The Potential of Stormwater Management in Addressing the Urban Heat Island Effect: An Economic Valuation
Abstract
:1. Introduction
2. UHI and Valuation
3. Materials and Methods
3.1. Study Site
3.2. Climate Data Analysis
3.3. Economic Valuation
3.3.1. Reduced Heat-Related Morbidity
3.3.2. Reduced Heat-Related Mortality
3.3.3. Ecosystem Service Valuation
3.4. Cost–Benefit Model
3.5. Sensitivity Analysis
4. Results
4.1. Economic Valuation
4.2. Cost–Benefit Analysis
4.3. Sensitivity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Grant, J.; Gallet, D. The Value of Green Infrastructure a Guide to Recognizing Its Economic, Environmental and Social Benefits; Center for Neighborhood Technology: Chicago, IL, USA, 2010; ISBN 1938-6478. [Google Scholar]
- Herath, H.M.P.I.K.; Halwatura, R.U.; Jayasinghe, G.Y. Modeling a Tropical Urban Context with Green Walls and Green Roofs as an Urban Heat Island Adaptation Strategy. Procedia Eng. 2018, 212, 691–698. [Google Scholar] [CrossRef]
- Santamouris, M.; Haddad, S.; Saliari, M.; Vasilakopoulou, K.; Synnefa, A.; Paolini, R.; Ulpiani, G.; Garshasbi, S.; Fiorito, F. On the energy impact of urban heat island in Sydney: Climate and energy potential of mitigation technologies. Energy Build. 2018, 166, 154–164. [Google Scholar] [CrossRef]
- Buchin, O.; Hoelscher, M.-T.T.; Meier, F.; Nehls, T.; Ziegler, F. Evaluation of the health-risk reduction potential of countermeasures to urban heat islands. Energy Build. 2016, 114, 27–37. [Google Scholar] [CrossRef]
- Dierkes, C.; Lucke, T.; Helmreich, B. General Technical Approvals for Decentralised Sustainable Urban Drainage Systems (SUDS)—The Current Situation in Germany. Sustainability 2015, 7, 3031–3051. [Google Scholar] [CrossRef] [Green Version]
- Wicke, D.; Matzinger, A.; Rouault, P. Relevanz Organischer Spurenstoffe im Regenwasserabfluss Berlins; Kompetenzzentrum Wassetr: Berlin, Germany, 2015. [Google Scholar]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Riechel, M.; Matzinger, A.; Pallasch, M.; Joswig, K.; Pawlowsky-Reusing, E.; Hinkelmann, R.; Rouault, P. Sustainable urban drainage systems in established city developments: Modelling the potential for CSO reduction and river impact mitigation. J. Environ. Manag. 2020, 274, 111207. [Google Scholar] [CrossRef]
- Johnson, D.; Geisendorf, S. Are Neighborhood-level SUDS Worth it? An Assessment of the Economic Value of Sustainable Urban Drainage System Scenarios Using Cost-Benefit Analyses. Ecol. Econ. 2019, 158, 194–205. [Google Scholar] [CrossRef]
- Hansen, R.; Pauleit, S. From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for urban areas. Ambio 2014, 43, 516–519. [Google Scholar] [CrossRef] [Green Version]
- Lähde, E.; Khadka, A.; Tahvonen, O.; Kokkonen, T. Can we really have it all?-Designing multifunctionality with sustainable urban drainage system elements. Sustainability 2019, 11, 1854. [Google Scholar] [CrossRef] [Green Version]
- Gordon, B.L.; Quesnel, K.J.; Abs, R.; Ajami, N.K. A case-study based framework for assessing the multi-sector performance of green infrastructure. J. Environ. Manag. 2018, 223, 371–384. [Google Scholar] [CrossRef]
- Caplan, J.S.; Galanti, R.C.; Olshevski, S.; Eisenman, S.W. Water relations of street trees in green infrastructure tree trench systems. Urban For. Urban Green. 2019, 41, 170–178. [Google Scholar] [CrossRef]
- Saaroni, H.; Amorim, J.H.; Hiemstra, J.A.; Pearlmutter, D. Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Clim. 2018, 24, 94–110. [Google Scholar] [CrossRef]
