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Abstract: The parametrizations of meteorological variables provided by the Monin–Obukhov similar-
ity theory (MOST) is of major importance for pollutant dispersion assessment. However, the complex
flow pattern that characterizes the urban areas limits the applicability of the MOST. In this work,
the performance of different existing parametrizations of the standard deviation of vertical wind
velocity were tested in the city of Rome. Results were compared with experimental data acquired by a
sonic detection and ranging (SODAR) and a sonic anemometer. Different scaling variables estimated
from the anemometer data by considering two coordinate systems—one aligned with the geodetic
reference frame and the other following the flow streamlines—were used to evaluate the effects of
flow distortion due to the presence of buildings. Results suggest that the MOST parametrizations
perform better if the scaling variables obtained using the coordinate system following the flow
streamlines are used. This estimation of the scaling variables would make it possible to overcome the
difficulties in conducting measurements of turbulent fluxes, either at different altitudes or even in
the constant flux layer.

Keywords: Monin–Obukhov similarity theory; wind profile; urban area; tilted coordinate system;
friction velocity

1. Introduction

In atmospheric pollution modelling, knowledge of the meteorological variables is
essential, as they govern transport and dispersion of the pollutants [1]. Among them, the
most important variables are wind speed and direction, height of the mixing layer, and
parameters linked with atmospheric turbulence. The latter plays a fundamental role in
dispersive phenomena since it is effective at causing mixing, particularly in the atmospheric
boundary layer (ABL, e.g., [2]).

Application of the governing equations of fluid mechanics describes and forecasts the
dynamics and thermodynamics of the gases of the ABL. Unfortunately, the set of equations
is so complex that no analytical solution is known, particularly in the case of turbulent
flows. Similarity theory provides a way to organize and group the variables of interest
and makes available a series of analytical expressions for their parameterization [3]. In the
framework of ABL flows, the Monin–Obukhov similarity theory (MOST; [4]) has given rise
to a profusion of considerable efforts in the search for general laws suitable for various
atmospheric stability conditions [5]. The MOST states that the vertical profiles of some
meteorological variables, such as wind velocity, air temperature, and turbulent fluxes,
can be obtained by algebraic relationships dependent on the height and on the scaling
variables. In principle, the MOST can be applied for steady and horizontally homogeneous
conditions, when the wind is not calm, and the terrain is substantially devoid of orography
or obstacles [2].
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In the case of urban areas, the characteristics of the urban texture induce changes
to the ABL, with consequent modifications of the dynamic, thermal, and water regimes
compared to the surrounding rural areas [6–12]. The processes that cause such variations
can be attributed mainly to alterations in the radiative energy budget of the local earth–
atmosphere system, and aerodynamic phenomena such as wind channeling, recirculation,
stagnation, and turbulence (Figure 1). In principle, the lower part of the ABL, also known
as the surface layer (SL), is eroded from below by the urban canopy layer (UCL), i.e., the
region that extends from the ground up to the mean building height (hb). Above the UCL, a
roughness sublayer (RSL) forms, where the airflow is three-dimensional, non-homogenous,
and still influenced by vegetation, buildings, and other roughness elements that constitute
the urban canopy [13]. The RSL top is generally assumed to be 2–5 hb. Above the RSL, a
constant flux layer (CFL) generally exists, where the turbulent fluxes of heat, momentum,
and humidity can be considered nearly constant [14].
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Despite the considerable efforts made in the last decades, there are still many open
problems when applying MOST in an urban environment. For example, the expression for
the vertical profile of the mean wind velocity [15,16]:

u(z) =
(u∗

k

)[
ln
(

z− d0

z0

)
−ψm

( z
L

)]
(1)

could in principle be used only in the CFL. Here, the bar indicates the time average, z
is the altitude, k = 0.4 is the von Karman constant, u∗ =

√
τ0/ρ is the friction velocity,

z0 is the aerodynamic roughness length, d0 is the displacement height, L is the Obukhov
length, τ0 is the stress at the surface, and ρ is the air density. z0 and d0 are generally
estimated using the morphometric or the anemometric methods (e.g., [17]). ψm is the
similarity universal function, which depends on the atmospheric stability. It is equal to
zero in neutral conditions (ψ (0) = 0), i.e., when L tends to infinity. The Obukhov length
represents the height above the ground at which the production/consumption of turbulent
kinetic energy (TKE) due to buoyancy equals the TKE production due to shear [2]:

L = −
u∗3TvρCp

kgHs
(2)

and can be considered as a spatial scale of the flow in addition to z0 in non-neutral
conditions. Here, Tv is the potential temperature, g the acceleration due to the gravity, Cp
the specific heat at constant pressure, and Hs the sensible heat flux, viz.:

Hs = ρCpw′T′v (3)
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where w ′ T′v is the vertical component of the kinematic heat flux (w′ is the fluctuation
around the mean of the vertical wind velocity component and T′v is the fluctuating virtual
temperature).

