0.26 | <LOD | <LOD | <LOD | <LOD | 0.68 | 0.74 | |||
C20:1n-9 (Eicosenoic acid) | 6.6 | |||||||||
C20:1n-11 (Gadoleic acid) | 1.26 | <LOD | <LOD | <LOD | 0.30 | 0.97 | 1.11 | |||
C20:2n-6 (Eicosadienoic acid) | <LOD | <LOD | <LOD | <LOD | 0.19 | 0.20 | 0.22 | |||
C22:0 (Behenic acid) | <LOD | <LOD | <LOD | <LOD | 0.08 | 0.06 | 0.15 | |||
C22:1 n-9 (Erucic acid) | 7.7 | |||||||||
C22:1n-11 (Cetoleic acid) | <LOD | <LOD | <LOD | <LOD | <LOD | 0.34 | 0.26 | |||
C22:5n-3 (Docosapentaenoic acid (DPA)) | 2.6 | |||||||||
<LOD = below level of detection. |
References
- FAO. The Future of Food and Agriculture–Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- FAO. Key Facts on Food Loss and Waste You Should Know! Save Food: Global Initiative on Food Loss and Waste Reduction. 2019. Available online: http://www.fao.org/save-food/resources/keyfindings/en/ (accessed on 12 March 2019).
- WRAP. Courtauld 2025 Signatory Data Report: 2015 and 2016; Harris, B., Ed.; WRAP: Banbury, UK, 2017. [Google Scholar]
- European Commission. Directive 2008/98/EC of The European Parliament and of The Council of 19 November 2008 on Waste and Repealing Certain Directives; Official Journal of the European Union: Aberdeen, UK, 2008. [Google Scholar]
- House of Commons; Environment, Food and Rural Affairs Committee. Food Waste in England, Eighth Report of Session 2016–2017; Environment, Food and Rural Affairs Committee’s Website: London, UK, 2017.
- Ye, M.; Liu, J.; Ma, C.; Li, Y.-Y.; Zou, L.; Qian, G.; Xu, Z.P. Improving the stability and efficiency of anaerobic digestion of food waste using additives: A critical review. J. Clean. Prod. 2018, 192, 316–326. [Google Scholar] [CrossRef] [Green Version]
- DEFRA. Statutory Guidance. Food and Drink Waste Hierarchy: Deal with Surplus and Waste. 2018. Available online: https://www.gov.uk/government/publications/food-and-drink-waste-hierarchy-deal-with-surplus-and-waste/food-and-drink-waste-hierarchy-deal-with-surplus-and-waste (accessed on 25 July 2021).
- DEFRA and APHA. Animal By-Product Categories, Site Approval, Hygiene and Disposal. 2018. Available online: https://www.gov.uk/guidance/animal-by-product-categories-site-approval-hygiene-and-disposal (accessed on 25 July 2021).
- Mertenat, A.; Diener, S.; Zurbrügg, C. Black Soldier Fly biowaste treatment–Assessment of global warming potential. Waste Manag. 2019, 84, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental Impact of Food Waste Bioconversion by Insects: Application of life Cycle Assessment to Process Using Hermetia illucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- Lalander, C.; Nordberg, A.; Vinneras, B. A comparison in product-value potential in four treatment strategies for food waste and faeces, assessing composting, fly larvae composting and anaerobic digestion. GCB Bioenergy 2018, 10, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Caligiani, A.; Marseglia, A.; Leni, G.; Baldassarre, S.; Maistrello, L.; Dossena, A.; Sforza, S. Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Res. Int. 2018, 105, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Sosa, D.A.T.; Fogliano, V. Potential of Insect-Derived Ingredients for Food Applications. In Insect Physiology and Ecology; Intech Open: London, UK, 2017; pp. 215–231. [Google Scholar]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; Meulenaer, B.D.; Michiels, J.; Eeckhout, M.; Clercq, P.D.; Smet, S.D. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef]
- Wasko, A.; Bulak, P.; Polak-Berecka, M.; Nowak, K.; Polakowski, C.; Bieganowski, A. The first report of the physicochemical structure of chitin isolated from Hermetia illucens. Int. J. Biol. Macromol. 2016, 92, 316–320. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schluter, O.K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schluter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuze, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Callan, E.M. Hermetia illucens (L.) (Dipt., Stratiomyidae), a cosmopolitan American species long established in Australia and New Zealand. Entomol. Mon. Mag. 1974, 109, 232–234. [Google Scholar]
- Kim, J.I. Newly recording two exotic insects species from Korea. J. Kor. Biota. 1997, 2, 223–225. [Google Scholar]
- May, B.M. The occurrence in New Zealand and the life-history of the soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae). New Zealand J. Sci. 1961, 4, 55–65. [Google Scholar]
- Üstüner, T.; Hasbenli, A.; Rozkosny, R. The first record of Hermetia illucens (Linnaeus, 1758) (Diptera, Stratiomyidae) from the Near East. Stud. Dipterol. 2003, 10, 181–185. [Google Scholar]
- Spranghers, T.; Noyez, A.; Schildermans, K.; Clercq, P.D. Cold Hardiness of the Black Soldier Fly (Diptera: Stratiomyidae). J. Econ. Entomol. 2017, 110, 1501–1507. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Shelomi, M. Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Bae, S.; Park, K.; Lee, S.; Choi, Y.; Han, S.; Koh, Y. Biochemical characterization of digestive enzymes in the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). J. Asia-Pac. Entomol. 2011, 14, 11–14. [Google Scholar] [CrossRef]
- Cicková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The use of fly larvae for organic waste treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef]
- Sheppard, D.C.; Tomberlin, J.K.; Joyce, J.A.; Kiser, B.C.; Sumner, S.M. Rearing Methods for the Black Soldier Fly (Diptera: Stratiomyidae). J. Med Entomol. 2002, 39, 695–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commission Regulation (EU) 2017/893 of 24 May 2017 amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 As Regards the Provisions on Processed Animal Protein; Official Journal of the European Union: Aberdeen, UK, 2017. [Google Scholar]
- European Commission. Regulation (Ec) No 1069/2009 of The European Parliament AND OF The Council Laying Down Health Rules as Regards Animal By-Products and Derived Products Not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal By-Products Regulation); Official Journal of the European Union: Aberdeen, UK, 2009. [Google Scholar]
- APHA. Import of Processed Animal Protein (PAP) Derived from Farmed Insects Not for Human Consumption from Third Countries. Import Information Note (IIN) ABP/45; The Animal and Plant Health Agency (APHA): Surrey, UK, 2020.
