The Influence of Potential Infection on the Relationship between Temperature and Confirmed Cases of COVID-19 in China
Abstract
:1. Introduction
2. Nonparametric Density Estimation
2.1. Symmetric and Asymmetric Kernel Density Estimators
- The gamma kernel estimator is non-negative and free of boundary bias;
- The shape of the gamma kernel function changes with the position of sample points, and then the smoothness of each estimation point is adjusted naturally.
2.2. Selection of Bandwidth
2.3. Semiparametric Multivariate Density Estimation
- (1)
- with is the sample Kendall’s tau.
- (2)
- The distribution function of and are estimated by the empirical distribution.
- (3)
- , adopt (1) (2) kernel estimation method.
3. Empirical Findings
3.1. Density Estimation of Cumulative Confirmed Cases
3.2. Relationship of Wuhan’s Mobile Population and Cumulative Confirmed Cases
3.3. Preliminary Relationship of Temperature and Cumulative Confirmed Cases Based on Multivariate Density
3.4. Relationship of Temperature and Cumulative Confirmed Cases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Batool, M.; Ghulam, H.; Hayat, M.A.; Naeem, M.Z.; Ejaz, A.; Imran, Z.A.; Spulbar, C.; Birau, R.; Gorun, T.H. How COVID-19 has shaken the sharing economy? An analysis using Google trends data. Econ. Res. Ekon. Istraživanja 2020, 34, 1–13. [Google Scholar] [CrossRef]
- López-Cabarcos, M.Á.; Ribeiro-Soriano, D.; Piñeiro-Chousa, J. All that glitters is not gold. The rise of gaming in the COVID-19 pandemic. J. Innov. Knowl. 2020, 5, 289–296. [Google Scholar] [CrossRef]
- Xie, X.; Zang, Z.; Ponzoa, J.M. The information impact of network media, the psychological reaction to the COVID-19 pandemic, and online knowledge acquisition: Evidence from Chinese college students. J. Innov. Knowl. 2020, 5, 297–305. [Google Scholar] [CrossRef]
- Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, 368, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Cornell University; INSEAD; WIPO. Global Innovation Index 2020. Available online: https://www.wipo.int/global_innovation_index/en/2020/ (accessed on 10 February 2020).
- Saunila, M. Innovation capability in SMEs: A systematic review of the literature. J. Innov. Knowl. 2020, 5, 260–265. [Google Scholar] [CrossRef]
- Ryan, J.C.; Daly, T.M. Barriers to innovation and knowledge generation: The challenges of conducting business and social research in an emerging country context. J. Innov. Knowl. 2019, 4, 47–54. [Google Scholar] [CrossRef]
- Pirouz, B.; Golmohammadi, A.; Masouleh, H.S.; Violini, G.; Pirouz, B. Relationship be-tween Average Daily Temperature and Average Cumulative Daily Rate of Confirmed Cases of COVID-19. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Ge, Q.; Li, S.; Xiong, M. Artificial Intelligence Forecasting of Covid-19 in China. IJEE 2020, 6, 71–94. [Google Scholar] [CrossRef]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Bannister-Tyrrell, M.; Meyer, A.; Faverjon, C.; Cameron, A. Preliminary evidence that higher temperatures are associated with lower incidence of COVID-19, for cases reported global-ly up to 29th February 2020. medRxiv 2020. [Google Scholar] [CrossRef]
- Mofijur, M.; Fattah, I.R.; Islam, A.S.; Uddin, M.; Rahman, S.A.; Chowdhury, M.; Alam, A.; Uddin, A. Relationship between Weather Variables and New Daily COVID-19 Cases in Dhaka, Bangladesh. Sustainability 2020, 12, 8319. [Google Scholar] [CrossRef]
- Prata, D.N.; Rodrigues, W.; Bermejo, P.H. Temperature significantly changes COVID-19 transmission in (sub)tropical cities of Brazil. Sci. Total Environ. 2020, 729, 138862. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, Y. Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci. Total Environ. 2020, 724, 138201. [Google Scholar] [CrossRef]
- Alanazi, F.A. The spread of covid-19 at hot-temperature places with different curfew situa-tions using copula models. arXiv 2021, arXiv:2102.10265. [Google Scholar]
- Xu, B.; Lin, W.; Taqi, S.A. The impact of wind and non-wind factors on PM2.5 levels. Technol. Forecast. Soc. Chang. 2020, 154, 119960. [Google Scholar] [CrossRef]