The friction velocity, which represents the velocity scale for the CFL, is calculated from
the (turbulent) vertical flux of momentum, viz.:

u∗ =
[(

u′w′
)2

+
(

v′w′
)2

] 1
4

(4)

where u and v are the zonal (positive towards east) and meridional (positive towards north)
velocity components, respectively.

In addition to the mean velocity, MOST provides useful laws for the vertical profiles
of the velocity variances and TKE, a parameter involved in dispersion models.

The greatest difficulty in applying the MOST lies in the availability of the turbulent
fluxes of heat and momentum, by which the scaling variables (u∗ and L) are determined.
The MOST states that u∗ and L are referred to the CFL, whose identification, in the case
of urban canopies, is not straightforward [18]. Indeed, meteorological data are routinely
acquired by anemometers/thermometers installed in urban canyons or on rooftops, which
are not representative of the CFL (e.g., [19,20]). Many studies have shown how the turbulent
fluxes measured on terraces are affected by local airflow linked to the presence of the
buildings, which substantially changes both the average velocity and the turbulent fluxes
because of local disturbances [21–23]. In the case of regular arrays of cubic buildings
(an ideal condition), the airflow above the rooftop changes remarkably in space and
the measured data are influenced considerably by local flow distortion (see e.g., [24,25]).
In most cases, the meteorological instruments are mounted on masts 2–5 m high, on the
roof, where flow distortion is large and turbulence intensity can vary even of a factor of two
with the wind direction only due to local flow distortion (e.g., [26]). This is a long-standing
problem that makes the application of the MOST in urban environments rather problematic.

The present work started from the above considerations and aimed to analyze local
flow distortion and its effects on u∗ and L calculated from wind data collected by a
sonic anemometer installed on a 3.5 m mast located on a building rooftop. Two different
coordinate systems were considered for the computation of friction velocity—sensible
heat flux and Obukhov length. The first, hereinafter “normal” (nrm), coordinate system
is aligned with the geodetic reference frame, while the second, hereinafter “tilted” (tilt),
follows the flow streamlines and allows for consideration of flow distortion due to the
presence of obstacles (e.g., buildings).

The meteorological dataset used for the analysis was acquired in Rome during the
2016–2018 field campaign of the VIEPI project (Integrated Evaluation of Indoor Particulate
Exposure; [27]), which aimed to investigate the role played by micrometeorology and
indoor airflow characteristics in determining indoor particulate matter concentration.

The aim of the present paper was twofold: (i) to evaluate the applicability of existing
MOST formulations for vertical velocity standard deviation to the RSL above Rome and (ii)
to assess whether the scaling variables considered in this work are reasonable. Different
options for the scaling variables were tested. Particular attention was given to u∗ and L
calculated just above a building based on the two coordinate systems mentioned above.

The paper is organized as follows. In Section 2, the MOST formulations chosen for
comparison with our real-scale experimental data are shown. Additionally, our measuring
site is described. Section 2 also shows the data processing (i). to obtain the different tested
scaling variables and (ii). to compare our data to the existing MOST formulations. In
Section 3, the main results are presented. Specifically, the u∗ and L obtained from the
anemometer data in the two coordinate systems are shown and were compared, along with
the u∗ estimated by the ground-based remote sensing sonic detection and ranging (SODAR).
Finally, the existing MOST parameterizations for the standard deviation of vertical wind
velocity were compared with the experimental data. In particular, the effect of the tilted
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coordinate system on the turbulent fluxes was assessed to evaluate the applicability of the
different MOST parameterizations for our case study.

2. Materials and Methods
2.1. Parametrization of the Standard Deviation of Vertical Velocity

Several authors have tackled the application of MOST in cities and found formulations
suitable both for urban areas and complex terrain (see Table 1). In the present work, the
MOST parameterization for standard deviation of vertical wind velocity (σw) proposed
in the seven studies listed in Table 1 have been compared with those obtained by mea-
surements by SODAR and sonic anemometer placed above the terrace of the Physical
Department of Sapienza University of Rome (see [27] for details). All considered studies
were based on the functional equation (see, e.g., [28]):

σw

u∗
= a

(
1 + b

z
L

)p
(5)

which relates σw/u∗ to z/L and were valid irrespective of the stability condition. The
parameters a, b, and p changed with the case study (Table 2). It is worth noting that
in a similarity relationship, the parameters should not change with the case study. The
variability of a, b, and p is related, according to Dallman [19], to site characteristics. In the
literature, Equation (5) is referred to as a similarity relationship, in particular it is considered
as part of the MOST; in the present work the same terminology was, thus, adopted.

As mentioned earlier, in the RSL, the hypothesis on which the MOST is based is not
always verified. To overcome this limitation, some authors used the so-called local MOST,
which is an extension of the classical MOST ([29] (W10); [30] (AJ02)). In the local MOST,
velocity and length scales based on mechanical and heat turbulent fluxes determined at
each measuring height are employed. It is worth noting that in the CFL, the local MOST
does not differ from the classical one, as the fluxes do not vary with height by definition.