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; Rehman, K.u.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zhang, J.; et al. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Qian, L.; Wang, W.; Wang, T.; Deng, Z.; Yang, F.; Xiong, J.; Feng, W. Exploring the potential of lipids from black soldier fly: New paradigm for biodiesel production (I). Renew. Energy 2017, 111, 749–756. [Google Scholar] [CrossRef]
- Gortari, M.C.; Hours, R.A. Biotechnological processes for chitin recovery out of crustacean waste: A mini-review. Electron. J. Biotechnol. 2013, 16, 14. [Google Scholar]
- Temple, W.D.; Radley, R.; Baker-French, J.; Richardson, F. Use of Enterra Natural Fertilizer (Black Soldier Fly Larvae Digestate) As a Soil Amendment; Enterra Feed Corporation: Maple Ridge, BC, Canada, 2013; Available online: https://easyasorganics.com.au/wp-content/uploads/2021/02/I-172_Frass_Research_Final-Report.pdf (accessed on 25 July 2021).
- Win, S.S.; Ebner, J.H.; Brownell, S.A.; Pagano, S.S.; Cruz-Dilone, P.; Trabold, T.A. Anaerobic digestion of black solider fly larvae (BSFL) biomass as part of an integrated biorefinery. Renew. Energy 2018, 127, 705–712. [Google Scholar] [CrossRef]
- Braguglia, C.M.; Gallipoli, A.; Gianico, A.; Pagliaccia, P. Anaerobic bioconversion of food waste into energy: A critical review. Bioresour. Technol. 2018, 248, 37–56. [Google Scholar] [CrossRef]
- Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [Google Scholar] [CrossRef]
- WRAP. Why Take Action: Legal/Policy Case. Available online: http://www.wrap.org.uk/content/why-take-action-legalpolicy-case (accessed on 25 July 2021).
- Bava, L.; Jucker, C.; Gislon, G.; Lupi, D.; Savoldelli, S.; Zucali, M.; Colombini, S. Rearing of Hermetia illucens on Different Organic By-Products: Influence on Growth, Waste Reduction, and Environmental Impact. Animals 2019, 9, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J.A. Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (Hermetia illucens). Entomol. Exp. Appl. 2018, 166, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Oonincx, D.G.A.B.; Broekhoven, S.v.; van Huis, A.; van Loon, J.J.A. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danieli, P.P.; Lussiana, C.; Gasco, L.; Amici, A.; Ronchi, B. The Effects of Diet Formulation on the Yield, Proximate Composition, and Fatty Acid Profile of the Black Soldier Fly (Hermetia illucens L.) Prepupae Intended for Animal Feed. Animals 2019, 9, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, R.J. Fatty acid metabolism in freshwater fish with particular reference to polyunsaturated fatty acids. Arch Tierernahr. 1996, 49, 5–22. [Google Scholar] [CrossRef]
- Tacon, A.G.J. The Nutrition and Feeding of Farmed Fish and Shrimp–A Training Manual, 1. The Essential Nutrients; Food and Agriculture Organization of The United Nations: Brasilia, Brazil, 1987. [Google Scholar]
- Dick, H.; Scholes, P. Comparing the Costs of Alternative Waste Treatment Options; WRAP: Banbury, UK, 2019. [Google Scholar]
- Kerby, C.; Vriesekoop, F. An Overview of the Utilisation of Brewery By-Products as Generated by British Craft Breweries. Beverages 2017, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Thiex, N.; Novotny, L.; Crawford, A. Determination of ash in animal feed: AOAC official method 942.05 revisited. J. AOAC Int. 2012, 95, 1392–1397. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Fish and Shrimp; Animal Nutrition Series; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Korkmaz, A.S.; Cakirogullari, G.C. Effects of partial replacement of fish meal by dried baker’s yeast (Saccharomyces cerevisiae) on growth performance, feed utilization and digestibility in koi carp (Cyprinus carpio L., 1758) fingerlings. J. Anim. Vet. Adv. 2011, 10, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Jucker, C.; Lupi, D.; Moore, C.D.; Leonardi, M.G.; Savoldelli, S. Nutrient Recapture from Insect Farm Waste:Bioconversion with Hermetia illucens (L.) (Diptera: Stratiomyidae). Sustainability 2020, 12, 362. [Google Scholar] [CrossRef] [Green Version]
- Kissel, D.E.; Risse, M.; Sonon, L.; Harris, G. Calculating the Fertilizer Value of Broiler Litter; The U.S. Department of Agriculture and Counties of the State Cooperating, The University of Georgia and Fort Valley State University: Fort Valley, GA, USA, 2015.
