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Abstract: This paper addresses the optimal power flow problem in direct current (DC) networks
employing a master–slave solution methodology that combines an optimization algorithm based
on the multiverse theory (master stage) and the numerical method of successive approximation
(slave stage). The master stage proposes power levels to be injected by each distributed generator in
the DC network, and the slave stage evaluates the impact of each power configuration (proposed
by the master stage) on the objective function and the set of constraints that compose the problem.
In this study, the objective function is the reduction of electrical power losses associated with
energy transmission. In addition, the constraints are the global power balance, nodal voltage limits,
current limits, and a maximum level of penetration of distributed generators. In order to validate
the robustness and repeatability of the solution, this study used four other optimization methods
that have been reported in the specialized literature to solve the problem addressed here: ant lion
optimization, particle swarm optimization, continuous genetic algorithm, and black hole optimization
algorithm. All of them employed the method based on successive approximation to solve the load
flow problem (slave stage). The 21- and 69-node test systems were used for this purpose, enabling
the distributed generators to inject 20%, 40%, and 60% of the power provided by the slack node in a
scenario without distributed generation. The results revealed that the multiverse optimizer offers the
best solution quality and repeatability in networks of different sizes with several penetration levels
of distributed power generation.

Keywords: optimal power flow; power flow; optimization algorithms; DC networks; electrical
energy; optimization

1. Introduction
1.1. General Context

Electrical energy is essential for modern daily life because people’s comfort and socioe-
conomic conditions depend on it [1]. Such energy can be generated and distributed in the
form of Alternating Current (AC) and Direct Current (DC). Although most electrical power
and electricity distribution systems work with AC, DC electrical energy is as important
as its counterpart. Furthermore, DC offers technical-operational advantages; for instance,
as most loads used by people are DC, generating and distributing DC eliminates the need for
converting electrical energy from AC to DC. This type of electric current promotes the use
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of clean and environmentally friendly renewable energy sources because most renewable
energy is produced in DC, which eliminates the need for power converters. It also eliminates
phasors and reactive elements in the electrical network. This reduces the complexity of
the mathematical model and the operation and control of electrical networks. This paper
focuses on electrical DC systems due to the advantages mentioned above and because more
studies should investigate this type of network [2]. To operate the elements that compose
DC electrical networks, i.e., (slack and distributed) loads and power generators, solution
methodologies should be used to identify the operating points of these devices, mainly the
generators, in order to guarantee the technical conditions of the network (power balance,
power and voltage limits, penetration levels of the distributed generators, etc.). In addition,
such methodologies should enable network operators or owners to meet the objective
functions they have established in order to improve the technical conditions of the system
(power losses, voltage stability, loadability of the lines, etc.), as well as its environmental
characteristics, or to reduce operating costs (buying electricity from the grid) [3]. This
problem, known as Optimal Power Flow (OPF), is about finding the reference points for
the power of the Distributed Generators (DGs) in a network in order to meet the objective
functions that have been defined.

1.2. State-of-the-Art

To solve the OPF problem in DC networks, the first step is interpreting and
solving the load flow or power flow problem. As a result, we can determine the
existing voltage in each one of the nodes in the network and the current circulating
through the transmission lines thanks to the parameters of the electrical power system,
e.g., conductance of transmission lines, power demanded by the loads, and electrical topol-
ogy [4]. To solve the load flow problem, numerical methods should be employed to solve
the nonlinear nonconvex problem that it represents [5]. In recent years, different types
of methods have been proposed for this purpose. Some of the classical options include
Newton–Raphson [6], Gauss–Seidel, and Gauss–Jacobi [7]. More current alternatives are
Taylor series approximation [8], successive approximation [9], triangular matrix formu-
lation [8], sweeping based on graph theory [10], and backward/forward sweeping [11].
To solve the load flow and calculate each one of the previously mentioned variables, this
study used the Successive Approximation (SA) method [9]. The latter was selected due to
its excellent performance in terms of convergence and processing times for radial as well
as meshed networks [11].

The load flow method can describe the electrical behavior of a DC network based
on known data of power demanded and generated by the DGs. However, in case of any
variation in said power, the power flow should be calculated again to establish the effect of the
generation and demand inside the network. To find the most adequate power level that the
DGs should inject, the OPF problem should be solved by means of optimization techniques in
order to meet the objective function proposed by the DC network operator and/or owner [12].
This guarantees that the electrical constraints that compose DC networks in an environment
of distributed generation are always respected [12].

Engineering often faces highly difficult problems, which cannot be solved directly;
they are called nonlinear nonconvex problems [13]. For this reason, multiple techniques
have been developed to offer a good quality solution to these problems by applying
intelligent optimization methods. Some of them are the so-called optimization techniques,
which are inspired by the behavior of nature. Optimization methods apply mathematical
models and strategies to move within a solution space and find good quality solutions in
relatively short times. Every optimization method should be adapted to the problem under
analysis, and the impact of the solution produced by each type of method will depend on
the difficulty of said problem.

Due to the high efficiency and excellent performance of metaheuristic optimization
techniques in solving engineering problems, they are widely applied to solve nonlinear
nonconvex problems with continuous variables. Optimization techniques are employed
in this study to solve the OPF problem because the mathematical model used here re-
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quires nonlinear methods to produce a solution [14]. Furthermore, the mathematical
modeling of the problem includes continuous variables. To solve the OPF problem by
means of optimization techniques, the problem is generally divided into two stages using a
master–slave methodology [14]. The master stage determines the optimal power level
that the DGs should inject into the DC network, and the slave stage solves the power
flow problem. The objective is to calculate the electrical variables that can be used to
establish the impact of the objective function and the problem constraints of each one of
the solutions proposed by the master stage. This master–slave methodology enables us to
find a good quality solution based on an adequate selection of the optimization techniques
to be implemented. Importantly, the solution quality greatly depends on the proposed
solution method and the parameters assigned to it.

In the last decade, the specialized literature has proposed different solutions to solve
the OPF problem in DC networks. Usually, their objective function is the minimization
of power losses in the network [15,16]. In [15], the authors proposed a convex relaxation
method based on second-order cone programming. In turn, in [16], the authors em-
ployed sequential quadratic convex programming to solve the OPF problem. The studies
mentioned above used commercial optimization software to solve the OPF problem, which
increases the complexity of the problem and the cost of the solution. Additionally, in such
studies, the OPF problem was evaluated in small networks only (10, 16, and 21 nodes), thus
ignoring the performance of the methods in bigger networks. Likewise, in [16], the standard
deviation of the techniques was not taken into account, which is important to establish how
dispersed the results obtained are with respect to the average result. In order to propose
methods based on sequential programming that can be developed in any programming
language and eliminate the need to acquire specialized (commercial) software, different
methodologies have been studied and proposed in recent years to solve the problem
addressed here. For example, in [17], the authors employed the black hole (BH) algorithm
and the Gauss–Seidel numerical method to generate a master–slave solution strategy for
the OPF problem. Remarkably, they did not take into consideration the standard deviation
of the techniques they used. In [5], the authors employed the vortex search algorithm
and the numerical method by SA to solve the OPF problem. In their study, the solution
methodology was evaluated in small DC networks (10 and 21 nodes). By contrast, in [18],
the authors used the sine cosine optimization algorithm and the SA numerical method as
the solution methodology. Nevertheless, they only analyzed the effect of the methodology
in the 21-node system and did not consider the standard deviation of the optimization
techniques to solve the OPF problem. This analysis of the state-of-the-art of methodologies
that have been applied to solve the OPF problem shows that strategies based on sequential
programming should be promoted in order to eliminate the need for commercial software
and improve the solution quality. Nevertheless, such methodologies should be validated
in test systems of different sizes so that the effectiveness of the proposed solution method-
ology can be guaranteed in a network of any size. For example, in [14,19], the authors
employed the master–slave methodology based on sequential programming to solve the
OPF problem. Particularly in [19], three metaheuristic optimization algorithms were imple-
mented as strategies to solve the OPF problem. First, the authors used a continuous genetic
algorithm (CGA), which had been presented in [20]. The CGA is inspired by the genetic
process of living beings, employing the selection, combination, and mutation process in
order to transmit information collected by parents to their descendants. Second, they used
the black hole (BH) algorithm reported in [17], which is based on the dynamic interaction of
stars and black holes and is used to solve optimization problems with continuous variables,
such as the OPF problem. Third, they employed the particle swarm optimization (PSO)
metaheuristic, an algorithm inspired by the behavior of schools of fish and bird flocks,
to explore the solution space and thus solve the OPF problem [21]. They implemented these
three methodologies and evaluated different test systems, demonstrating the effectiveness
and robustness of each methodology to solve the problem analyzed in this document.
In [14], the authors used the techniques described above plus the ant lion optimizer (ALO),
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which was recently proposed. The ALO imitates the hunting technique of ant lions, which
dig a cone-shaped hole in the ground to catch their prey. Importantly, the techniques
mentioned above adopted a master–slave methodology to solve the OPF problem. In the
master stage, they used optimization algorithms (CGA, BH, PSO, and ALO) to solve the
DG sizing problem; in the slave stage, they implemented the SA numerical method to solve
the load flow. The approach called “optimal flow” is a cutting-edge topic that requires
more analysis and development in order to improve the operating conditions of the system.
In the studies described above, optimization techniques were used as solution methods in
order to obtain the best solution to the problem, while considering different energy projects
to which it can be applied.