Table 1. Overview of the seven MOST parameterizations for standard deviation of vertical wind velocity above urban areas
or complex terrain considered in the present study.

Author Site hm [m] z0 [m] d0 [m] z [m] Layer of
Measuring

Wood (2010)
W10

urban area
(London) 8.8 ± 3.0 0.87 ± 0.48 4.3 ± 1.9 190.3 CFL or above

Al-Jiboori (2002)
AJ02

urban area
(Beijing) n.a. ~3.9 ~22 47, 140, 280 CFL, RSL,

above CFL

Quan (2009)
Q09

urban area
(Beijing) n.a. 1.75 40.12 47 UCL

Dallman (2013)
D13

suburban area
(Phoenix) 3.54 ÷ 13.13 0.04 ÷ 0.18 0.52 ÷ 4.33 ~15 CFL

Moraes (2005)
M05

rural site (rice
plantation in a

valley)
n.a. n.a. n.a. 10 CFL

Xu (1997)
X97Urb

urban area
(Nanjing) 8 0.63 n.a. 10, 20, 30, 40, 50 RSL, CFL

Xu (1997)
X97Rur

rural area
(Baguazhou) n.a. 0.035 n.a. 16, 40, 64, 88,

116, 164 CFL
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Table 2. Parameters a, b, and p of Equation (5) for the seven MOST parameterizations listed in
Table 1.

Authors Atmospheric
Stability a b p

W10
Unstable 1.31 −0.65 1/3

Stable 1.40 0.46 0.19

AJ02
Unstable 1.22 −1.05 1/3

Stable 1.22 1.05 1/3

Q09
Unstable 1.33 −1.27 1/3

Stable 1.42 0.54 1/3

D13
Unstable 0.98 −5.64 1/3

Stable 1.35 0.55 1/3

M05
Unstable 1.2 −5.3 1/3

Stable 1.2 4.3 1/3

X97Urb
Unstable 1.23 −2.30 1/3

Stable 1.23 2.80 1/3

X97Rur
Unstable 1.35 −3.10 1/3

Stable 1.35 1.30 1/3

The measuring point in W10 lay either within the CFL or above it; in AJ02 the three
measuring points lay within the RSL or the CFL or above it; the sole measuring point in
Q09 [31] [Quan] was placed within the UCL; the experimental setup used by X97urb/rur [32]
made it possible to investigate both the RSL and the CFL, and even heights above it.
Differently from the others, D13 [19] and M05 [33] used the classical MOST. In both these
studies only one measuring point was considered and it lay within the CFL.

It is worth noting that considerable differences among the formulations occurred—
Figure 2 shows σw/u∗ as a function of z/L modelled by means of Equation (5) and the
parameters a, b, and c listed in Table 2 at the reference height corresponding to zref/hb = 3.
It is evident how for the same values of z/L, high σw/u∗ were present for the M05 and
Xi97Urb formulations, while low values occurred for W10 for both turbulence classes.
In most of the cases σw/u∗ was strongly dependent on z/L, except for W10 in stable
conditions (z/L > 0).
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was been fixed, while 1/L ranged between −0.15 and 0.15.

2.2. Site Description and Experimental Setup

The present work was carried out in the framework of Activity 1 of the VIEPI project,
i.e., “Micrometeorological and Indoor Airflow Characterization by Field Experiments and
CFD Modeling” [27]. The measurement site was located on the rooftop of the “Fermi”
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building, belonging to the Physics Department of Sapienza University of Rome (41.902 N,
12.516 E), in a central area of Rome. The left panel of Figure 3 shows an aerial view of the
site, where the blue circle denotes the building of interest (an enlargement of the area is
depicted on the right panel).
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circle depicts the area of 500 m in radius. (Right): Enlargement of the region surrounding the “E. Fermi” building. In the
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interpretation, the wind sectors have been also depicted.

Figure 4 depicts the planar area fraction λP (i.e., the fraction of the planar area occupied
by buildings with respect to the total lot area) as a function of the wind direction. In particular,
the average value of λP in 45◦ sectors is shown, considering the circled area had a 1 km
diameter (red circle in Figure 3) centered over the “Fermi” building. This value was chosen
considering that the footprint referred to a representative height equal to 30 m [34,35], with
the aim of identifying the upstream area contributing to the measurements of the momentum
flux. A map of λP calculated considering the cells belonging to a uniform grid cell mesh of 50
× 50 m2 covering the area of interest is given in Supplementary Materials (Figure S1). The
value of λP averaged over all directions was 0.3. The highest values occurred for the south
and south-east directions because of the presence of the highly built San Lorenzo district,
while the lowest λP occurred for the east direction, which corresponded to the area covered
by the Verano cemetery (see Figure 3, left panel).
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With regard to the wind field typically observed in the area of interest, slope flows
and sea–land breeze circulations affect the city of Rome for large parts of the year, as shown
in [7,36–39]. Two prevalent wind directions can be detected during daytime and night-time,
i.e., south-west and north-east, respectively [27].