- Penhallegon, R. Nitrogen-Phosphorus-Potassium Values Oforganic Fertilizers; Oregon State University Extension Service: Lane County Office: Eugene, OR, USA, 2003. [Google Scholar]
- AHDB. Monthly Average Prices for October 2019 in GB Fertiliser Price Market Update A.a.H.D.B. (AHDB), Editor; Agriculture and Horticulture Development Board (AHDB): Warwickshire, CV8 2TL, UK, 2019; Available online: https://ahdb.org.uk/GB-fertiliser-prices (accessed on 25 July 2021).
- Tschirner, M.; Simon, A. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects Food Feed 2015, 1, 249–259. [Google Scholar] [CrossRef]
- Wilson, R.P. Protein and amino acids. In Fish Nutrition, 3rd ed.; Halver, J.E., Hardy, R.W., Eds.; Elsevier Science: San Diego, CA, USA, 2002; pp. 144–179. [Google Scholar]
- Miles, R.D.; Chapman, F.A. The Benefits of Fish Meal in Aquaculture Diets; Place, N.T., Ed.; The Fisheries and Aquatic Sciences Department, U.S. Department of Agriculture, UF/IFAS Extension, University of Florida: Gainesville, FL, USA, 2018.
- INRA-CIRAD-AFZ. Fish Meal, Protein 65%. INRA-CIRAD-AFZ Feed Tables 2020. Available online: https://www.feedtables.com/content/fish-meal-protein-65 (accessed on 10 April 2020).
- Bhat, T.H.; Balkhi, M.H.; Banday, T. Use of soybean products in aquafeeds: A review. In Soybean in Aquaculture; University of Agricultural Sciences and Technology of Kashmir: Srinagar, India, 2012. [Google Scholar]
- Hasan, A.; Tan, J. The Current State of Plant-Based Proteins in Aquaculture Feed; Biomin: Getzersdorf, Austria, 2020; Available online: https://www.biomin.net/science-hub/the-current-state-of-plant-based-proteins-in-aquaculture-feed/ (accessed on 25 July 2021).
- Cremer, M.C. Use and Future Prospects for Use of Soy Products in Aquaculture; USSEC-U.S. Soybean Export Council: Singapore, 2019; Available online: https://ussec.org/resources/future-prospects-soy-products-aquaculture/ (accessed on 25 July 2021).
- Heuzé, V.; Tran, G.; Kaushik, S. Soybean Meal. Feedipedia 4 March. Available online: http://www.feedipedia.org/node/674 (accessed on 10 April 2020).
- Dayrit, F.M. The Properties of Lauric Acid and Their Significance in Coconut Oil. J. Am. Oil Chem. Soc. 2015, 92, 1–15. [Google Scholar] [CrossRef]
- Kabara, J.J.; Swieczkowski, D.M.; Conley, A.J.; Truant, J.P. Fatty Acids and Derivatives as Antimicrobial Agents. Antimicrob. Agents Chemother. 1972, 2, 23–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, D.R.; Walker, R.L.; Walker, K.C. Lauric Acid Exhibits Antifungal Activity Against Plant Pathogenic Fungi. J. Phytopathol. 2003, 151, 228–230. [Google Scholar] [CrossRef]
- Zeiger, K.; Popp, J.; Becker, A.; Hankel, J.; Visscher, C.; Klein, G.; Meemken, D. Lauric acid as feed additive–An approach to reducing Campylobacter spp. in broiler meat. PLoS ONE 2017, 12, e0175693. [Google Scholar] [CrossRef] [Green Version]
- Hayes, D.G. Fatty Acids Based Surfactants and Their Uses. In Fatty Acids, Chemistry, Synthesis, and Applications; Ahmad, M.U., Ed.; Academic Press and AOCS Press: Cambridge, MA, USA, 2017; pp. 355–384. [Google Scholar]
- McNaught, A.D.; Wilkinson, A. Compendium of Chemical Terminology, (the “Gold Book”), 2nd ed.; Chalk., S.J., Ed.; Blackwell Scientific Publications: Oxford, UK, 1997. [Google Scholar]
- Kelm, G.R.; Wickett, R.R. The Role of Fatty Acids in Cosmetic Technology. In Fatty Acids, Chemistry, Synthesis, and Applications; Ahmad, M.U., Ed.; Academic Press and AOCS Press: Cambridge, MA, USA, 2017; pp. 385–404. [Google Scholar]
- Huang, C.B.; George, B.; Ebersole, J.L. Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch. Oral Biol. 2010, 55, 555–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ecothrive. Ecothrive Charge, Soil Conditioner and Biostimulant. 2020. Available online: https://www.ecothrive.co.uk/catalogue/charge_6/ (accessed on 25 July 2021).