1.3. Proposed Solution Methodology and Main Contributions of This Study

Due to the importance of the optimal power flow problem in DC networks and the
need to propose new solution methodologies that are more efficient in terms of solution
quality and repeatability, this study proposes a new methodology based on a master–slave
strategy to solve the OPF problem in DC networks. In the master stage, the proposed
methodology applies the technique called multiverse optimizer (MVO) to find the optimal
power level to be injected by the DGs in order to minimize electrical power losses in DC
networks. In the slave stage, the numerical SA method is employed to solve the load
flow problem and evaluate the objective function and the set of constraints related to
every possible solution proposed by the master stage [9]. This study used the 21- and
69-node test systems reported in the specialized literature. In addition, it includes three
levels of maximum penetration of distributed generation, i.e., 20%, 40%, and 60% of the
power supplied by the slack generator in an environment without DGs. The results of
the proposed methodology were compared with those of more popular methodologies
reported in the literature: CGA [20], PSO [21], BH [17], and ALO [14]. This demonstrated
the effectiveness of the MVO and its behavior regarding solution quality. Additionally,
in order to evaluate the repeatability of the algorithms in terms of the solution, each
simulation was executed 100 times, and the standard deviation obtained was analyzed.
This study makes three contributions:

• A new solution methodology based on a master–slave strategy that combines MVO
and SA to solve the optimal power flow problem in DC networks of any size

• A methodology based on average solutions and standard deviation to evaluate
the effectiveness and repeatability of the solution methods proposed to solve the
OPF problem

• Better results in the solution to the OPF problem in DC networks than those reported
in the specialized literature.

1.4. Structure of the Paper

This article is organized as follows: Section 2 proposes a mathematical formulation
to solve the optimal power flow problem in DC networks, whose objective function is the
reduction of power losses associated with energy transport. Section 3 describes the proposed
solution methodology, which is composed of a master–slave strategy that combines the
multiverse optimizer and the numerical method of successive approximation. Section 4
details the 21- and 69-node systems used for the tests in this study, in addition to other
methods used here to compare and validate the proposed solution methodology. Section 5
reports the simulation results obtained by each one of the proposed solution methodologies.
Section 6 presents the analysis of the processing times required by the different solution
methods used in this paper. Finally, Section 7 draws the conclusions and proposes future
research in this field.

2. Mathematical Formulation

Several objective functions to be minimized can be used to mathematically model the
OPF problem. Some of them are the minimization of the operating costs of the network,
minimization of emissions of polluting substances into the environment, improvement of
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voltage profiles, improvement of the loadability in distribution lines, and minimization
of electrical power losses in the DC network. The selection of the objective function
depends on the system owner or the operator of the DC network, and it is subject to the
set of constraints that compose DC networks in an environment of distributed generation.
The objective function selected in this study is the minimization of the power losses in the
network [19], which is presented below along with its set of constraints.

2.1. Objective Function

The objective function is defined as the value to be minimized depending on the
constraints that have been determined, in this case, the minimization of power losses.
For that purpose, this study used Equation (1):

minPloss = vTGLv (1)

where Ploss denotes the power losses in the electrical network, which directly depend
on v and GL that represent the voltage profiles in each one of the nodes in the DC net-
work calculated based on the load flow and the conductance matrix of the distribution
lines, respectively.

2.2. Set of Constraints

The set of equations that compose the constraints of the problem addressed in this
paper refer to the technical limits of the pieces of equipment and the operating parameters
of the devices that constitute the DC network in an environment of distributed generation.
Such equations are detailed below:

Pg + PDG − Pd = D(v)[GL + GN ]v (2)

Pmin
DG ≤ PDG ≤ Pmax

DG (3)

vmin ≤ v ≤ vmax (4)

1T(PDG − αPg) ≤ 0 (5)

The mathematical interpretation of Equations (2) to (5) is the following: Equation (2)
represents the power balance in the DC network, where Pg is the power generated by
the slack node; PDG, the power supplied by each one of the DGs installed in the DC
network; and Pd, the power demanded by the nodes in the network. Additionally, in this
equation, D(v) denotes a symmetrical positive matrix that contains the nodal voltages of
the system in its diagonal, and GN and GL are the conductances of the transmission lines
and the resistive loads connected to the network, respectively. Equation (3) expresses the
minimum and maximum power that each DG installed in the network can supply, where
Pmin

DG and Pmax
DG are the minimum and maximum powers allowed for the DGs, respectively.

Equation (4) presents the voltage regulation limits, where vmin and vmax are the minimum
and maximum load allowed in each node in the system, respectively. Finally, Equation (5)
defines the maximum penetration level allowed for the DGs, where α represents the
allowable penetration percentage with respect to the power generated by the slack node.

These conditions should be met at all times; for that purpose, the system should be
penalized if the aforementioned limits are violated. Equation (6) defines the penalty of the
objective function if a constraint is violated.

min z =



Ploss + β1OnesTmax{0, v−Vmax}
+β2OnesTmin{0, v−Vmin}
+β3OnesTmin{0, Pg − Pmin

g }
+β4OnesTmax{0, PDG − Pmax

DG }
+β5OnesTmin{0, PDG − Pmin

DG }
+β6max{0, OnesT PDG −MDG}


(6)
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where β1 to β6 are the penalty factors (which are usually higher than zero). In this study,
each one of them is equal to 1000 to force the optimization methods to respect the limits
imposed in Equations (2) to (5). This value was obtained heuristically. Moreover, the OnesT

term is a transposed vector filled with ones that can be used to add together different
penalties in the adaptation function. When all these constraints are respected, all the
penalty values are null using the min{.} and max{.} functions, which, in this case, causes z
to be equal to Ploss.