- Bodnaruk, E.W.; Kroll, C.N.; Yang, Y.; Hirabayashi, S.; Nowak, D.J.; Endreny, T.A. Where to plant urban trees? A spatially explicit methodology to explore ecosystem service tradeoffs. Landsc. Urban Plan. 2017, 157, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Larondelle, N.; Lauf, S. Balancing demand and supply of multiple urban ecosystem services on different spatial scales. Ecosyst. Serv. 2016, 22, 18–31. [Google Scholar] [CrossRef]
- Zölch, T.; Maderspacher, J.; Wamsler, C.; Pauleit, S. Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban For. Urban Green. 2016, 20, 305–316. [Google Scholar] [CrossRef]
- Carter, T.; Keeler, A. Life-cycle cost-benefit analysis of extensive vegetated roof systems. J. Environ. Manag. 2008, 87, 350–363. [Google Scholar] [CrossRef]
- Joksimovic, D.; Alam, Z. Cost efficiency of Low Impact Development (LID) stormwater management practices. Procedia Eng. 2014, 89, 734–741. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Chen, W.; Feng, Q.; Peng, C.; Kang, P. Cost-benefit analysis of green infrastructures on community stormwater reduction and utilization: A case of Beijing, China. Environ. Manag. 2016, 58, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Perini, K.; Rosasco, P. Cost-benefit analysis for green façades and living wall systems. Build. Environ. 2013, 70, 110–121. [Google Scholar] [CrossRef]
- Van Raalte, L.; Nolan, M.; Thakur, P.; Xue, S.; Parker, N. Economic Assessment of the Urban Heat Island Effect; AECOM Australia Pty Ltd.: Melbourne, Australian, 2012. [Google Scholar]
- Venkataramanan, V.; Packman, A.I.; Peters, D.R.; Lopez, D.; Mccuskey, D.J.; Mcdonald, R.I.; Miller, W.M.; Young, S.L. A systematic review of the human health and social well-being outcomes of green infrastructure for stormwater and flood management. J. Environ. Manag. 2019, 246, 868–880. [Google Scholar] [CrossRef] [PubMed]
- Hübler, M.; Klepper, G.; Peterson, S. Costs of climate change. The effects of rising temperatures on health and productivity in Germany. Ecol. Econ. 2008, 68, 381–393. [Google Scholar] [CrossRef]
- Yu, S.; Xia, J.; Yan, Z.; Zhang, A.; Xia, Y.; Guan, D.; Han, J.; Wang, J.; Chen, L.; Liu, Y. Loss of work productivity in a warming world: Differences between developed and developing countries. J. Clean. Prod. 2019, 208, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Koppe, C.; Jendritzky, G. Die Auswirkungen von thermischen Belastungen auf die Mortalität. In Warnsignale Klima: Gesundheitsrisiken. Gefahren für Pflanzen, Tiere und Menschen; Lozan, J., Graßl, H., Jendritzky, G., Karbe, L., Reise, K., Eds.; Universität Hamburg, Institut f. Hydrobiologie, c/o Dr. J. Lozán: Hamburg, Germany, 2014. [Google Scholar]
- Sahnoune, S.; Benhassine, N. Quantifying the Impact of Green-Roofs on Urban Heat Island Mitigation. Int. J. Environ. Sci. Dev. 2017, 8, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Scherer, D.; Fehrenbach, U.; Lakes, T.; Lauf, S.; Meier, F.; Schuster, C. Quantification of heat-Stress related mortality hazard, vulnerability and risk in Berlin, Germany. DIE ERDE J. Geogr. Soc. Berlin 2013, 144, 238–259. [Google Scholar] [CrossRef]
- Hoelscher, M.-T.; Nehls, T.; Jänicke, B.; Wessolek, G. Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy Build. 2016, 114, 283–290. [Google Scholar] [CrossRef]
- Schubert, S.; Grossman-Clarke, S. The influence of green areas and roof albedos on air temperatures during extreme heat events in Berlin, Germany. Meteorol. Z. 2013, 22, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Von Tils, R. Effect of trees and greening of buildings on the indoor heating and cooling load—Microscale numerical experiment. J. Heat Isl. Inst. Int. 2017, 12, 35–39. [Google Scholar]