- Zhang, J.L.; Liu, F. The Effects of Weather on Human Health. In Proceedings of the 11th National Conference on Atmospheric Environment, Jinan, China, 10 January 2004; pp. 471–477. [Google Scholar]
- Fan, Y.; Hou, L.; Yan, K.X. On the density estimation of air pollution in Beijing. Econ. Lett. 2018, 163, 110–113. [Google Scholar] [CrossRef]
- Shi, P.; Dong, Y.; Yan, H.; Zhao, C.; Li, X.; Liu, W.; He, M.; Tang, S.; Xi, S. Impact of temperature on the dynamics of the COVID-19 outbreak in China. Sci. Total Environ. 2020, 728, 138890. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Zhang, Y.; Qiu, J.; Li, J.; Yan, N.; Li, N.; Zhang, J.; Tian, D.; Sha, X.; et al. Could the ambient higher temperature decrease the transmissibility of COVID-19 in China? Environ. Res. 2021, 193, 110576. [Google Scholar] [CrossRef]
- Li, Q.; Racine, J.S. Nonparametric Econometrics: Theory and Practice, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Peleckien, V.; Peleckis, K.; Dudzeviiūt, G.; Peleckis, K.K. The relationship between insur-ance and economic growth: Evidence from the European Union countries. Ekon. Istraživanja Econ. Res. 2019, 32, 1138–1151. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Xu, W.; Lin, Z.; Chen, R. Determine OWA operator weights using kernel density estimation. Econ. Res. Ekon. Istraživanja 2020, 33, 1441–1464. [Google Scholar] [CrossRef]
- Chen, S.X. Probability Density Function Estimation Using Gamma Kernels. Ann. Inst. Stat. Math. 2000, 52, 471–480. [Google Scholar] [CrossRef]
- Malec, P.; Schienle, M. Nonparametric kernel density estimation near the boundary. Comput. Stat. Data Anal. 2014, 72, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Bouezmarni, T.; Rombouts, J. Semiparametric multivariate density estimation for positive data using copulas. Comput. Stat. Data Anal. 2009, 53, 2040–2054. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, M.; Sriboonchitta, S. Examining the Interdependence between the Exchange Rates of China and ASEAN Countries: A Canonical Vine Copula Approach. Sustainability 2019, 11, 5487. [Google Scholar] [CrossRef] [Green Version]
- Gródek-Szostak, Z.; Malik, G.; Kajrunajtys, D.; Szeląg-Sikora, A.; Sikora, J.; Kuboń, M.; Niemiec, M.; Kapusta-Duch, J. Modeling the Dependency between Extreme Prices of Selected Agricultural Products on the Derivatives Market Using the Linkage Function. Sustainability 2019, 11, 4144. [Google Scholar] [CrossRef] [Green Version]
- Szetela, B.; Mentel, G.; Brożyna, J. Modelling European sovereign default probabilities with copulas. Ekon. Istraživanja Econ. Res. 2019, 32, 1716–1726. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y. Dynamics in the co-movement of economic growth and stock return: Comparison between the United States and China. Ekon. Istraživanja Econ. Res. 2019, 32, 1965–1976. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S. A note on the performance of the gamma kernel estimators at the boundary. Stat. Probab. Lett. 2010, 80, 548–557. [Google Scholar] [CrossRef]
- Fan, C.; Liu, L.; Guo, W.; Yang, A.; Ye, C.; Jilili, M.; Ren, M.; Xu, P.; Long, H.; Wang, Y. Prediction of Epidemic Spread of the 2019 Novel Coronavirus Driven by Spring Festival Transportation in China: A Population-Based Study. Int. J. Environ. Res. Public Health 2020, 17, 1679. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; He, Q. The Influence of Potential Infection on the Relationship between Temperature and Confirmed Cases of COVID-19 in China. Sustainability 2021, 13, 8504. https://doi.org/10.3390/su13158504
Lin W, He Q. The Influence of Potential Infection on the Relationship between Temperature and Confirmed Cases of COVID-19 in China. Sustainability. 2021; 13(15):8504. https://doi.org/10.3390/su13158504
Chicago/Turabian StyleLin, Weiran, and Qiuqin He. 2021. "The Influence of Potential Infection on the Relationship between Temperature and Confirmed Cases of COVID-19 in China" Sustainability 13, no. 15: 8504. https://doi.org/10.3390/su13158504
APA StyleLin, W., & He, Q. (2021). The Influence of Potential Infection on the Relationship between Temperature and Confirmed Cases of COVID-19 in China. Sustainability, 13(15), 8504. https://doi.org/10.3390/su13158504