3. Proposed Solution Methodology

The equations presented in the mathematical formulation above describe a nonlinear
optimization problem and represent the OPF problem in DC networks. These equations
should be solved using numerical nonlinear methods. Hence, this study proposes dividing
the problem into two stages: First, the master stage determines the optimal power level to
be injected by the distributed generators located in the DC network. To solve this stage of
the problem, this study uses the multiverse optimizer (MVO) [22]. Second, the slave stage
calculates the electrical variables that can be used to determine the impact on the objective
function, as well as the constraints of the problem of each one of the solutions proposed
by the master stage (solves the power flow problem); for this purpose, this methodology
implements the SA numerical method. The next subsection describes the master–slave
(MVO-SA) methodology proposed in this study:

3.1. Master Stage: Multiverse Optimizer (MVO)

The Big Bang Theory posits that the universe we live in began as a result of a massive
explosion [23]. There was nothing before the Big Bang, which was the start of our universe.
In turn, the multiverse theory, which is more recent and well known among scientists [24],
claims there is more than one Big Bang and that each Big Bang constitutes the beginning of a
new universe. In addition, it holds that there are multiple universes that interact and can even
clash with each other, and every universe can have different physical laws. The MVO is inspired
by this theory, and it uses three of its main concepts: white hole, black hole, and wormhole [22].
A white hole has never been observed in the known universe, but physicists believe that the Big
Bang can be considered one of them and the main component for the start of a new universe [25].
White holes expel matter and energy because no object can remain inside them. In turn, black
holes, whose behavior is the opposite to that of white holes, have been observed throughout
the known universe. They absorb everything that comes close to them: matter and even light.
Nothing can escape black holes because their gravitational force is extremely high [26]. Finally,
in the multiverse theory, wormholes connect two distant points, i.e., space/time, enabling
objects that go through them to travel instantly to any place in the universe and even from one
universe to another [27]. Each universe has an inflation rate (cosmic inflation) that causes it to
expand in space [28]. One of the cyclic multiverse models [29] holds that multiple universes
interact through white holes, black holes, and wormholes to reach a stable situation. This
is exactly the inspiration for the MVO algorithm, which is conceptually and mathematically
modeled as follows.

The MVO algorithm is based on three concepts of cosmology, i.e., white holes, black
holes, and wormholes, which were mentioned above and are mathematically developed
to construct the MVO. The search process of the latter can be divided into two stages:
exploration and exploitation. White and black holes are used for exploring the search
space and discovering regions where the best solutions can potentially be found. In turn,
wormholes are used for exploiting the solution space, i.e., a local search around the
promising solutions found in the previous stage [22]. The following subsection presents
the stages followed in this study for the computational development and to find a
solution to the OPF problem using the MVO.

3.1.1. Generation of the Initial Population

Equation (7) is used to generate each one of the objects that compose the initial
population of (Ui,j) universes, where each universe in the population is a possible solution
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to the problem (power level to be injected by the DGs). In said equation, the i subindex
denotes the i-th universe, and j is the j-th object that composes the i element. In this
problem, each one of the objects generated in the different universes is a power level to
be injected by each one of the DGs installed in the DC network. The values generated for
each one of the objects that make up the universe are located within the solution space,
which is limited by the technical constraints of the problem (in this case, the maximum
and minimum allowable limits of the power to be injected by the DGs). This is possible
by implementing upper (ub) and lower bounds (lb), which are assigned to each element
in the universe and represent the maximum and minimum power level allowed for each
generator in the problem addressed here. In order to explore larger regions of the search
space, the first population of universes is generated from (rand) random values in the
[0− 1] range for each object that composes the different universes. These random numbers
multiplied by the difference between the limits can be used to generate a larger distribution
of particles over the search space.

Ui,j = ((ub− lb) · rand) + lb (7)

The previous equation can be used to find the value of the j object in the i universe.
To generate all the universes, this study proposes a matrix of size nxd, where n denotes the
number of universes as possible solutions to the problem, and d represents the number of
variables in the problem (number of objects that belong to each universe). In (8), Un is the
n-th universe in the MUniverses matrix. In the specific case of the OPF problem, the number
of columns (d) represents the number of DGs that generate the electrical power inside
the DC network (different from the slack node), and its value represents the power to be
injected by each DG. To obtain the initial population, the values of each Un were calculated
randomly, respecting the limits established in the equations that rule the OPF problem and
employing Equation (7) to generate all the objects in the different universes described in
the Mathematical Model section.

MUniverses =



U1
U2
...
...

Un

 =



U1,1 U1,2 · · · · · · U1,d
U2,1 U2,2 · · · · · · U2,d

...
...

...
...

...
...

...
...

...
...

Un,1 Un,2 · · · · · · Un,d

 (8)

3.1.2. Calculating the Objective Function

To evaluate the impact of each one of the universes proposed in MUniverses on the
objective function of the problem, the objective function is evaluated for every Un universe
(adaptation function) employing the slave stage (which is described in the following
subsection). Subsequently, the values obtained for every solution are stored in the nx1
vector called MOUniverses. Thus, we calculate the electrical power losses in every solution
for every DG, as well as the penalties in case the constraints established beforehand are
not respected.

MOUniverses =


f ([U1,2 U1,2 · · · · · · U1,d])
f ([U2,1 U2,2 · · · · · · U2,d])

...
...

...
...

...
f ([Un,1 Un,2 · · · · · · Un,d])

 (9)

Finally, the universe that presents the best solution in the MOUniverses matrix (in this
case, the lowest power losses) is selected as the incumbent solution, storing the objective
function in Equation (10) and the configuration of the variables that compose it during
the iterative cycle in Equation (11). To carry out this task, this study proposes to sort
the vector of objective functions in ascending order, where the first position represents
the best solution that has been found in the current iteration. If during an iteration of
the algorithm the incumbent solution is improved, the values of Best_Fob and Best_U
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are updated. In Equation (11), Best_U is a vector of 1xd, and a denotes the universe that
presents the best objective function in each iteration.

Best_Fob = [ f (U1,d)] (10)

Best_U = [Ua] (11)

3.1.3. Existence of Wormholes

As previously mentioned, the MVO algorithm divides the search process into two
stages: exploration and exploitation. This technique uses white and black holes to explore
the search space. In this stage, the algorithm tries to discover the most promising regions
where the global optimum can be potentially found. In turn, wormholes are used to
exploit the promising search spaces obtained in the exploration stage. This stage presents
the convergence of the algorithm toward the global optimum (advances toward the best
solution). In the MVO method, each solution is assigned an inflation rate (IRi) that
corresponds to the best Ploss obtained thus far by each universe, which is proportional
to the aptitude function retrieved by the slave stage when the objects proposed by each
one of the universes are evaluated (power levels to be injected by the DGs). Additionally,
the following rules are applied to the universes of the MVO:

• The higher the IR, the greater the probability of having a white hole.
• The lower the IR, the greater the possibility of having a black hole.
• Universes with high IR tend to send objects through white holes.
• Universes with low IR tend to receive more objects through black holes.
• Any object in any universe can randomly move toward the best universe through

wormholes, regardless of the IR.

Depending on the specific need, white or black holes can change their behavior if the
problem to solve is the maximization or minimization of the objective function. When the
movement is toward a higher IR, it is a maximization problem, where mainly white holes
operate. In turn, when it is toward a lower IR, it is a minimization problem, where mainly
black holes operate.

Objects can move between universes through white/black holes (objects can be exchanged
inside universes). When a connection is established with a white/black hole between two
universes, the universe with the higher IR is considered to have a white hole, and that with the
lower IR is considered to have black holes. Objects are then transferred from the white holes
in the universe of origin to the black holes in the target universe. To exchange objects through
universes and carry out the exploitation, all the universes are assumed to have wormholes,
regardless of their IR, in order to randomly transport objects. To provide local changes for each
universe and have a high probability of improving the IR using wormholes, it is assumed that
wormhole tunnels are always established between a universe and the best universe formed
so far. Two coefficients are fundamental for the optimal operation of the MVO: wormhole
existence probability (WEP) and travel distance rate (TDR).

Equation (12) below defines WEP as the probability of the existence of wormholes
in the universes, which increases linearly over the iterations in order to advance in the
exploitation process.

WEP = Min + l ·
(

Max−Min
L

)
(12)

In other words, this equation can generate a rate of change based on the sum of a
minimum value (Min = 0.2) and a maximum value (Max = 1), which depend on the
algorithm and the iterative process, where l is the current iteration and L is the maximum
number of iterations. This enables changes in the exploration and exploitation levels of the
optimization technique.

Additionally, in Equation (13), TDR is the factor that defines the rate of variation or
distance over which an object can be transported through a wormhole around the best
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universe obtained thus far. Unlike WEP, TDR increases over the iterations to have a more
precise local exploitation/search around the best universe obtained.