- Simperler, L.; Ertl, T.; Matzinger, A. Spatial Compatibility of Implementing Nature-Based Solutions for Reducing Urban Heat Islands and Stormwater Pollution. Sustainability 2020, 12, 5967. [Google Scholar] [CrossRef]
- Meyerhoff, J.; Dehnhardt, A. On the “non” use of environmental valuation estimates. In Sustainability, Natural Capital and Nature Conservation; Döring, R., Ed.; Metropolis: Marburg, Germany, 2009; pp. 143–166. [Google Scholar]
- Gómez-Baggethun, E.; Ruiz-Pérez, M. Economic valuation and the commodification of ecosystem services. Prog. Phys. Geogr. 2011, 35, 613–628. [Google Scholar] [CrossRef] [Green Version]
- Kallis, G.; Gómez-Baggethun, E.; Zografos, C. To value or not to value? That is not the question. Ecol. Econ. 2013, 94, 97–105. [Google Scholar] [CrossRef]
- Rode, J.; Le Menestrel, M.; Cornelissen, G. Ecosystem service arguments enhance public support for environmental protection—But beware of the numbers! Ecol. Econ. 2017, 141, 213–221. [Google Scholar] [CrossRef]
- Almansa, C.; Martínez-Paz, J.M. What weight should be assigned to future environmental impacts? A probabilistic cost benefit analysis using recent advances on discounting. Sci. Total Environ. 2011, 409, 1305–1314. [Google Scholar] [CrossRef]
- Dasgupta, P. Discounting climate change. J. Risk Uncertain. 2008, 37, 141–169. [Google Scholar] [CrossRef]
- Gowdy, J.; Rosser, J.B.; Roy, L. The evolution of hyperbolic discounting: Implications for truly social valuation of the future. J. Econ. Behav. Organ. 2013, 90, S94–S104. [Google Scholar] [CrossRef]
- Matzinger, A.; Riechel, M.; Remy, C.; Schwarzmüller, H.; Rouault, P.; Schmidt, M.; Offermann, M.; Strehl, C.; Nickel, D.; Pallasch, M.; et al. Zielorientierte Planung von Maßnahmen der Regenwasserbewirtschaftung--Ergebnisse des Projektes KURAS; Konzepte fur Urbane Regenwasserbewirtschaftung und Abwassersysteme: Berlin, Germany, 2017. [Google Scholar]
- DWA. Leitlinien zur Durchführung Dynamischer Kostenvergleichsrechnungen (KVR-Leitlinien); 8. überarb; DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V.: Hennef, Germany, 2012; ISBN 9783941897557. [Google Scholar]
- Baumgärtner, S.; Klein, A.M.; Thiel, D.; Winkler, K. Ramsey Discounting of Ecosystem Services. Environ. Resour. Econ. 2015, 61, 273–296. [Google Scholar] [CrossRef]
- Drupp, M.A. Limits to Substitution Between Ecosystem Services and Manufactured Goods and Implications for Social Discounting. Environ. Resour. Econ. 2018, 69, 135–158. [Google Scholar] [CrossRef] [Green Version]
- Attema, A.E.; Bleichrodt, H.; L’Haridon, O.; Peretti-Watel, P.; Seror, V. Discounting health and money: New evidence using a more robust method. J. Risk Uncertain. 2018, 56, 117–140. [Google Scholar] [CrossRef] [Green Version]
- Frederick, S. Measuring Intergenerational Time Preference: Are future lives valued less? J. Risk Uncertain. 2003, 26, 39–53. [Google Scholar] [CrossRef]
- Robinson, L.A.; Hammitt, J.K.; O’Keeffe, L. Valuing Mortality Risk Reductions in Global Benefit-Cost Analysis. J. Benefit-Cost Anal. 2019, 10, 15–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutscher Wetterdienst. Erläuterungen und Kriterien zu Hitzewarnungen. Available online: http://www.wettergefahren.de/warnungen/hitzewarnungen.html (accessed on 5 April 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.r-project.org/ (accessed on 17 January 2019).