- Schmitt, E.; de Vries, W. Potential benefits of using Hermetia illucens frass as a soil amendment on food production and for environmental impact reduction. Curr. Opin. Green Sustain. Chem. 2020, 25, 100335. [Google Scholar]
Organic Waste | Source | Reason Waste Was Chosen for Investigation | Waste Category and Disposal Method | Median Gate Fezzze (GBP/tonne) [46] |
---|---|---|---|---|
Fish trimmings | Collected from local fish monger | Waste generated at fish processing facilities. Seeking to track long chain fatty acids in BSFL. | Fallen stock and digestive tracks—category II. Parts of stock unconsumed—category III. | Material recovery facilities (MRFs): all wastes, GBP 25, contracts from 2018 are GBP 35. In vessel composting (IVC): mixed food and green, GBP 50; all feedstock types, GBP 46. AD: all gates fees, GBP 27. Energy recovery: GBP 89. Landfill: non-hazardous waste, including landfill tax (standard rate for 2017/18 is GBP 88.95/tonne), GBP 113. |
Sugar beet pulp | British sugar | Highly produced by sugar industry and meat-free. | Covered under fruit and vegetable waste. | |
Bakery waste | Local bakery | Available in high volumes due to short shelf life and meat free | Non-animal by-product approved, depackaged and shred. | |
Fruit and vegetable waste | Household waste (representative of supermarket waste) | Available in high volumes and meat-free | Non-animal by-product approved, depackaged and shred. | |
Cheese waste | Harvey & Brockless (H&B) Cheese in London | Available in high volumes, meat-free and high in fat. Investigating how BSFL respond to high fat material. | Covered under dairy products. Treated as bakery and fruit and vegetable, depackaged and shred. | |
Industrial fish feed waste | Skretting feed manufacturing facility | By product of aquaculture feed industry | As for fish trimmings. | |
Brewer’s grains and yeast | Firebird Brewery | Available in high volumes from brewing industry and meat-free. | Often used as animal feed or disposed via landfill [47]. |
Diet | Feed Conversion Rate (FCR) | Specific Growth Rate (SGR) | Larval Growth Rate (LGR) (mg/day) | Efficiency of Conversion of the Ingested Food (ECI) | Waste Reduction Index (WRI) (g/day) | Substrate Reduction (SR) (%) |
---|---|---|---|---|---|---|
Fish trimmings | 5.98 ± 2.77 ac | 16.92 ± 3.36 a | 9.25 ± 4.94 a | 0.32 ± 0.08 a | 28.17 ± 5.26 ad | −54.49 ± 8.59 a |
Sugar beet pulp | 20.54 ± 8.68 b | 9.95 ± 1.84 b | 2.19 ± 0.54 b | 0.11 ± 0.04 b | 14.79 ± 0.68 b | −60.98 ± 8.31 ac |
Bakery waste | 4.84 ± 1.45 a | 17.66 ± 1.68 a | 9 ± 2.83 a | 0.35 ± 0.08 a | 22.66 ± 1.26 ae | −70.26 ± 9.49 bc |
Fruit and vegetable waste | 7.97 ± 1.1 ac | 16.08 ± 1.21 a | 6.45 ± 0.79 ac | 0.15 ± 0.01 b | 28.02 ± 2.21 ad | −79.28 ± 6.18 b |
Cheese waste | 12.92 ± 2.06 c | 9.55 ± 0.99 b | 2.71 ± 0.19 c | 0.11 ± 0.03 b | 45.17 ± 4.98 c | −63.86 ± 5.63 ac |
Fish feed waste | 6.42 ± 1.25 ac | 17.39 ± 1.43 a | 16.05 ± 1.9 d | 0.55 ± 0.07 c | 31 ± 1.42 d | −37.27 ± 5.4 d |
Brewer’s grain and yeast | 6.78 ± 1.12 ac | 16.59 ± 1.19 a | 6.99 ± 0.38 ac | 0.31 ± 0.04 a | 21.19 ± 3.32 be | −52.04 ± 5.02 a |
(a) | ||||||||