TDR = 1−
(

l1/P

L1/P

)
(13)

where P denotes the level of precision of the exploitation of the algorithm, which aims to
guarantee that, the higher its value, the faster and more precise the search (exploitation) of
the algorithm. Depending on the problem addressed, WEP and TDR can be considered
constant values, and they change according to the needs of each problem. In this study,
as indicated at the start of the problem, P must be a variable due to the nonlinear parameters
that the equations use.

Figure 1 shows the existing relationship between WEP and TDR. It indicates that
WEP grows in a linear fashion from its initial value (0.2 in this case) up to 1 as the iterations
increase. TDR starts from an initial value of 0.6 and falls to its minimum value (TDR = 0)
in an exponential manner (e−x). Thus, these factors can be used to control the convergence
of the algorithm by controlling the step forward of the universes inside the solution space.

Figure 1. WEP vs. TDR, taken from [22].

3.1.4. Evolution of the Universes in the Iterative Process

For the evolution of the universes contained in the population, the MVO generates two
strategies to alter its universes from one iteration to the next so that they finally converge
toward the universe with the best characteristics. The first change made to the universes
refers to the interaction between white and black holes; the second one is the generation of
wormholes. Each iteration of the algorithm enables each one of the universes contained in
the population to apply or not both movement strategies based on the evaluation of the
local incumbent (of each universe) and the global incumbent of the set of universes, as well
as the generation of random decision numbers. Thus, the objects inside each universe
can be changed or not depending on a decision that contains a greedy random factor that
boosts the exploration of the algorithm [13].

3.1.5. Updating the Universes Using the Interaction between White and Black Holes

The MVO presents the relationship between white and black holes, which enables the
exchange of objects between universes through white/black holes and where a universe
can update the value of an object based on the information of the other object from another
universe. The interaction between them occurs as a function of IR. Objects travel from a
white hole of origin to a target black hole. Thus, objects in a universe disappear through
a black hole and are replaced with others coming from white holes. Equation (14) shows
how the normalized inflation rate of the i-th universe is obtained, where the values of
IR calculated for each universe in the population are normalized. When this equation
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is applied to the set of universes, we obtain the vector of nx1 (where n is the number of
solutions or universes) with normalized values in a [0− 1] range.

NI(IRi) =

(
IRi

max(IRi)

)
(14)

The white/black tunnel is produced by Equation (15), where each j object in the i
universe can be replaced with the j object of the k universe, and the position of k is selected
by means of a roulette wheel that offers the option of randomly selecting any universe in
the solution space. The exchange of objects between universes takes place for the same
element, and it is performed by comparing a random number r1 with the normalized
inflation rate (NI(IRi)).

Ui,j =

{
Uk,j r1 < NI(IRi)

Ui,j r1 ≥ NI(IRi)
∀i = 1, 2, · · · , n; ∀j = 1, 2, · · · , d (15)

where Uk,j is the j object of the k universe selected by the roulette wheel, and it is transported
through the white/black tunnel to the i universe. An object is transported to the i universe
if and only if the r1 random value in the [0− 1] range is lower than the NI(IRi). Otherwise,
there is no exchange of objects through white/black tunnels; that is, the object of the
Ui,j universe will not be updated and it will keep its current value. To determine the
k-th universe to which the j object will be moved, Equation (16) is implemented. In said
equation, k is determined using the roulette wheel function [30], which selects a random
number in the [1− n] range, where n is the number of solutions proposed for the problem.

k = RouletteWheelSelection(−NI) (16)

Algorithm 1 presents the pseudocode to select the k universe by means of Equation (16).

Algorithm 1 Proposed pseudocode of the roulette wheel to select the k universe to transport
the j element to the i universe.

1: function choice = RouletteWheelSelection(weights)
2: accumulation = cumsum(weights);
3: p = rand() ∗ accumulation(end);
4: chosen_index = −1;
5: for index = 1 : length(accumlation) do
6: if (accumlation(index) > p) then
7: chosen_index = index;
8: break
9: end if

10: chose = chosen_index;
11: end for

Importantly, as this is a minimization problem, the selection using the roulette wheel
should be performed with −NI. If the problem to be solved is a maximization one, −NI
should be changed for the positive NI.

3.1.6. Updating Universes Based on Wormholes

In the MVO algorithm, the optimization process starts with the creation of a set of
random universes. When the objects in each one of the universes are updated through the
interaction of white and black holes at each iteration, the objects in universes with high
IR tend to move to the universes with low inflation rates through multiple white/black
tunnels. Importantly, the IRs represent the evaluation of the objective function, in this case,
power losses. As this is a minimization problem, the objects tend to move to universes
with a lower IR (fewer power losses). Meanwhile, each universe experiences random
teleportation of its objects through wormholes to the best universe (Best_U(1, j)). This
process is repeated until a stopping criterion is met (for instance, a maximum number of
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iterations). To guarantee the changes in each universe, there should be a high probability
of improvement of the IR by means of wormholes, assuming that the wormhole tunnels
are always established between new universes randomly generated based on r4 and
Best_U(1, j), i.e., the best universe, which are represented in Equation (17).

Ui,j =




[

Best_U(1,j) + TDR · ((ub− lb) · r4 + lb)
]

r3 < 0.5[
Best_U(1,j) − TDR · ((ub− lb) · r4 + lb)

]
r3 ≥ 0.5

r2 < WEP

Ui,j r2 ≥WEP
∀i = 1, 2, · · · , n; ∀j = 1, 2, · · · , d

(17)

This equation can be used to generate new j objects for the i (Ui,j) universe at each
iteration, which depends on WEP and r2, i.e., a random number in the [0− 1] range. If r2
is lower than WEP, a new j element will be generated for the i universe as a function of
the value that r3 takes, i.e., a random number in the [0− 1] range. If r3 is lower than 0.5,
the lower bound (lb) is subtracted from the upper bound (ub). The result is multiplied by
a random number (r4) in the [0− 1] range. The value thus obtained is added lb and then
multiplied by the TDR parameter. Finally, the outcome of this operation is added together
with Best_U(1, j), which is the j object of the best universe obtained thus far (incumbent
solution). If r3 is higher than or equal to 0.5, the lower bound (lb) is subtracted from the
upper bound (ub), and the result is multiplied by r4. The resulting value is added to the lb
bound and then multiplied by the TDR parameter. Finally, the value obtained with this
operation is subtracted with Best_U(1, j). However, if r2 is greater than or equal to WEP,
a new j object will not be created in the i universe; instead, the current value of the j object
will be maintained until r2 is lower than WEP.

Black holes, white holes, and wormholes are updated at each iteration until the
algorithm meets the stopping criteria described below.

3.1.7. Stopping Criteria

The master stage uses two stopping criteria: (1) the counter reaches the maximum
number of iterations or (2) the algorithm reaches the limit of non-improvement iterations.
These stopping criteria are detailed as follows:

• The master stage will finish the iterative process when the incumbent solution (the
best obtained thus far) is not updated after an x number of consecutive iterations. This
is possible by adding a non-improvement counter to the code (Iter_NM).

• The computational analysis will finish the iterative process when the algorithm reaches
a maximum number of allowable iterations (L).