- Strehl, C.; Offermann, M.; Hein, A.; Heinzmann, B.; Thamsen, P.U.; Matzinger, A. Schlussbericht des Forschungsvorhabens KURAS. IWW-Teilbericht: Ökonomische Effekte der Regenwasserbewirtschaftung am Beispiel Berlins; KURAS: Berlin, Germany, 2017. [Google Scholar]
- Eglitis-media. Sonnenaufgang und Sonnenuntergang in Deutschland. Available online: https://www.laenderdaten.info/Europa/Deutschland/sonnenuntergang.php (accessed on 16 March 2019).
- Baccini, M.; Biggeri, A.; Accetta, G.; Kosatsky, T.; Katsouyanni, K.; Analitis, A.; Anderson, H.R.; Bisanti, L.; D’Iippoliti, D.; Danova, J.; et al. Heat effects on mortality in 15 European cities. Epidemiology 2008, 19, 711–719. [Google Scholar] [CrossRef]
- Umweltatlas Berlin. Einwohnerdichte 2017 (Umweltatlas). Available online: https://fbinter.stadt-berlin.de/fb/index.jsp?loginkey=zoomStart&mapId=wmsk_06_06ewdichte2017@senstadt&bbox=389304,5822972,396530,5826388 (accessed on 4 March 2019).
- Statistisches Bundesamt Deutschland. Durchschnittliches Sterbealter. Available online: https://www-genesis.destatis.de/genesis/online/link/tabelleErgebnis/12613-0007 (accessed on 19 March 2019).
- Deutscher Wetterdienst. Deutschlandwetter im Jahr 2018. Available online: https://www.dwd.de/DE/presse/pressemitteilungen/DE/2018/20181228_deutschlandwetter_jahr2018.pdf?__blob=publicationFile&v=3 (accessed on 25 March 2019).
- Deutscher Wetterdienst. Deutschlandwetter im Jahr 2017. Available online: https://www.dwd.de/DE/presse/pressemitteilungen/DE/2017/20171229_deutschlandwetter_jahr2017.pdf?__blob=publicationFile&v=2 (accessed on 25 March 2019).
- Deutscher Wetterdienst. Deutschlandwetter im Jahr 2016. Available online: https://www.dwd.de/DE/presse/pressemitteilungen/DE/2016/20161229_deutschlandwetter_jahr2016.pdf?__blob=publicationFile&v=3 (accessed on 25 March 2019).
- Deutscher Wetterdienst. Deutschlandwetter im Jahr 2015. Available online: https://www.dwd.de/DE/presse/pressemitteilungen/DE/2015/20151230_deutschlandwetter_jahr2015.pdf?__blob=publicationFile&v=2 (accessed on 25 March 2019).
- Deutscher Wetterdienst. Deutschlandwetter im Jahr 2014. Available online: https://www.dwd.de/DE/presse/pressemitteilungen/DE/2014/20141230_Deutschlandwetter_Jahr_2014.pdf?__blob=publicationFile&v=7 (accessed on 25 March 2019).