Measurements were carried out by means of a sonic anemometer/thermometer (Gill
Instruments Limited, Lymington, UK) and a three-axial, monostatic Doppler SODAR
located on the terrace of the “Fermi” building (Figure 3, right panel). The sonic anemometer
was mounted on a 3.5 m mast, i.e., at z/H = 1.15, where H = 24 m is the building height
and z is the height above the ground level.

The acoustic bursts of the SODAR (repetition rate 1 s) provided the vertical profiles
of wind velocity, wind direction, and standard deviation of the vertical component of the
velocity with a vertical resolution of about 5.7 m, ranging from z/H = 1.42 up to z/H = 6.38.
Owing to ambient noise, the maximum height was often below z/H = 4.25, while the range
gate closest to the terrace was discarded [40,41].

2.3. Data Processing

The measurement campaign was carried out from December 2017 to December 2019.
In the present work, data taken during April 2018 were analyzed, for a total amount of
about 1440 30 min averages.

The sonic anemometer measured the three wind components and the virtual tempera-
ture with a frequency of 32 Hz. The SODAR returned the three velocity components and the
standard deviation of the vertical velocity component in the height range 1.42 < z/H < 4.25.

In Table 3, the main variables of interest measured and calculated by the sonic
anemometer and the SODAR are listed at the different heights.

Table 3. Variables obtained by the sonic anemometer and SODAR data along with the corresponding
dimensionless measuring heights.

Instruments Variables Dimensionless
Measuring Height

Sonic anemometer

Meridional wind (U)

z/H = 1.15

Zonal wind (V)
Vertical wind (W)

Virtual temperature (Tv)
Standard deviation of vertical wind (σw)
Sensible heat turbulent flux in the normal

and tilted coordinate system (Hnrm
s and Htilt

s )
Friction velocity in the normal and tilted

coordinate system (unrm
∗ and utilt

∗ )
Obukhov length in the normal and tilted

coordinate system (Lnrm and Ltilt)
Wind direction
Tilt angle (ϕtilt)

SODAR

Meridional wind (U)

1.42 < z/H < 4.25
Zonal wind (V)

Vertical wind (W)
Standard deviation of vertical wind (σw)

The measuring timeslots when the wind direction varied more than 22.5◦ along the
vertical were discarded. Furthermore, friction velocity, Obukhov length, and sensible
heat flux (Hs) were calculated, considering the 30 min averages referred to sonic data
at z/H = 1.15. The Obukhov length, the sensible heat flux, and the friction velocity are
defined in Equations (2)–(4).

In the present work, L, u∗, and Hs were calculated for two coordinate systems: the first
refers to the geodetic reference system, while the second corresponds to that aligned with
the streamlines. In these two coordinate systems, u∗, Hs and L are expected to be different.
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The classification of Holtslag [42] was used to define the stability classes (Table 4), from
highly unstable (A) to strongly stable (H), passing through the neutral class (D, defined by
the narrow limit of |L| > 500). It is worth emphasizing the same event could belong to a
different stability class if calculated from one reference frame rather than the other.

Table 4. Classification of Holtslag in eight atmospheric stability classes.

Stability Class Obukhov Length Range

A −40 < L < 0
B −200 < L < −40
C −500 < L < −200
D |L| > 500
E 200 < L < 500
F 100 < L < 200
G 40 < L < 100
H 0 < L < 40

2.3.1. The Normal and Tilted Coordinate Systems

In the tilted coordinate system, the Utilt-axis is aligned with the mean wind velocity,
so that Vtilt-axis and Wtilt-axis components of wind velocity are zeros and the Wtilt-axis is
transversal to the mean flow. The tilt angle (ϕtilt) represents the inclination of the mean
flow with respect to the horizontal plane. For sake of brevity, the procedure followed for
the determination of ϕtilt, commonly called “double rotation”, is not reported here. Details
can be found in [43].

The rotation of the coordinate system is generally used to remove pseudo quantities
when the anemometer is not positioned vertically over a horizontal terrain [14,43,44].
Besides, the rotation of the coordinate system can be used to correct flow distortion caused
by measuring equipment, like towers on which anemometers are mounted [26,29]. Lastly,
the double rotation is often applied in case of slightly sloping terrain [45]. In this case,
the vertical velocity is not expected to be zero and vertical fluxes calculated in a normal
coordinate system depend on the terrain slope. Therefore, turbulent fluxes calculated in a
tilted coordinate system are more easily comparable to theoretical models (such as MOST)
and measurements over flat terrain.

The coordinate system rotation is not generally used when measurements are carried
out within the RSL [31,46], in that the mean vertical wind velocity is not expected to be
zero due to the presence of the buildings. Nevertheless, we applied the double rotation to
data taken within the RSL analogously to what is commonly used in case of sloping terrain.