3.2. Slave Stage

The slave stage calculates the adaptation function associated with each solution
(universe) provided by the master stage. That is, the slave stage enables us to determine the
electrical variables of the system in each possible scenario of power injection by the DGs,
which is used to establish the electrical power losses in the DC network (i.e., the objective
function to be solved in this study), as well as the set of constraints that composes the
problem. For this purpose, it is necessary to solve the load flow in the DC network by
means of an iterative method and thus determine the impact of the proposed solution
and its compliance with the constraints of the OPF problem. This study aims to solve
the load flow using the SA method presented in [4], which was selected thanks to its
excellent performance in terms of solution and convergence time. In order to implement
said method, the following equation can be used to find the solution to the load flow:

Gdd · vd = −D−1
d (vd)Pd − Gdg · vg (18)

where Gdd is a positive symmetrical matrix that contains the conductances of the conducting
lines and the resistive loads of the DC network, except for the slack node; vg is the voltage
profile of the slack generator; and vd is the voltage in the demand nodes of the system.
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By means of a mathematical development applied to (18), we can obtain the equation that
can be used to calculate the nodal voltages in the demand nodes:

vd = −G−1
dd [D−1

d (vd)Pd + Gdg · vg] (19)

In order to calculate the vd voltage profiles, an iterative process should be implemented
to find such values with an almost-null convergence error. For that purpose, a t counter
should be added to Equation (19). As a result, the equation is:

vt+1
d = −G−1

dd D−1
d (vt

d)Pd + Gdg · vg (20)

Finally, Algorithm 2 presents the pseudocode of the master–slave methodology (MVO-SA)
that solves the OPF problem.

Algorithm 2 Hybrid MVO-SA optimization algorithm.

1: Load system data
2: Initialize the parameters of the algorithms
3: Generate initial population of universes (MUniverses)
4: Calculate adaptation function employing slave stage (MOUniverses)
5: Select the incumbent solution (Best_U)
6: Initialize P, Max, and Min parameters
7: while l ≤ L do
8: Normalize inflation rate;
9: Initialize WEP and TDR parameters

10: for Each universe(i) do
11: for Each object(j) do
12: r1 = random[0, 1];
13: if r1 < NI(IRi) then
14: k = RouletteWheelSelection(−NI);
15: U(i, j) = U(k, j);
16: end if
17: r2 = random[0, 1];
18: if r2 < WEP then
19: r3 = random[0, 1];
20: r4 = random[0, 1];
21: if r3 < 0.5 then
22: U(i, j) = Best_U(1, j) + TDR ∗ (ub− lb) ∗ r4 + lb;
23: else
24: U(i, j) = Best_U(1, j)− TDR ∗ (ub− lb) ∗ r4 + lb;
25: end if
26: end if
27: end for
28: end for
29: Calculate adaptation function by means of SA
30: Update incumbent solution
31: l = l + 1;
32: end while

3.3. Comparison of Methods

To validate the solution method proposed in this paper, it was compared with four
other solution methodologies reported in the literature: PSO, BH, CGA, and ALO. They
were selected due to their excellent performance and convergence in the solution to the OPF
problem in DC networks [14,19]. All these methods employ a master–slave methodology.
The master stage employs the respective optimization algorithm, and the slave stage uses
the SA method proposed in [4] to solve the load flow. To conduct the tests and improve the
impact on the electrical systems, the 21- and 69-node systems presented in [2,21,31] were
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adapted here. Such impact was evaluated using three percentages of penetration of the
electrical power supplied by the slack generator: 20%, 40%, and 60%.

To guarantee the same conditions, each one of the solution methodologies used in this
study was tuned in each one of the test systems (21 and 69 nodes). The objective of this step
is that each one of the techniques achieves the best possible solution in terms of electrical
power losses. To carry out said tuning, this study implemented the PSO optimization
algorithm used in [21]. The tuning parameters used in this case were a population size
in a [2–100] range, a maximum number of iterations in a [1–1000] range, and a number
of non-improvement iterations in a [1–1000] range. In this tuner, the number of particles
was 10 and the number of iterations was 300. Additionally, for the MVO, the P parameter
was optimized employing a [1–10] range, which represents the level of precision of the
algorithm’s exploitation. Tables 1 and 2 report the results obtained after the tuning of each
one of the techniques for the 21- and the 69-node system, respectively.

Table 1. Parameters of the continuous methods employed here in the master stage for the
21-node system.

21-Node System

Method MVO ALO BH CGA PSO

Number of particles 71 79 67 52 49
Maximum iterations 613 769 317 592 679

Non-improvement iterations 504 441 317 346 263
P parameter 8 — — — —

Table 2. Parameters of the continuous methods employed here in the master stage for the
69-node system.

69-Node System

Method MVO ALO BH CGA PSO

Number of particles 86 77 35 40 58
Maximum iterations 656 182 566 622 723

Non-improvement iterations 584 182 566 443 252
P parameter 7 — — — —

4. Test Scenarios and Considerations

In order to evaluate the effectiveness and robustness of the methodology proposed
in this study, two test systems were implemented: a 21-node system [31] and a 69-node
system [21]. These systems are widely used in the specialized literature to validate the
impact of optimization techniques implemented to solve the OPF problem. Such test
systems are composed of constant power loads and a single slack generator in a scenario
without DGs, which constitutes the “base case”.

4.1. 21-Node System

Figure 2 presents the 21-node system. The base case of this system employs a base
voltage of 1 kV and a base power of 100 kW. In this system, the slack generator produces
581.6 kW, and the power losses amount to 27.603 kW. With respect to the current limits
of the branches, homogeneous networks were considered for both systems. A 900-kcmil
conductor (Imax

ij = 520 A) was selected for the 21-bus test system based on the operation of
the base case (without DGs installed). The voltage bounds of both test systems were set
at +/− 10% of the nominal voltage [32]. Because this study addresses the OPF problem,
the location of the DGs here is the same as that reported in [17]; therefore, they are located
at nodes 9, 12, and 16 in the network. Importantly, the evaluation of the base case does
not consider power injection or the installation of such devices in the network. In this
test system, the minimum power was 0 kW for all the DGs at all levels of penetration.
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In addition, the maximum powers of distributed generation were 116.3207, 232.6414,
and 348.9620 kW, which correspond to the 20%, 40%, and 60% of the power provided by
the slack generator in the base case, respectively.
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Gen slack (v)

Figure 2. The 21-node system.

Table 3. Electrical parameters for the 21-node system.

Output
Node

Input
Node R (pu) P(pu) Output

Node
Input
Node R (pu) P(pu)

1 (Slack) 2 0.0053 −0.70 11 12 0.0079 −0.68
1 3 0.0054 0 11 13 0.0078 −0.10
3 4 0.0054 −0.36 10 14 0.0083 0
4 5 0.0063 −0.04 14 15 0.0065 −0.22
4 6 0.0051 −0.36 15 16 0.0064 −0.23
3 7 0.0037 0 16 17 0.0074 −0.43
7 8 0.0079 −0.32 16 18 0.0081 −0.34
7 9 0.0072 −0.80 14 19 0.0078 −0.09
3 10 0.0053 0 19 20 0.0084 −0.21

10 11 0.0038 −0.45 19 21 0.0082 −0.21

Table 3 shows the connections between the nodes in the 21-node network, specify-
ing the output and input nodes, the resistance of each conduction line, and the powers
demanded by each one of the nodes in the system in p.u.

4.2. The 69-Node System

Figure 3 shows the electrical diagram of the 69-node system, which is composed
of 68 lines and 69 nodes. Originally, this test system operates in DC [21], but thanks to
the adaptation in the previously cited document, it was possible to implement it for DC
networks. For such adaptation, the base voltage was 12.66 kV, the power base was 100 kV,
and the active elements were disregarded.

slack
DC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

51

52

28 29 30 31 32 33 34 35

Figure 3. The 69-node system.

In this test system, the slack generator produces 4043.1 kW, and the power losses equal
153.85 kW. With respect to the current limits, a 400-kcmil electrical conductor (Imax

ij = 335 A)
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was selected for this test system considering a non-telescopic configuration, as well as the same
voltage limits used in the 21-bus test system [32]. Finally, the location of the DGs was defined as
in [21], i.e., at nodes 26, 61, and 66. In this test system, the minimum power was 0 kW for all the
DGs at all levels of penetration. In addition, the maximum powers of distributed generation
were 808.6195, 1617.2390, and 2425.8585 kW, which correspond to 20%, 40%, and 60% of the
power provided by the slack generator in the base case, respectively.

Table 4 details the connection between the nodes in the network of the 69-node
system, the output and input nodes, the resistance of each conduction line, and the power
demanded by each one of the nodes in the system.