- Statistisches Bundesamt Deutschland. Aus dem Krankenhaus Entlassene Vollstationäre Patientinnen und Patienten (Einschließlich Sterbe- und Stundenfälle). Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Tabellen/entlassene-patienten-eckdaten.html (accessed on 21 March 2019).
- Johnson, H.; Kovats, S.; Mcgregor, G.; JR, S.; Gibbs, M.; Walton, H. The impact of the 2003 heat wave on daily mortality in England and Wales and the use of rapid weekly mortality estimates. Eurosurveillance 2005, 10, 168–171. [Google Scholar] [CrossRef]
- Tröltzsch, J.; Görlach, B.; Lückge, H.; Peter, M.; Sartorius, C. Kosten und Nutzen von Anpassungsmaßnahmen an den Klimawandel: Analyse von 28 Anpasungmaßnahmen in Deutschland; Umweltbundesamt: Dessau-Roßlau, Germany, 2012. [Google Scholar]
- Statistisches Bundesamt Deutschland. Sterbefälle je 1000 Einwohner: Deutschland, Jahre. Available online: https://www-genesis.destatis.de/genesis/online/data;sid=C87037CAAF16C78B632D87B957981466.GO_1_4?operation=abruftabelleBearbeiten&levelindex=1&levelid=1553004933048&auswahloperation=abruftabelleAuspraegungAuswaehlen&auswahlverzeichnis=ordnungsstruktur&ausw (accessed on 19 March 2019).
- Statistisches Bundesamt Deutschland. Bevölkerung: Bundesländer, Stichtag, Geschlecht, Altersjahre. Available online: https://www-genesis.destatis.de/genesis/online/data;sid=3A8959F91730FAB9CEAF0C0518849BB1.GO_1_4?operation=abruftabelleBearbeiten&levelindex=1&levelid=1552996107046&auswahloperation=abruftabelleAuspraegungAuswaehlen&auswahlverzeichnis=ordnungsstruktur&ausw (accessed on 19 March 2019).
- Statistisches Bundesamt Deutschland. Durchschnittliche Lebenserwartung (Periodensterbetafel): Deutschland, Jahre, Geschlecht, Vollendetes Alter. Available online: https://www-genesis.destatis.de/genesis/online/logon?sequenz=tabelleErgebnis&selectionname=12621-0002&zeitscheiben=16&sachmerkmal=ALT577&sachschluessel=ALTVOLL000,ALTVOLL020,ALTVOLL040,ALTVOLL060,ALTVOLL065,ALTVOLL080 (accessed on 19 March 2019).
- Viscusi, W.K.; Masterman, C.J. Income Elasticities and Global Values of a Statistical Life. J. Benefit-Cost Anal. 2017, 8, 226–250. [Google Scholar] [CrossRef] [Green Version]
- OECD. Recommended Value of a Statistical Life numbers for policy analysis. In Mortality Risk Valuation in Environment, Health and Transport Policies; OECD Publishing: Paris, France, 2012; Volume 2, pp. 125–136. [Google Scholar]
- Spengler, H. Kompensatorische Lohndifferenziale und der Wert eines statistischen Lebens in Deutschland. Z. Arbeitsmarktforsch. 2004, 3, 269–305. [Google Scholar]
- Clark, C.; Adriaens, P.; Talbot, F.B. Green roof valuation: A probabilistic economic analysis of environmental benefits. Environ. Sci. Technol. 2008, 42, 2155–2161. [Google Scholar] [CrossRef]
- MacMullan, E.; Reich, S.; Puttman, T.; Rodgers, K. Cost-Benefit Evaluation of Ecoroofs. In Proceedings of the Low Impact Development for Urban Ecosystem and Habitat Protection, Seattle, WA, USA, 16–19 November 2008; pp. 1–10. [Google Scholar]
- Bianchini, F.; Hewage, K. Probabilistic social cost-benefit analysis for green roofs: A lifecycle approach. Build. Environ. 2012, 58, 152–162. [Google Scholar] [CrossRef]
- Yang, J.; Yu, Q.; Gong, P. Quantifying air pollution removal by green roofs in Chicago. Atmos. Environ. 2008, 42, 7266–7273. [Google Scholar] [CrossRef]
- Berliner Wasserbetriebe. Tarife für Trinkwasser, Schmutzwasser, Niederschlagswasser, Fäkalwasser und Fäkalschlamm vom 1. Januar 2016 bis 31. Dezember 2017. Available online: http://www.bwb.de/content/language1/html/204.php (accessed on 5 April 2018).