We hypothesized that turbulent fluxes calculated using the streamline coordinate
system could approximate the turbulent fluxes in the CFL.

2.3.2. Estimation of Friction Velocity from SODAR Measurements

In addition to the friction velocities calculated from the sonic anemometer (unrm
∗ and

utilt
∗ ), three estimations of friction velocity were carried out using the SODAR data based

on the empirical relation c = u∞/u∗, where c is a constant and u∞ is the undisturbed wind
velocity. Since no information on u∞ was available from the measured velocity profiles, the
latter was estimated applying the profile method [47], originally designed to determine the
friction velocity from wind velocity profiles. In the present work, we fit with a logarithmic
function every 30 min averaged velocity profile measured by the SODAR in the height
range 1.5 < z/H < 3.5. The value of the resulting logarithmic function at z/H = 8 has been
assumed as an estimation of the undisturbed velocity for that profile, in that it can be
considered well above the building rooftop. It is worth noting that this method is valid
irrespective of the stability condition.

Then, three values of the ratio c = u∗/u∞ based on laboratory experiments were
considered, namely, c = 0.037 by [48], c = 0.047 by [49], and c = 0.052 by [25]. The cor-
responding friction velocities were u∗c=0.037, u∗c=0.047, and u∗c=0.052, respectively. Since
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the velocity profiles were classified based on the eight stability categories by Holtslag [40],
eight values of u∗ for each of the three estimated friction velocities were calculated. In this
case, the classification of Holtslag was based on the Obukhov length, Lnrm, calculated
considering the normal coordinate system.

2.3.3. Data Processing for Comparison with Existing MOST Parameterizations

In order to evaluate the applicability of MOST to the RSL above Rome, the mea-
sured σw/u∗ vertical profiles were compared with those modelled by means of the MOST
formulations listed in Table 1.

For each of the 1440 averaged data points available for each height, the stability class
was determined considering both Lnrm and Ltilt. Then, the mean values of unrm

∗ , Lnrm, utilt
∗ ,

Ltilt, and σw were obtained by averaging them for each stability class. In addition, the three
estimated friction velocities for each stability class calculated using the profile method were
considered. Therefore, five measured ratios were obtained, i.e., σw/unrm

∗ , σw/u∗c=0.037,
σw/u∗c=0.047, σw/u∗c=0.052 and σw/utilt

∗ . In the last case, the classification by Holtslag was
based on Ltilt. These experimental ratios were compared with the modelled ones, obtained
using Equation (5), and the parameters listed in Table 2.

It is worth noting that most of the currently used σw/u∗ formulations consider local
u∗ and L as velocity and length scales. In contrast, in the present work, L refers to one
single height located at z = 1.15H (i.e., within the RSL), while u∗ was either measured
at z/H = 1.15 by the sonic anemometer or estimated by SODAR data. This procedure is
strictly valid only if the measurement point of u∗ and L and the σw profiles are within the
CFL. However, we aimed to assess the applicability of the available friction velocities (unrm

∗ ,
utilt
∗ , u∗c=0.037, u∗c=0.047, and u∗c=0.052) and Obukhov lengths (Lnrm and Ltilt) as velocity

and length scales. Using the velocity and length scales proposed in this work would make
it possible to overcome the difficulties in making measurements of standard deviation and
turbulent fluxes at several measuring point or at high altitudes as in the case of the CFL.

3. Results and Discussion
3.1. Sonic Anemometer Measurements
3.1.1. Physical Meaning of the Tilted Coordinate System

Figure 5a shows the tilt angle, ϕtilt, as a function of the wind direction. The red points
refer to all values, while the red line represents the 20-value moving average of ϕtilt. In
the secondary axis, the distance between the anemometer and the building edge where
the wind impinges for the 16 wind sectors (see Figure 3) is shown. Higher ϕtilt occurred
when the edge-anemometer distance (dedge) was shorter, while ϕtilt was smaller for larger
dedge values. This was probably due to the interaction of the wind with the building on
which the anemometer was installed. The wind impinging the building tends to flow
upward, while over the terrace it gradually returns parallel to the surface (see, e.g., [50] for
a comprehensive review on the flow topology in correspondence of groups of buildings).
Consequently, if the anemometer is close to the edge, ϕtilt can be greater. In contrast, if
the anemometer is far from the edge, ϕtilt assumes lower values and should tend to zero.
Figure 5b shows how the wind returned to almost horizontal after a short distance. In fact,
ϕtilt increased considerably for dedge values smaller than 5 m, while it remained almost
constant for larger dedge values. A similar result was found by [26], where the limit distance
was 3 m.
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3.1.2. Comparison between Turbulent Fluxes in the Normal and Tilted Coordinate Systems
Friction Velocity

As mentioned in Section 2.3, two estimates of the friction velocity were obtained:
the first one using the normal coordinate system, unrm