Table 4. Electrical parameters for the 69-node system.

Output
Node

Input
Node R (Ω) P (kW) Output

Node
Input
Node R (Ω) P (kW)

1 2 0.0005 0 3 36 0.0044 −26
2 3 0.0005 0 36 37 0.0640 −26
3 4 0.0015 0 37 38 0.1053 0
4 5 0.0215 0 38 39 0.0304 −24
5 6 0.3660 −2.6 39 40 0.0018 −24
6 7 0.3810 −40.4 40 41 0.7283 −102
7 8 0.0922 −75 41 42 0.3100 0
8 9 0.0493 −30 42 43 0.0410 −6
9 10 0.8190 −28 43 44 0.0092 0

10 11 0.1872 −145 44 45 0.1089 −39.2
11 12 0.7114 −145 45 46 0.0009 −39.2
12 13 10.300 −8 4 47 0.0034 0
13 14 10.440 −8 47 48 0.0851 −79
14 15 10.580 0 48 49 0.2898 −384
15 16 0.1966 −45 49 50 0.0822 −384
16 17 0.3744 −60 8 51 0.0928 −40.5
17 18 0.0047 −60 51 52 0.3319 −3.6
18 19 0.3276 0 9 53 0.1740 −4.35
19 20 0.2106 −1 53 54 0.2030 −26.4
20 21 0.3416 −144 54 55 0.2842 −24
21 22 0.0140 −5 55 56 0.2813 0
22 23 0.1591 0 56 57 15.900 0
23 24 0.3463 −28 57 58 0.7837 0
24 25 0.7488 0 58 59 0.3042 −100
25 26 0.3089 −14 59 60 0.3861 0
26 27 0.1732 −14 60 61 0.5075 −1244
3 28 0.0044 −26 61 62 0.0974 −32

28 29 0.0640 −26 62 63 0.1450 0
29 30 0.3978 0 63 64 0.7105 −227
30 31 0.0702 0 64 65 10.410 −59
31 32 0.3510 0 65 66 0.2012 −18
32 33 0.8390 −10 66 67 0.0047 −18
33 34 17.080 −14 67 68 0.7394 −28
34 35 14.740 −4 68 69 0.0047 −28

5. Simulations and Results

This section analyzes the results obtained from the implementation of the solution
methods in the two test systems. All the simulations were conducted in Matlab (version
2018b), a numerical computing system, running on a desktop computer with 4GB of RAM,
an Intel® Core™ i5-8250U CPU @1.60GHz 1.80GHz processor, a 225-GB solid state drive,
and Windows 10 PRO. All the methodologies were executed 100 times in order to evaluate
the repeatability of the solutions and the standard deviation of each one of the techniques.
The following subsection presents their results in the two test systems.

5.1. 21-Node System

Table 5 reports the results of each one of the methods for the OPF problem in the 21-node
system at three maximum levels of penetration of distributed generation: 20%, 40%, and 60% of
the power provided by the slack node in the base case. From left to right, said table specifies
the proposed solution method; the nodes where the DGs are located and the power each one
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of them injects into the network in (kW); the minimum power losses (Ploss) in (kW) and the
percentage of reduction compared to the base case (%); the average value of Ploss in (kW) and the
average reduction with respect to the base case (%); the standard deviation in percentage, which
was obtained after each solution method was executed 100 times; the worst voltage; and the
maximum current in the DC grid employing the distributed power injection proposed by each
solution methodology. Figures 4 and 5 are bar charts that show the differences, in percentage,
between the algorithms and the new proposed methodology regarding minimum Ploss and
average Ploss, respectively.

Table 5 can be used to compare the results obtained by different solution methodologies
proposed for the 21-node system. Columns 6 and 7 in this table indicate that all the solution
methods satisfied the voltage and current bounds established here for the 21-bus test system.
Figures 4 and 5 were created to analyze the minimum and average reduction of power losses
in the system. Figure 4 details the minimum loss reductions obtained by each methodology
at different DG penetration levels: 20%, 40%, and 60%. In the first case, i.e., a 20% penetra-
tion of DG, PSO reduced the minimum Ploss by 52.2382%, outperforming the MVO by only
5 × 10−5%. The MVO took the second place in this regard (52.2381%) but outperformed the
ALO by 0.0039%. The CGA and BH are in fourth and fifth position, respectively, outperformed
by the MVO by 0.0485% and 0.4256%, respectively. The proposed methodology achieved
an average reduction in minimum Ploss of 0.1195%. In the scenario that allows a 40% power
injection, the MVO presented the greatest reduction in minimum Ploss with respect to the base
case: 77.8233%. It outperformed PSO, ALO, CGA, and BH by 5× 10−5%, 0.0013%, 0.0058%,
and 0.1953%, respectively. In the case of 60% penetration, the MVO and PSO exhibited the
same reduction in minimum Ploss, i.e., 89.9083%, thus outperforming the ALO by 0.0012%,
the CGA by 0.0176%, and the BH by 0.1091%. In terms of average Ploss in the 21-node system,
the MVO outperformed all the other solution techniques at the three penetration percentages (see
Figure 5). At a 20% penetration, the MVO presented an average reduction in Ploss of 52.2363%,
thus outperforming PSO, ALO, CGA, and BH by 0.1168%, 0.3007%, 0.3635%, and 3.2155%,
respectively. At a 40% penetration of distributed generation, the MVO presented a reduction
in average Ploss of 77.8229%, thus outperforming ALO by 0.0272%, PSO by 0.0950%, CGA by
0.0958%, and BH by 1.5013%. Finally, at a 60% penetration, the MVO exhibited a reduction
in mean Ploss of 89.9080%, thus outperforming ALO by 0.0082%, PSO by 0.0590%, CGA by
0.0954%, and BH by 0.9285%. This demonstrates that the MVO is superior to the other techniques
in terms of precision and repeatability.

Table 5. Results of the simulations of the 21-node system.

21-Node System

Power Losses
Method Node

/Power (kW) Minimum (kW)
/Reduction (%)

Average (kW)
/Reduction (%) STD (%)

Vworst (p.u) Imax (A)

Without DGs - - - 27.603 - - - - - - (0.9–1.1) 520

20% Penetration

9/0.0004

12/17.96MVO
16/98.36

13.1822/52.24 13.1828/52.24 0.003 0.96/20 380.60

9/0.03

12/16.85ALO
16/99.44

13.1833/52.23 13.2658/51.94 1.14 0.96/20 380.60

9/1.15

12/32.73BH
16/82.44

13.2997/51.81 14.0703/49.02 2.418 0.95/17 380.72



Sustainability 2021, 13, 8703 17 of 28

Table 5. Cont.

21-Node System

Power Losses
Method Node

/Power (kW) Minimum (kW)
/Reduction (%)

Average (kW)
/Reduction (%) STD [%]

Vworst (p.u)
.

Imax (A)

Without DGs - - - 27.603 - - - - - - (0.9–1.1) 520

9/0.07

12/17.59CGA
16/98.52

13.1957/52.19 13.2831/51.87 0.279 0.96/20 380.76

9/0

12/17.73PSO
16/98.59

13.1823/52.24 13.2150/52.12 0.783 0.96/20 380.60

40% Penetration
9/30.60

12/72.97MVO
16/129.06

6.1208/77.82 6.1209/77.82 0.002 0.97/20 257.22

9/30.50

12/72.56ALO
16/129.58

6.1211/77.82 6.1284/77.80 0.8 0.97/20 257.22

9/41.01

12/67.44BH
16/123.66

6.1747/77.63 6.5352/76.32 3.238 0.97/20 257.81

9/32.71

12/72.06CGA
16/127.87

6.1224/77.82 6.1473/77.73 0.236 0.97/20 257.23

9/30.43

12/73.22PSO
16/128.99

6.1208/77.82 6.1471/77.73 1.243 0.97/20 257.22

60% Penetration
9/93.33

12/107.48MVO
16/148.16

2.7853/89.91 2.7854/89.91 0.002 0.98/20 137.56

9/93.09

12/108.49ALO
16/147.38

2.7856/89.91 2.7876/89.90 0.044 0.98/20 137.57

9/91.48

12/110.59BH
16/145.10

2.8154/89.80 3.0416/88.98 4.76 0.98/20 139.38

9/92.13

12/105.11CGA
16/151.64

2.7902/89.89 2.8117/89.81 0.449 0.98/20 137.66

9/93.34

12/107.45PSO
16/148.18

2.7853/89.91 2.8017/89.85 2.007 0.98/20 137.56
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Figure 4. Percentage of reduction in minimum losses obtained by the MVO in the 21-node system
compared to other methodologies.