Parameter | Fish Trimmings | Sugar Beet Pulp | Bakery Waste | Fruit and Vegetable Waste | Cheese Waste | Fish Feed Waste | Brewer’s Grains and Yeast | |
Dry matter (DM) (%) | 31.07 | 52.65 | 58.63 | 12.47 | 53.54 | 93.93 | 21.66 | |
Crude protein (g/100 g DM) | 42.42 | 8.62 | 18.22 | 8.42 | 31.71 | 54.02 | 49.95 | |
Crude fat (g/100 g DM) | 36.47 | 0.36 | 2.66 | 1.68 | 57.27 | 10.40 | 6.56 | |
Fibre (g/100 g DM) | 0.00 | 4.21 | 0.65 | 0.10 | 0.22 | 1.63 | 0.88 | |
Ash (g/100 g DM) | 5.22 | 4.22 | 1.97 | 0.66 | 3.35 | 6.51 | 1.03 | |
Energy (MJ/kg) | 7.5 | 8.47 | 11.11 | 2.02 | 16.33 | 20.89 | 4.41 | |
(b) | ||||||||
Fatty Acids (g/100 g DM) | Fish Trimmings | Sugar Beet Pulp | Bakery Waste | Fruit and Vegetable Waste | Cheese Waste | Fish Feed Waste | Brewer’s Grains and Yeast | |
Caproic acid | C6:0 | 1.6 | 0.0 | 0.1 | 0.1 | 6.4 | 0.3 | 0.1 |
Caprylic acid | C8:0 | 0.01 | 0.01 | 0.01 | 0.00 | 0.31 | 0.01 | 0.00 |
Capric acid | C10:0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.76 | 0.00 | 0.00 |
Undecanoic acid | C11:0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 |
Lauric acid | C12:0 | 0.02 | 0.01 | 0.01 | 0.00 | 1.02 | 0.02 | 0.01 |
Tridecanoic acid | C13:0 | 3.03 | 0.05 | 0.77 | 0.55 | 0.88 | 1.46 | 3.06 |
Myristic acid | C14:0 | 0.95 | 0.01 | 0.01 | 0.01 | 3.74 | 0.63 | 0.01 |
Myristoleic acid | C14:1n-5 | 0.03 | 0.00 | 0.00 | 0.01 | 0.64 | 0.01 | 0.00 |
Pentadecanoic acid | C15:0 | 0.08 | 0.00 | 0.00 | 0.00 | 0.41 | 0.04 | 0.00 |
cis-10 pentadecanoic acid | C15:1 | 0.65 | 0.00 | 0.11 | 0.09 | 0.29 | 0.40 | 0.31 |
Palmitic acid | C16:0 | 2.62 | 0.08 | 0.29 | 0.05 | 10.75 | 1.55 | 0.35 |
Palmitoleic acid | C16:1n-7 | 0.71 | 0.00 | 0.00 | 0.00 | 0.74 | 0.42 | 0.01 |
cis-10 heptadecanoic acid | C17:1 | 0.03 | 0.00 | 0.00 | 0.00 | 0.03 | 0.01 | 0.01 |
Stearic acid | C18:0 | 0.50 | 0.02 | 0.04 | 0.01 | 3.45 | 0.28 | 0.03 |
Elaidic acid, Oleic acid | C18:1n-9 | 2.70 | 0.03 | 0.62 | 0.03 | 7.57 | 2.49 | 0.22 |
Linoleic acid | C18:2n-6 | 0.95 | 0.03 | 0.45 | 0.07 | 0.54 | 1.38 | 0.66 |
α-linolenic acid | C18:3n-3 | 0.20 | 0.00 | 0.06 | 0.01 | 0.16 | 0.38 | 0.07 |
Gamma-linolenic acid (GLA) | C18:3n-6 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 |
Arachidic acid | C20:0 | 0.04 | 0.00 | 0.01 | 0.00 | 0.06 | 0.05 | 0.00 |
Gondoic acid | C20:1n-9 | 4.42 | 0.00 | 0.03 | 0.00 | 0.03 | 0.98 | 0.07 |
Eicosadienoic acid | C20:2n-6 | 0.12 | 0.00 | 0.01 | 0.00 | 0.02 | 0.05 | 0.00 |
cis-11,14,17 eicosatrienoic acid | C20:3n-3 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 |
cis-8,11,14 eicosatrienoic acid | C20:3n-6 | 0.03 | 0.00 | 0.00 | 0.00 | 0.03 | 0.01 | 0.01 |
Arachidonic acid | C20:4n-6 | 0.03 | 0.00 | 0.00 | 0.00 | 0.03 | 0.04 | 0.00 |
Eicosapentaenoic acid (EPA) | C20:5n-3 | 0.24 | 0.00 | 0.00 | 0.00 | 0.01 | 0.56 | 0.01 |
Heneicosanoic acid | C21:0 | 0.02 | 0.00 | 0.00 | 0.00 | 0.03 | 0.01 | 0.03 |
Behenic acid | C22:0 | 0.02 | 0.00 | 0.00 | 0.00 | 0.04 | 0.06 | 0.01 |
Erucic acid | C22:1n-9 | 0.58 | 0.00 | 0.01 | 0.00 | 0.01 | 0.12 | 0.01 |
cis-13,16-docosadienoic acid | C22:2 | 0.07 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | 0.01 |
Docosahexaenoic acid (DHA) | C22:6n-3 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.61 | 0.00 |