∗ , and the second one using the
tilted coordinate system, utilt

∗ . The daily cycle of unrm
∗ and utilt

∗ , computed based on data
from April 2018, are shown in Figure 6a. Larger values occurred during daytime, in
correspondence to the sea breeze coming from south–southwest, while the minimum
took place during nighttime. Such a trend is similar to those observed in previous works,
e.g., [51,52]. utilt

∗ behaved similarly to unrm
∗ , but it showed higher values, particularly

during daytime.
Figure 6b shows unrm

∗ and utilt
∗ averaged over each stability class. Overall, utilt

∗ was
higher than unrm

∗ . The values of u∗ in neutral conditions showed the higher values as a
consequence of the stronger winds that characterized the neutral case, while they decreased
in the stable and unstable classes. Since very stable conditions occurred rarely, very little
data were available in the more stable classes. This makes the reliability of unrm

∗ and utilt
∗

for classes G and H quite poor.
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Heat Flux

In Figure 7a, the daily cycles of the sensible heat fluxes Hnrm
s and Htilt

s are shown.
Both of them were computed from velocity and virtual temperature collected by the sonic
anemometer. According to what has usually been found in urban areas [53], their maximum
occurs in the early afternoon, while they are generally positive (i.e., upward) during both
daytime and nighttime. The main difference between Hnrm

s and Htilt
s regards the higher

Htilt
s observed in the daytime (nearly 40% in the time interval 12–16).

As shown in Figures 6a and 7a, both momentum and sensible heat fluxes are higher
when the tilted coordinate system is used. This is probably due to pseudo fluctuations of
velocity along the vertical in the normal coordinate system, as elucidated in Section 3.1.1.
When the wind blows horizontally, fluctuations of the vertical component of velocity
correspond to fluctuations in the direction transversal to the flow. Instead, when the wind
is tilted with respect to the horizontal plane, fluctuations in the two directions transversal
and longitudinal to the flow are mixed. This gives rise to fluctuations of the vertical
velocity component. No pseudo fluctuations exist when the tilted coordinate system is
used. Nightime Htilt

s ~Hnrm
s because the heat flux is around zero in these hours.

The mean values of Hnrm
s and Htilt

s for each stability class are depicted in Figure 7b. As
expected, positive heat fluxes occurred for unstable conditions, while they were negative
for stable conditions; neutral conditions were characterized by values close to zero.
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Hourly averaged friction velocity and sensible heat flux along with the percentage
difference between the quantities in the tilted and normal coordinate systems are shown in
Table S1 in the Supplementary Materials.

Figure 7a shows a negative heat flux in the period 9:00–11:00. Such an anomalous
trend is ascribable to strong winds and large negative heat fluxes that occurred on April
9th. This day has been included in the monthly averages shown in Figure 7a; in Figure S2
in the Supplementary Material, the mean daily trends of heat fluxes and friction velocity
calculated excluding April 9th are reported.

Obukhov Length

In Figure 8, the frequency of occurrence (F%) of the stability classes based on the
classification reported in Table 4 is shown. The Obukhov length has been calculated using
Equation (2). Overall, most of the time was characterized by unstable conditions (classes A
and B), while only very little data corresponding to the stable classes were observed.

Since both friction velocity and sensible heat flux depend on the coordinate system on
which they are calculated, the statistics in each stability class are different when either the
normal or the tilted coordinate system is used. The frequency of occurrence of classes from
B to E increases if the classification is based on Ltilt.
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As expected, unstable conditions occurred more frequently during daytime, while
stable conditions characterized the nocturnal period. Given the absence of strong winds
during the investigated period, neutral conditions were generally present during the two
day–night transitions (sunrise and sunset). However, unstable conditions always prevailed,
even at night. This is a consequence of the positive sign (upward) of the sensible heat
flux measured during the nighttime. This phenomenon, typically observed in urban
areas [29,51], can be ascribed to the continuous release in the afternoon and at night of the
heat absorbed daytime by the construction materials [54,55].

3.1.3. Estimation of Friction Velocity from SODAR Measurements

As mentioned in Section 2.3, three friction velocity estimates were conducted using the
SODAR data in addition to those calculated using sonic anemometer data (unrm

∗ and utilt
∗ ).

The vertical profiles of the wind velocity (30–min average) were fitted with a logarithmic
function. For each of these, an undisturbed wind velocity (u∞) was calculated by the
velocity value modelled at z/H = 8, considering the log law (see Section 1). Since the
performances of the logarithmic profiles were rather high (Table S2), the estimation of the
asymptotic wind speeds can be considered quite reliable.

Based on the three estimations of c = u∗/u∞ found in the literature (c = 0.037, 0.047,
0.052, see Section 2.3.2), three different friction velocities were obtained, viz.: u∗c=0.037,
u∗c=0.047 and u∗c=0.052. Therefore, eight averaged values of u∗c=0.037, u∗c=0.047, and u∗c=0.052,
one per stability class, were calculated. The results, including the two estimations carried
out by using the sonic anemometer as described in Section 3.1.2, are shown in Figure 9.
These three friction velocities showed the same trend followed by unrm

∗ and utilt
∗ , i.e., the

highest values occurred in neutral conditions, while they decreased for the stable or un-
stable classes. This suggests that the estimation method works quite well. However, the
method is strictly valid only for the neutral case, in that the three u∗/u∞ considered in the
present study refer to neutral conditions.