To complete the analysis of the 21-node system, the repeatability of the solutions was
examined. For that purpose, Figure 6 presents the reduction in standard deviation obtained by
the proposed solution methodology compared to that of its counterparts. This figure indicates
that the MVO outperforms all the other optimization techniques at all the penetration levels
allowed in the 21-node system. At 20% penetration, the MVO outperforms the CGA, PSO, ALO,
and BH by 0.27560%, 0.78019%, 1.13683%, and 2.41501%, respectively. At 40% DG penetration,
the MVO outperforms the CGA (in second place) by 0.23380%, which is followed by ALO (in
third place) with a difference of 0.79843%. PSO and BH are in fourth and fifth place, outperformed
by 1.24157% and 3.23596%, respectively. Finally, at a 60% penetration, the MVO presents an
average reduction of 1.1834% with respect to the other techniques. Based on these data, it can
be concluded that the solution is highly reproducible in this system, which guarantees that a
good solution is obtained every time the algorithm is executed. By contrast, all the other methods
exhibit a standard deviation higher than that of the technique proposed in this paper.

Figures 4–6 use a logarithm with base 10 to better visualize the differences between the
techniques. In Figure 4, the number in red indicates that the MVO was outperformed by PSO.

Figure 5. Percentage of reduction in average losses obtained by the MVO in the 21-node system
compared to other methodologies.
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Figure 6. Percentage of standard deviation obtained by the MVO in the 21-node system compared to
other methodologies.

5.2. The 69-Node System

Table 6 presents the results of the techniques used to solve the OPF problem in the
simulation of the 69-node system. Columns 6 and 7 in this table indicate that all the solution
methods satisfied the voltage and current limits established here for the 69-bus test system.

Table 6, which was organized the same way as Table 5, presents the results of the
solution methodologies proposed for the 69-node system. As in the case of the 21-node
system, Figures 7 and 8 can be used to compare the percentages of minimum Ploss and
average Ploss, respectively. Regarding minimum Ploss, Figure 7 reports the reduction in
minimum power losses obtained by the MVO compared to the other methods. At a 20%
penetration, PSO achieved a reduction percentage of 63.2853%, outperforming the MVO
(in second place) by an almost negligible percentage of 7x10−6%. In this scenario, the MVO
outperformed the ALO, CGA, and BH in terms of minimum losses by 0.0479%, 0.0646%,
and 0.8576%, respectively. At a 40% power injection, the MVO achieved the greatest
reduction in minimum Ploss with respect to the base case: 90.9052%. Hence, it outperformed
PSO, ALO, CGA, and BH by 0.0004%, 0.0104%, 0.0116%, and 0.4025%, respectively. In the
case of 60% penetration, the MVO and PSO produced the same reduction in minimum
Ploss (96.3888%), thus outperforming ALO by 0.0013%, CGA by 0.0004%, and BH by
0.2134%. Figure 8, which reports the reduction in average Ploss in the 69-node system,
indicates that the MVO outperforms all the other techniques at the three penetration
percentages, except for PSO at a 60% penetration, where they produced the same result.
At a 20% penetration, the MVO achieved a reduction in average Ploss of 63.2828%, thus
outperforming PSO, ALO, CGA, and BH by 0.1380%, 0.5912%, 0.3855%, and 3.7973%,
respectively. At a 40% penetration, the MVO produced a reduction in average Ploss of
90.9049%, thus outperforming PSO by 0.2080%, ALO by 0.2822%, CGA by 0.1043%, and BH
by 3.0280%. Finally, at a 60% penetration level, the MVO and PSO presented the same
reduction in mean Ploss, i.e., 96.3888%, thus outperforming ALO by 0.1142%, CGA by
0.0156%, and BH by 1.7997%. Although the results in the 69-node system are similar,
in most cases, the MVO outperforms the other techniques employed here for comparison,
especially in terms of average Ploss.

To complete the analysis of the 69-node system, the repeatability of the solutions proposed
here for the OPF problem was examined using the standard deviation. In Figure 9, the MVO
outperforms most of the other optimization techniques in terms of each one of their average
standard deviations, except for PSO at a 60% penetration, which produced a result 6 × 10−6%
better, a difference that is almost negligible. At a 20% penetration, the MVO outperforms all the
other techniques, with an average standard deviation of 1.6131%; likewise, at a 40% penetration,
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the MVO outperforms all the other algorithms, with an average standard deviation of 5.3906%.
Finally, although PSO outperformed the MVO at a 60% penetration, the latter presents an
average standard deviation of 7.0432% with respect to all the methods used for comparison.
These data show that the MVO is the most precise and repeatable technique in different test
systems at multiple penetration percentages.

Table 6. Results of the simulations of the 69-node system.

69-Node System

Power Losses
Method Node

/Power (kW) Minimum (kW)
/Reduction (%)

Average (kW)
/Reduction (%) STD (%)

Vworst (p.u) Imax (A)

Without DGs - - - 153.85 - - - - - - (0.9–1.1) 335

20% Penetration
26/5.74× 10−5

61/564.21MVO
66/244.40

56.4856/63.29 56.4903/63.28 0.011 0.961/64 247.80

26/0

61/616.06ALO
66/192.22

56.5594/63.24 57.3990/62.69 1.159 0.961/64 247.83

26/0.29

61/330.66BH
66/471.60

57.8050/62.43 62.3316/59.49 4.494 0.962/61 248.38

26/1.60

61/560.06CGA
66/246.25

56.5850/63.22 57.0826/62.90 0.418 0.961/64 247.86

26/8.15× 10−8

61/566.67PSO
66/241.94

56.4856/63.29 56.7017/63.15 0.407 0.961/64 247.80

40% Penetration
26/157.93

61/1214.34MVO
66/244.97

13.9923/90.91 13.9929/90.90 0.005 0.985/21 180.57

26/156.07

61/1234.42ALO
66/226.40

14.0084/90.89 14.4271/90.62 2.378 0.985/21 180.60

26/141.05

61/1093.53BH
66/369.47

14.6116/90.50 18.6515/87.88 12.623 0.984/21 181.66

26/156.56

61/1189.74CGA
66/270.64

14.0101/90.89 14.1533/90.80 0.644 0.985/21 180.59

26/158

61/1211.24PSO
66/247.99

13.9929/90.90 14.3129/90.70 5.936 0.985/21 180.57
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Table 6. Cont.

69-Node System

Power Losses
Method Node

/Power (kW) Minimum (kW)
/Reduction (%)

Average (kW)
/Reduction (%) STD (%)

Vworst (p.u)
.

Imax (A)

Without DGs - - - 153.85 - - - - - - (0.9–1.1) 335

60% Penetration
26/375.11

61/1588.50MVO
66/245.73

5.5558/96.39 5.5558/96.39 0.006 0.995/12 133.13

26/380.38

61/1584.26ALO
66/250.89

5.5577/96.39 5.7315/96.27 6.332 0.995/12 132.64

26/401.27

61/1417.44BH
66/343.43

5.8840/96.18 8.3247/94.59 21.543 0.995/12 136.89

26/373.60

61/1589.01CGA
66/242.18

5.5565/96.39 5.5797/96.37 0.298 0.995/12 133.49

26/375.11

61/1588.47PSO
66/245.74

5.5558/96.39 5.5558/96.39 5.86 × 10−4 0.995/12 133.13

Figure 7. Percentage of reduction in minimum losses obtained by the MVO in the 69-node system
compared to other methodologies.
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Figure 8. Percentage of reduction in average losses obtained by the MVO in the 69-node system
compared to other methodologies.