- European Commission. Guide to Cost-Benefit Analysis of Investment Projects. Economic Appraisal Tool for Cohesion Policy, 2014–2020; European Commmission: Brussels, Belgium, 2014; ISBN 978-92-79-34796-2. [Google Scholar]
- Groß, G.; von Tils, R. Schlussbericht des Forschungsvorhabens KURAS -Teilbericht Leibniz Universität Hannover; KURAS: Hannover, Germany, 2017. [Google Scholar]
- Yazdanseta, A. Estimating the Cooling Power through Transpiration of Vining Green Walls in Various Climates. In Symposium on Simulation for Architecture and Urban Design; Turrin, M., Peters, B., O’Brien, W., Stouffs, R., Dogan, T., Eds.; Society for Modeling & Simulation International: Toronto, ON, Canada, 2017; pp. 235–242. ISBN 9781365888786. [Google Scholar]
- Dang, T.N.; Van, D.Q.; Kusaka, H.; Seposo, X.T.; Honda, Y. Green Space and Deaths Attributable to the Urban Heat Island Effect in Ho Chi Minh City. Am. J. Public Health 2018, 108, S137–S143. [Google Scholar] [CrossRef] [Green Version]
- Arzbach, V. Hitze-Notfälle: Die Schattenseiten des Sommers. Available online: https://ptaforum.pharmazeutische-zeitung.de/ausgabe-122018/die-schattenseiten-des-sommers/ (accessed on 1 February 2019).
- Hu, K.; Guo, Y.; Hochrainer-stigler, S.; Liu, W.; See, L.; Yang, X.; Zhong, J.; Fei, F.; Chen, F.; Zhang, Y.; et al. Evidence for Urban—Rural Disparity in Temperature—Mortality Relationships in Province, Zhejiang. Environ. Health Perspect. 2019, 127, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
I (EUR/m2) | O&M (EUR/m2) | |
---|---|---|
Extensive green roofs | 20 | 1.50 |
Façade greening | 100 | 10.00 |
Tree drains | 303 | 1.21 |
Distribution and Parameters | Units | |
---|---|---|
Installation costs | U(−20, +20) | % |
Operation and maintenance costs | U(−20, +20) | % |
Property value increase in green roofs | U(2, 5) | % |
Heat-related mortality rate | N(5.2, 1.3) | % |
Value of statistical life | T(1,978,165, 7,538,485) | EUR |
Private discount rate | U(1, 5) | % |
Social discount rate | U(0, 3) | % |
Scenario | UGI Measures | Areas | Change in UTCI (hours/year) | ||
---|---|---|---|---|---|
Min | Max | Mean | |||
A | Tree drains | 5341 | −711.49 | 0.00 | −319.52 |
Extensive green roofs | 58,515 | −380.80 | 96.10 | −10.94 | |
Façade greening | 199,880 | −380.80 | 96.10 | −12.67 | |
B | Tree drains | 10,631 | −593.14 | 0.00 | −221.59 |
Extensive green roofs | 72,926 | −316.5 | 19.18 | −8.98 | |
Façade greening | 79,008 | −76.78 | 10.34 | −3.01 | |
C | Tree drains | 10,118 | −669.00 | 0.00 | −285.71 |
Extensive green roofs | 121,658 | −297.40 | 37.84 | −4.68 | |
Façade greening | 290,732 | −230.21 | 22.08 | −5.73 |
Benefits | Provided by | Valuation Method | Type of Benefit | Scenario A | Scenario B | Scenario C | |
---|---|---|---|---|---|---|---|
UHI Mitigation | Heat-related mortality reduction | TD GR FG | DCA | Social | 35,057,726 | 20,436,515 | 34,460,982 |