Except for classes G and H, where the results must be seen with circumspection be-
cause of the small amount of data used to build the statistics, u∗c=0.037 was always the
smallest. The greatest difference between the estimated and the measured friction velocities
occurred for class B. In particular, the percentage difference between the measured (aver-
age of unrm

∗ and utilt
∗ ) and the estimated (average of u∗c=0.037, u∗c=0.047, u∗c=0.052) friction

velocities was 33% for class B and 29% for class H, while it was below 11% elsewhere.
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3.1.4. Applicability of MOST in the Roughness Sublayer above Rome

The measured σw/u∗ vertical profiles were compared with the modelled ones for
each stability class. As described in Section 2, the non-dimensional quantities σw/unrm

∗ ,
σw/utilt

∗ , σw/u∗c=0.037; σw/u∗c=0.047, and σw/u∗c=0.052 as a function of z/Lnrm (or z/Ltilt

when the tilted coordinate system is considered) have been obtained. The modelled σw/u∗
at various heights were calculated for each stability class using Equation (5) and Lnrm (or
Ltilt). Here, seven MOST formulations were tested in accordance with Table 1. It is worth
noting that only one value of friction velocity and Obukhov length was assumed for the
whole σw vertical profile.

For each stability class, the relative difference (E%) was computed as follows:

E%
(

Ref, uj
∗; zi/H

)
=

∣∣∣∣σw

uj
∗

(
Exp; zi

H
)
− σw

uj
∗

(
Ref; zi

H
)∣∣∣∣

σw

uj
∗

(
Exp; zi

H
) ·100 (6)

where Ref and Exp refer to the modelled and experimental σw/u∗ profiles, respectively.
E% was calculated for each dimensionless height (zi/H) and for the five friction velocity
formulations (uj

∗).
By averaging the relative difference at various heights, the mean relative difference

for each stability class was found:

E%
(

Ref, uj
∗
)
=

1
Nz

Nz

∑
i=1

E%
(

Ref, uj
∗; zi/H

)
(7)

while averaging the relative difference for all the stability classes, the overall relative
difference was obtained.

3.1.5. Applicability of MOST Considering Each Stability Class

The comparison among all E% calculated considering our experimental data and the
MOST formulations listed in Table 1 is shown in Figure 10. Note that results referring to
the more stable classes (G and H) are not presented due to the lack of data.
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The relative difference for each tested formulation varied with the stability class.
Besides, the performances changed considering the different friction velocities.

Overall, W10 showed the best performances for neutral (D) and slightly stable (E,
F) classes. AJ02 and Q09 showed low relative differences for the slightly stable classes,
considering all the friction velocities tested. In general, X97Rur, X97Urb, D13, and M05
showed the best performances for slightly stable and very unstable classes (A), while they
returned higher relative differences for unstable, slightly unstable, and neutral classes.

Considering the very unstable class (A), u∗c=0.052 gave the best results (except for M05
and X97Rur). Since u∗c=0.052 showed the highest value, the other friction velocities probably
underestimated the real one. M05 and X97Rur showed the best performances when unrm

∗ and
u∗c=0.047 were considered. From unstable (B) to neutral (D) conditions, utilt

∗ seemed to give
the lowest difference. This means that the friction velocities estimated using the SODAR
measurements for class B were too small. For class C, the results given by utilt

∗ and u∗c=0.052
were very similar, as the two quantities are comparable. utilt

∗ returned very low relative
differences in class D for W10, Q09, AJ02, and X97Rur formulations. Looking at class E, the
best results corresponded to u∗c=0.052, followed by utilt

∗ . For class F, the best performances
were obtained with u∗c=0.052, u∗c=0.047, or unrm

∗ , depending on the formulation.

3.1.6. Overall Applicability of MOST

Figure 11 shows the overall relative difference for each tested MOST formulation. This
assessment is useful to understand which are the best MOST formulations and the scaling
variables that work better, considering all the stability conditions.
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Overall, utilt
∗ gave the smallest relative difference for all the formulations tested here.

The worst results were given by u∗c=0.037. The overall relative difference given by utilt
∗

considering all the formulations was below 24%. However, as shown in Section 3.1.5, a
certain degree of variability exists among the stability classes. The maximum and minimum
relative difference obtained with utilt

∗ were 42.7% (very unstable, formulation W10) and
1.4% (unstable, formulation X97Rur).

The lowest overall relative difference was obtained when using utilt
∗ as velocity scale,

Ltilt as length scale, and the formulation X97Rur (8.4%). Very good performances were
obtained when using utilt

∗ , Ltilt, and M05 too (9.6%). The comparison was good also with the
other formulations. Among the existing formulations tested in this work, terrain conditions
most similar to Rome were obtained by AJ02. The overall relative difference was 23.4%
when considering utilt

∗ (and Ltilt) and the formulation AJ02. Particularly good results were
obtained with this formulation and this velocity and length scale in neutral and slightly
stable stability conditions.