Figure 9. Percentage of standard deviation obtained by the MVO in the 69-node system compared to
other methodologies.

Figures 7–9 use a logarithm with base 10 to better visualize the differences between the
techniques. In Figures 7 and 9, the number in red indicates that the MVO was outperformed
by PSO.

In order to clearly establish which optimization technique could provide the best
solution to the OPF problem regardless of the size of the DC network, the general behavior
of all the algorithms was analyzed by evaluating their results regarding minimum and
average Ploss. Said results are reported in Figures 10–12. These figures can be used to
analyze the precision of the algorithms and determine the technique that offers the best
behavior in terms of the solution for each system.
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Figure 10 presents the mean of the minimum Ploss and average Ploss in the 21-node
system. The percentages of reduction of mean Ploss at 20%, 40%, and 60% penetration
levels were averaged; the same process was applied to the average Ploss. This was the
procedure followed here to obtain the results in Figure 10, which can be used to determine
the algorithm that achieves the best minimum and average Ploss in the 21-node system.
Additionally, Figure 13 presents the differences between the MVO and the other optimiza-
tion algorithms in the 21-node system. In said figure, the MVO presents an adequate
reduction in average minimum Ploss, only outperformed by PSO by 8 × 10−7% (an almost
negligible value). The MVO outperformed ALO, CGA, and BH by 0.002128%, 0.023958%,
and 0.243308%, respectively. Regarding the mean values of the average Ploss, the MVO
worked better than the other solution methodologies, outperforming PSO by 0.090245%,
CGA by 0.184925%, ALO by 0.112014%, and BH by 1.881772%. This shows that the MVO
is the best solution methodology for the 21-node system.

Figure 10. Average percentage of losses in the 21-node system.

Figure 11. Average percentage of losses in the 69-node system.

Figure 11 presents the mean of the minimum Ploss and average Ploss in the 69-node
system. The percentages of reduction in mean Ploss and average Ploss at 20%, 40%, and 60%
injection levels obtained by each one of the optimization techniques were averaged, which
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produced the results reported in Figure 11. As with the 21-node system, this figure can be
used to establish which algorithm can obtain the best minimum and average Ploss. Like-
wise, Figure 14 highlights the differences between the MVO and the other optimization
algorithms. In the 69-node system, the MVO achieved the best percentage of reduction
in average minimum Ploss, outperforming PSO by 0.0015%, ALO by 0.019875%, CGA by
0.025518%, and BH by 0.491145%. Regarding the mean of average Ploss, the MVO outper-
formed PSO, CGA, ALO, and BH by 0.115168%, 0.168297%, 0.329049%, and 2.874850%,
respectively. This demonstrates that the MVO is the best solution methodology in the 21-
and 69-node systems in terms of solution quality; furthermore, its performance improves
as the network grows.

Figure 12. Robustness of the solution methodologies proposed to solve the OPF problem.

Figure 13. Percentage of improvement obtained by the MVO in the 21-node system compared to
other methodologies.
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Figure 14. Percentage of improvement obtained by the MVO in the 69-node system compared to
other methodologies.

Finally, to demonstrate the robustness of each one of the optimization techniques,
Figure 12 reports the average minimum Ploss percentages and average Ploss percentages
obtained by the solution methods in the two test systems at different DG penetration
levels. These values are the result of averaging the values obtained in each scenario and
test system. Therefore, the MVO presents the best minimum Ploss percentage, with an
average reduction of 0.1008%, and the best average Ploss level in the two test systems, with a
reduction of 0.7195% compared to the other methods tested here. Based on this analysis, it
can be concluded that the MVO offers the best solution to the OPF problem in a network
of any size. This demonstrates that, compared to other solution methodologies that have
achieved a high performance in the specialized literature, the methodology proposed in
this study can obtain the highest percentage of reduction in minimum and average Ploss by
solving the optimal power flow problem of the DGs in the DC network.

6. Processing Time Analysis

The previous sections presented and discussed the excellent results obtained by the
MVO in terms of repeatability and solution quality for solving the optimal power problem
in DC grids of any size. However, these excellent results also come at a cost: the processing
time they require. With respect to the 21-bus test system, the average processing time
required by the solution methods were the following: MVO (11.69s), ALO (6.378s), BH
(2.73s), CGA (3s), and PSO (3.78s). According to these results, the proposed method
presented the longest processing time. Nevertheless, it is less than 13s, which, in real
conditions of operation, is considered an excellent time to solve the optimal power flow
problem because, in real life, the power flow analysis of electrical networks takes hours
or, only in some cases, minutes. In the case of the 69-bus test system, all the processing
times required by the solution methods increased: MVO (132s), ALO (9.67s), BH (13.91s),
CGA (17.38s), and PSO (13.67s). Again, the MVO exhibited the longest processing time in
the 69-bus test system, with an average value close to two minutes [33,34]. Nevertheless,
said time is also adequate for solving the problem of optimal power flow in the 69-bus
test system because of the same reasons explained regarding its 21-bus counterpart. These
results demonstrate that, to obtain the best results in terms of repeatability and quality
solution, it is necessary to sacrifice a little time in the search process conducted by the
optimization algorithm. Due to this problem (i.e., the fact that the MVO takes longer to
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solve the optimal power flow problem), future studies should use parallel processing tools
to improve the performance of the MVO in terms of processing times so that this solution
method offers the best trade-off between quality solution and required processing time.

7. Conclusions

This paper proposed the implementation of a new optimization technique (MVO)
to solve the OPF problem in DC networks through a master–slave methodology. In the
master stage, the MVO determines the electrical power to be injected by each DG located
in the DC network. In the slave stage, the numerical method known as SA establishes the
impact of every solution proposed by the master stage on the objective function (reduction
in power losses) and the constraints of the problem. In order to prove the efficiency and
quality of the new solution methodology employed in this document, it was compared
with four other optimization techniques: ALO, BH, CGA, and PSO. Each test was con-
ducted using three levels of distributed generation penetration: 20%, 40%, and 60%. Such
percentages represent the power provided by the main generator in the network (slack)
in the base case (without DGs). The results and discussion here demonstrated that, when
used to find a good quality solution, the MVO presents a higher percentage of reduction
in average Ploss, as well as an excellent behavior regarding standard deviation. Thus, this
technique is efficient in terms of precision and repeatability. Likewise, in several cases,
the MVO obtained the best solution regarding minimum Ploss, only outperformed by PSO
by an almost negligible difference in the 21- and 69-node systems at a 20% penetration
level. Nevertheless, Figure 12 demonstrates that the MVO is the best technique to solve
the OPF problem in DC networks of any size thanks to its low standard deviation and
its great capacity to converge toward the best solution. The limitations of the solution
methodology proposed in this paper can be overcome by (1) including an analysis of the
problem of optimal location of DGs, (2) integrating and operating energy storage systems
in order to improve the operation quality of the grid, (3) reducing the processing times
required by the MVO and other solution methods (faster is better), and (4) using objective
functions that incorporate economic and environmental indices. Hence, future studies
should propose optimization strategies to solve the problem of optimal integration of DGs
using the MVO-SA presented here in order to solve the sizing problem (optimal power
flow problem). Moreover, further research should investigate the optimal location and
operation of energy storage elements inside the DC grid, which were not included in
this study. Parallel processing tools can be utilized to improve the performance of the
solution methodology in terms of processing times. With respect to the indices in the
objective functions, the methodology proposed here was only focused on the reduction of
Ploss. However, said objective function can be changed to reduce the operating costs of a
network or its CO2 emissions into the environment. Finally, it should be highlighted that
the MVO-SA methodology can also be used to solve the OPF problem in AC networks.
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