tricosanoic acid | C23:0 | 0.01 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 |
lignoceric acid | C24:0 | 0.03 | 0.00 | 0.00 | 0.01 | 0.03 | 0.01 | 0.01 |
nervonic acid | C24:1 | 0.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.01 |
Sum Sat FA | 8.95 | 0.23 | 1.23 | 0.77 | 28.12 | 4.43 | 3.66 | |
Sum unsaturated FA | 11.73 | 0.06 | 1.30 | 0.22 | 10.13 | 7.56 | 1.39 | |
Sum monoenes | 9.73 | 0.03 | 0.78 | 0.14 | 9.30 | 4.50 | 0.64 | |
Sum n-6 FA | 1.14 | 0.03 | 0.46 | 0.07 | 0.63 | 1.48 | 0.68 | |
Sum n-3 FA | 0.79 | 0.00 | 0.06 | 0.01 | 0.17 | 1.57 | 0.07 | |
Unsat/Saturated | 1.31 | 0.28 | 1.06 | 0.29 | 0.36 | 1.71 | 0.38 | |
n-6/n-3 | 1.44 | 13.47 | 7.17 | 6.09 | 3.66 | 0.94 | 9.29 | |
n-3/n-6 | 0.69 | 0.07 | 0.14 | 0.16 | 0.27 | 1.06 | 0.11 |
(a) | ||||||||
Parameter (g/100 g DM) | BSFL Meals | |||||||
Fish Trimmings | Sugar Beet Pulp | Bakery Waste | Fruit and Vegetable Waste | Cheese Waste | Fish Feed Waste | Brewer’s Grains and Yeast | ||
Proximate | Crude protein | 46.62 | 43.15 | 43.07 | 36.03 | 43.18 | 45.70 | 51.05 |
Crude fat | 35.05 | 35.49 | 37.63 | 40.30 | 36.94 | 35.22 | 27.00 | |
Amino acids | ||||||||
Essential | Arginine | 2.06 | 1.79 | 1.84 | 1.43 | 1.95 | 2.14 | 1.96 |
Histidine | 1.43 | 1.34 | 1.31 | 1.01 | 1.30 | 1.44 | 1.34 | |
Isoleucine | 1.97 | 1.84 | 1.76 | 1.45 | 1.82 | 1.99 | 2.11 | |
Leucine | 3.85 | 3.58 | 2.79 | 2.28 | 2.85 | 3.15 | 3.30 | |
Lysine | 2.41 | 2.19 | 2.41 | 1.97 | 2.38 | 2.53 | 3.15 | |
Methionine | 0.87 | 0.78 | 0.79 | 0.63 | 0.82 | 0.80 | 0.85 | |
Cystine | 0.29 | 0.27 | 0.33 | 0.29 | 0.23 | 0.22 | 0.37 | |
Phenylalanine | 1.73 | 1.69 | 1.81 | 1.51 | 1.85 | 2.05 | 2.44 | |
Tyrosine | 2.03 | 1.91 | 1.96 | 1.48 | 5.28 | 5.73 | 5.44 | |
Threonine | 1.68 | 1.56 | 1.61 | 1.28 | 1.64 | 1.80 | 1.92 | |
Valine | 2.67 | 2.52 | 2.62 | 2.11 | 2.64 | 2.91 | 3.04 | |
Non-essential | Alanine | 2.94 | 2.92 | 2.81 | 2.36 | 2.76 | 2.91 | 4.46 |
Aspartic acid | 3.86 | 3.76 | 3.89 | 3.10 | 3.69 | 4.12 | 4.05 | |
Glutamic acid | 4.47 | 4.26 | 4.37 | 3.48 | 4.40 | 4.40 | 5.13 | |
Glycine | 2.59 | 2.35 | 2.35 | 1.84 | 2.37 | 2.61 | 2.65 | |
Proline | 2.65 | 2.47 | 2.32 | 1.91 | 2.88 | 2.97 | 3.35 | |
Serine | 1.83 | 1.73 | 1.70 | 1.33 | 1.69 | 1.83 | 1.94 | |
Sum of AA | 39.31 | 36.95 | 36.68 | 29.47 | 40.56 | 43.61 | 47.51 | |
Tryptophan was not tested for. | ||||||||
(b) | ||||||||
Parameter (g/100 g DM) | BSFL Meals | |||||||
Fish Trimmings | Sugar Beet Pulp | Bakery Waste | Fruit and Vegetable Waste | Cheese Waste | Fish Feed Waste | Brewer’s Grains and Yeast | ||
Fatty acids | ||||||||
Caprylic acid | C8:0 | <LOD | <LOD | <LOD | <LOD | 0.01 | <LOD | <LOD |
Capric acid | C10:0 | 0.34 | 0.35 | 0.34 | 0.28 | 0.37 | 0.48 | 0.23 |
Lauric acid | C12:0 | 12.59 | 20.37 | 19.80 | 15.39 | 12.35 | 16.71 | 7.18 |
Myristic acid | C14:0 | 2.33 | 3.69 | 3.88 | 3.39 | 3.59 | 2.97 | 1.83 |
Myristelaidic acid | C14:1n-5 | 0.06 | 0.09 | 0.08 | 0.28 | 0.31 | 0.08 | 0.06 |
Pentadecanoic acid | C15:0 | 0.13 | <LOD | 0.04 | 0.08 | 0.22 | 0.06 | 0.08 |
Palmitic acid | C16:0 | 4.71 | 4.29 | 4.74 | 5.72 | 7.39 | 3.61 | 4.60 |
Palmitoleic acid | C16:1n-7 | 2.23 | 0.97 | 1.05 | 2.06 | 1.80 | 1.18 | 1.34 |