Heat-related morbidity reduction | TD GR FG | DCA | Social | 208,386 | 95,900 | 270,181 | |
Ecosystem services | Runoff reduction | TD GR | MP | Private | 2,309,569 | 3,520,134 | 4,575,692 |
Increasing building longevity | |||||||
Roof longevity | GR | RC | Private | 1,732,711 | 2,159,438 | 3,602,475 | |
Façade longevity | FG | RC | Private | 8,985,805 | 3,551,884 | 13,070,148 | |
Habitat creation | GR | RC | Social | 474,941 | 591,909 | 987,449 | |
Aesthetic improvements | |||||||
Property value (w/façade greening) | FG | BT | Private | 14,038,596 | 8,896,971 | 18,522,905 | |
Property value (w/green roof) | GR | BT | Private | 20,050,658 | 24,988,683 | 41,687,285 | |
Energy savings | |||||||
Heating savings | GR | MP | Private | 1,842,809 | 2,296,651 | 3,831,380 | |
Cooling savings | GR FG | RC | Social | 462,488 | 474,455 | 886,747 | |
Heating externalities | GR | DCA | Social | 1,098,200 | 1,368,662 | 2,283,265 | |
Air quality improvements | TD GR FG | DCA | Social | 392,520 | 311,150 | 682,411 | |
CO2 storage and sequestration | TD GR | DCA | Social | 112,187 | 157,210 | 228,933 | |
Totals | 86,766,596 | 68,849,562 | 125,089,853 |
Scenario A | Scenario B | Scenario C | ||||
---|---|---|---|---|---|---|
I (EUR/m2) | M (EUR/m2) | I (EUR/m2) | M (EUR/m2) | I (EUR/m2) | M (EUR/m2) | |
Tree drains | 1,618,348 | 5988 | 3,221,973 | 11,921 | 3,065,945 | 11,344 |
Extensive green roofs | 1,170,294 | 87,772 | 1,458,511 | 109,388 | 2,433,156 | 182,487 |
Façade greening | 19,988,560 | 1,998,856 | 7,900,800 | 790,080 | 29,073,220 | 2,907,322 |
Totals | 22,777,202 | 2,092,616 | 12,581,284 | 911,389 | 34,572,321 | 3,101,153 |
Present value of all costs | 76,619,718 | 36,031,108 | 114,364,256 |
Scenario A | Scenario B | Scenario C | |
---|---|---|---|
NPV | EUR 10,146,769 | EUR 32,818,400 | EUR 10,725,544 |
BCR | 1.13 | 1.91 | 1.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, D.; Exl, J.; Geisendorf, S. The Potential of Stormwater Management in Addressing the Urban Heat Island Effect: An Economic Valuation. Sustainability 2021, 13, 8685. https://doi.org/10.3390/su13168685
Johnson D, Exl J, Geisendorf S. The Potential of Stormwater Management in Addressing the Urban Heat Island Effect: An Economic Valuation. Sustainability. 2021; 13(16):8685. https://doi.org/10.3390/su13168685
Chicago/Turabian StyleJohnson, Daniel, Judith Exl, and Sylvie Geisendorf. 2021. "The Potential of Stormwater Management in Addressing the Urban Heat Island Effect: An Economic Valuation" Sustainability 13, no. 16: 8685. https://doi.org/10.3390/su13168685
APA StyleJohnson, D., Exl, J., & Geisendorf, S. (2021). The Potential of Stormwater Management in Addressing the Urban Heat Island Effect: An Economic Valuation. Sustainability, 13(16), 8685. https://doi.org/10.3390/su13168685