The results obtained in this work suggest that utilt
∗ and Ltilt, measured at a sole height

within the RSL (z/H = 1.15), can be used as velocity and length scales for the whole vertical
profile. This makes it possible to overcome the difficulties in taking measurements of
turbulent fluxes either at several heights or at an altitude high enough to be in the constant
flux layer.
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4. Conclusions

In the present work, wind and temperature data, collected by a sonic anemometer and
a three-axial monostatic Doppler SODAR in the framework of the VIEPI project during
April 2018, have been used to test the applicability of MOST parametrizations above Rome.
Seven parametrizations of the ratio σw/u∗ as a function of z/L taken from the literature
were considered. Furthermore, two coordinate systems, named normal and tilted, have
been tested. The normal coordinate system is aligned with the geographical one, while
the tilted follows the streamlines of the mean flow. For both coordinate systems, the main
turbulence scaling parameters, i.e., L, u∗, Hs, and the stability class, were computed. In
particular, Ltilt and Lnrm were tested as length scales, while unrm

∗ , utilt
∗ ,u∗c=0.037, u∗c=0.047,

and u∗c=0.052 were tested as velocity scales. All the previous quantities followed the
expected trends with time of day and stability conditions.

One of the most relevant result suggests that it is possible to assume a unique value
of u∗ and L as representative of the entire σw vertical profile, albeit the investigated point
was below the CFL. This result is important since, in the literature, the MOST has typically
been used above urban areas either in the CFL (classical MOST) or in the RSL and in the
ML, using local u∗ and L as scaling quantities (local MOST). However, the application of
MOST according with literature could be very complex in realistic cases as they require the
measurement of turbulent fluxes at several heights and the installation of the instrument
within the CFL. The new formulation proposed here seems to overcome these problems,
allowing the application even outside the CFL.

Regarding the results of the two coordinate systems, both thermal and mechanical
fluxes in the tilted coordinate system showed higher values than in the normal system. The
friction velocities estimated by the SODAR data, u∗c=0.037, u∗c=0.047 and u∗c=0.052, followed
the same trend, varying both the stability conditions and the measured friction velocities
(utilt
∗ and unrm

∗ ). This suggests that the proposed method to reconstruct the values of u∗ can
be applied successfully, fixing a priori the correct u∗/u∞ ratio.

Finally, the applicability of the MOST in urban area has been tested by comparing, for
each stability class, the measured and modelled σw/u∗ ratios as a function of z/L. The
comparison has been carried out for seven theoretic MOST parametrizations, setting the
various friction velocities and Obukhov lengths as velocity and length scales, respectively.
The best performances were obtained when utilt

∗ and Ltilt were used as velocity and length
scales, along with the formulation by X97Rur. Considering all the stability classes, the
relative difference was 8.4%. However, the overall relative difference given by utilt

∗ was
lower than 24%, considering all the investigated formulations. This suggests that the
existing MOST formulations can be considered valid for our case study, if utilt

∗ and Ltilt are
used as velocity and length scales.

This study demonstrated that using utilt
∗ and Ltilt as scaling parameters, it would be

possible to overcome the difficulties in carrying out measurements of turbulent fluxes at
different quotes or at an altitude high enough to be in the constant flux layer. The proposed
methodology is new and represents a first step which, requires further testing both in other
sites and at the laboratory scale, given the complexity and the great variability of the flow
pattern occurring in urban areas.

Finally, the present results can be considered as the starting point for further develop-
ment of a formulation allowing the extension of the MOST below the CFL and, therefore,
to estimate the profiles of meteorological variables also within the urban canyons.

Furthermore, in relationship with the relevance of micro-meteorology for the indoor
exposure, a hypothetical calculation of the micro-meteorological profiles inside an urban
canyon can be useful to evaluate the pressure field in proximity to the indoor environments
of the investigated building, and to better evaluate the dispersion of pollutants emitted by
vehicular traffic and domestic heating.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su13158426/s1, Figure S1: Planar area fraction, 50 m × 50 m grid, Figure S2: Daily trend of

https://www.mdpi.com/article/10.3390/su13158426/s1
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turbulent sensible heat fluxes and friction velocity. Each point is the monthly average of heat fluxes
or friction velocity at the time of day. April 9th has been excluded as an extreme event occurred,
Table S1: Hourly averaged values of friction velocity and sensible heat flux along with the percentage
difference between the quantities in the tilted and normal coordinate systems, Table S2: Parameters
of the logarithmic fit of the wind velocity vertical profile per each atmospheric stability class. The
logarithmic function used is the following: u = α ln

( z
H
)
+ β (where z is the height a.g.l., H is the

building height and u is the wind velocity).
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