C16:2n-6 | 0.04 | <LOD | <LOD | <LOD | <LOD | 0.02 | <LOD | |
Stearic acid | C18:0 | 0.55 | 0.55 | 0.68 | 0.73 | 0.95 | 0.44 | 0.69 |
C18:1n-5 | <LOD | <LOD | <LOD | <LOD | <LOD | 0.02 | 0.01 | |
Elaidic acid, Oleic acid | C18:1n-9 | 5.56 | 3.02 | 3.99 | 8.87 | 6.68 | 4.13 | 4.23 |
cis-vaccenic acid | C18:1n-7 | 0.42 | <LOD | 0.11 | 0.12 | 0.23 | 0.26 | 0.38 |
C18:2n-4 | <LOD | <LOD | <LOD | <LOD | 0.04 | 0.01 | <LOD | |
Linoleic acid | C18:2n-6 | 2.29 | 1.28 | 2.11 | 1.65 | 1.27 | 2.00 | 3.57 |
α-linolenic acid | C18:3n-3 | 0.33 | 0.18 | 0.30 | 0.36 | 0.23 | 0.28 | 0.42 |
Gamma-linolenic acid (GLA) | C18:3n-6 | 0.03 | <LOD | <LOD | <LOD | 0.02 | 0.01 | 0.01 |
Stearidonic acid (SDA) | C18:4n-3 | 0.23 | <LOD | <LOD | <LOD | 0.01 | 0.22 | 0.17 |
Arachidic acid | C20:0 | <LOD | 0.04 | <LOD | <LOD | 0.03 | 0.03 | 0.06 |
C20:1n-8 | 0.09 | <LOD | <LOD | <LOD | <LOD | 0.24 | 0.20 | |
Gadoleic acid | C20:1n-11 | 0.44 | <LOD | <LOD | <LOD | 0.11 | 0.34 | 0.30 |
Eicosadienoic acid | C20:2n-6 | <LOD | <LOD | <LOD | <LOD | 0.07 | 0.07 | 0.06 |
Arachidonic acid | C20:4n-6 | 0.14 | <LOD | <LOD | 0.04 | 0.05 | 0.03 | 0.02 |
Eicosapentaenoic acid (EPA) | C20:5n-3 | 1.20 | 0.09 | 0.04 | 0.08 | 0.18 | 0.78 | 0.53 |
Behenic acid | C22:0 | <LOD | <LOD | <LOD | <LOD | 0.03 | 0.02 | 0.04 |
Cetoleic acid | C22:1n-11 | <LOD | <LOD | <LOD | <LOD | <LOD | 0.12 | 0.07 |
Docosahexaenoic acid (DHA) | C22:6n-3 | 0.32 | <LOD | <LOD | <LOD | <LOD | 0.06 | 0.07 |
Sum Sat FA | 20.64 | 29.28 | 29.47 | 25.59 | 24.93 | 24.33 | 14.70 | |
Sum unsaturated FA | 13.37 | 5.64 | 7.68 | 13.46 | 10.99 | 9.85 | 11.43 | |
Sum monoenes | 8.79 | 4.08 | 5.23 | 11.32 | 9.12 | 6.38 | 6.58 | |
Sum n-6 FA | 2.50 | 1.28 | 2.11 | 1.69 | 1.41 | 2.13 | 3.66 | |
Sum n-3 FA | 2.08 | 0.27 | 0.34 | 0.44 | 0.42 | 1.34 | 1.20 | |
Unsat/Saturated | 0.65 | 0.19 | 0.26 | 0.53 | 0.44 | 0.40 | 0.78 | |
n-6/n-3 | 1.20 | 4.70 | 6.22 | 3.82 | 3.35 | 1.59 | 3.06 | |
n-3/n-6 | 0.83 | 0.21 | 0.16 | 0.26 | 0.30 | 0.63 | 0.33 | |
Unknown | 2.95 | 1.61 | 0.9 | 1.4 | 2.74 | 2.93 | 3.24 | |
<LOD = below level of detection. Essential fatty acids highlighted in bold. |
Parameter (%DM) | BSFL Apparent Bioconcentration Factor (aBCF) | |||||||
---|---|---|---|---|---|---|---|---|
Fish Trimmings | Sugar Beet Pulp | Bakery Waste | Fruit and Vegetable Waste | Cheese Waste | Fish Feed Waste | Brewer’s Grains and Yeast | ||
Crude protein | 1.1 | 5.0 | 2.4 | 4.3 | 1.4 | 0.8 | 1.0 | |
Crude fat | 1.0 | 98.4 | 14.1 | 23.9 | 0.6 | 3.4 | 4.1 | |
Fatty acids | ||||||||
Caprylic acid | C8:0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 |
Capric acid | C10:0 | 216.4 | 0 | 43.4 | 6.4 | 0.7 | 57.4 | 0 |
Lauric acid | C12:0 | 561.9 | 21.1 | 114.6 | 157.9 | 18.8 | 230.2 | 329.0 |
Myristic acid | C14:0 | 2.6 | 4.9 | 29.1 | 15.2 | 1.5 | 1.4 | 57.2 |
Pentadecanoic acid | C15:0 | 1.7 | 0 | 1.4 | 2.7 | 0.8 | 0.4 | 8.2 |
Palmitic acid | C16:0 | 1.9 | 0.5 | 1.1 | 4.7 | 1.1 | 0.7 | 3.1 |
Palmitoleic acid | C16:1n-7 | 3.3 | 9.2 | 17.7 | 42.5 | 3.8 | 0.8 | 64.2 |
Stearic acid | C18:0 | 1.1 | 0.3 | 1.1 | 2.1 | 0.4 | 0.5 | 5.5 |
Elaidic acid, Oleic acid | C18:1n-9 | 2.1 | 1.1 | 0.5 | 10.6 | 1.4 | 0.5 | 4.6 |
Linoleic acid | C18:2n-6 | 2.5 | 0.5 | 0.3 | 1.0 | 3.6 | 0.4 | 1.3 |
α-linolenic acid | C18:3n-3 | 1.7 | 0.9 | 0.3 | 1.3 | 2.3 | 0.2 | 1.6 |
Gamma-linolenic acid (GLA) | C18:3n-6 | 2.4 | 0 | 0 | 0 | 4.8 | 0.2 | 0 |
Arachidic acid | C20:0 | 0.0 | 0.4 | 0 | 0 | 0.7 | 0.2 | 3.1 |
Eicosadienoic acid | C20:2n-6 | 0.0 | 0 | 0 | 0 | 5.2 | 0.5 | 3.0 |
Arachidonic acid | C20:4n-6 | 4.7 | 0 | 0 | 2.6 | 2.5 | 0.3 | 4.7 |
Eicosapentaenoic acid (EPA) | C20:5n-3 | 5.1 | 0 | 4.9 | 14.1 | 19.8 | 0.4 | 19.7 |
Behenic acid | C22:0 | 0 | 0 | 0 | 0 | 1.3 | 0.1 | 2.0 |
Docosahexaenoic acid (DHA) | C22:6n-3 | 1.5 | 0 | 0 | 0 | 0 | 0.0 | 0 |
Sum Sat FA | 2.4 | 1.3 | 1.7 | 1.4 | 1.4 | 1.6 | 1.0 | |
Sum unsaturated FA | 1.2 | 0.9 | 0.4 | 2.5 | 1.7 | 0.4 | 2.0 | |
Sum monoenes | 0.9 | 1.2 | 0.5 | 3.4 | 1.5 | 0.4 | 2.5 | |
Sum n-6 FA | 2.3 | 0.5 | 0.3 | 1.0 | 3.5 | 0.4 | 1.3 | |
Sum n-3 FA | 2.7 | 1.4 | 0.4 | 1.6 | 3.8 | 0.3 | 4.0 |
Fertiliser | Nitrogen (N) % | Phosphorus (P) % | Potassium (K) % |
---|---|---|---|
BSFL frass | 4.9 | 2.6 | 1.7 |
Cow manure | 0.5–2 | 0.2–0.7 | 0.4–2 |
Horse manure | 0.7–1.5 | 0.2–0.7 | 0.6–0.8 |
Pig manure | 0.4–2 | 0.5–1 | 0.4–1.2 |
Poultry manure | 1.5–6 | 1–4 | 0.5–3 |
Sheep manure | 2.2–3.6 | 0.3–0.6 | 0.7–1.7 |
Rabbit manure | 3–4.8 | 1.5–2.8 | 1–1.3 |
Fertiliser | Cost (GBP/Tonne) | Kg of Nutrient Per Tonne | Cost of Nutrient (GBP/Tonne) | Average Cost of Nutrient (GBP/kg) |
---|---|---|---|---|
Ammonium nitrite (34.5% N) | 258 | 345 | 0.75 | 0.67 |
Granular Urea-standard specification (46% N) | 272 | 460 | 0.59 | |
Muriate of Potash (MOP) (60% K20) | 283 | 600 | 0.47 | 0.47 |
Diammonium Phosphate (DAP) (46% P2O5) | 350 | 460 | 0.76 | 0.71 |
Triple Super Phosphate (TSP) (46% P2O5) | 302 | 460 | 0.66 |
Fertiliser | Cost of Nutrient (GBP/Tonne) | Total Cost (GBP/Tonne) | ||
---|---|---|---|---|
Nitrogen (N) | Phosphorus (P) | Potassium (K) | ||
BSFL frass | 32.8 | 12.2 | 12.1 | 57.1 |
Cow manure | 8.4 | 2.1 | 8.5 | 19.0 |
Horse manure | 7.4 | 2.1 | 5.0 | 14.5 |
Pig manure | 8.0 | 3.5 | 5.7 | 17.2 |
Poultry manure | 25.1 | 11.8 | 12.4 | 49.3 |
Sheep manure | 19.4 | 2.1 | 8.5 | 30.1 |
Rabbit manure | 26.1 | 10.1 | 8.2 | 44.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magee, K.; Halstead, J.; Small, R.; Young, I. Valorisation of Organic Waste By-Products Using Black Soldier Fly (Hermetia illucens) as a Bio-Convertor. Sustainability 2021, 13, 8345. https://doi.org/10.3390/su13158345
Magee K, Halstead J, Small R, Young I. Valorisation of Organic Waste By-Products Using Black Soldier Fly (Hermetia illucens) as a Bio-Convertor. Sustainability. 2021; 13(15):8345. https://doi.org/10.3390/su13158345
Chicago/Turabian StyleMagee, Kieran, Joe Halstead, Richard Small, and Iain Young. 2021. "Valorisation of Organic Waste By-Products Using Black Soldier Fly (Hermetia illucens) as a Bio-Convertor" Sustainability 13, no. 15: 8345. https://doi.org/10.3390/su13158345
APA StyleMagee, K., Halstead, J., Small, R., & Young, I. (2021). Valorisation of Organic Waste By-Products Using Black Soldier Fly (Hermetia illucens) as a Bio-Convertor. Sustainability, 13(15), 8345. https://doi.org/10.3390/su13158345