A New Biofertilizer Formulation with Enriched Nutrients Content from Wasted Algal Biomass Extracts Incorporated in Biogenic Powders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algae Biomass and the Extraction Procedure
2.2. Algae Extracts and Biomass Characterization
2.3. Adsorption and Release Test Using Crustacean Shell Powder Loaded with Algae Extracts
3. Results
3.1. Algae Extraction
3.2. Algae Extracts and Biomass Characterization
3.2.1. Dissolved Cations and Anions Content
3.2.2. Electronic Absorption Spectroscopy
3.2.3. Raman Spectroscopy
3.2.4. Heavy Metals Content
3.3. Microbiology
3.4. Adsorption and Release Tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Agricultural importance of algae. Afr. J. Biotechnol. 2012, 11, 11648–11658. [Google Scholar] [CrossRef]
- Grassi, F.; Mastrorilli, M.; Mininni, C.; Parente, A.; Santino, A.; Scarcella, M.; Santamaria, P. Posidonia residues can be used as organic mulch and soil amendment for lettuce and tomato production. Agron. Sustain. Dev. 2015, 35, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, C.; Schiedung, H.; Harrison, L.; Briese, C.; Ackermann, B.; Kant, J.; Schrey, S.D.; Hofmann, D.; Singh, D.; Ebenhöh, O.; et al. Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants. Environ. Boil. Fishes 2018, 30, 2827–2836. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef]
- Sharma, N.; Singhvi, R. Effects of chemical fertilizers and pesticides on human health and environment: A review. Int. J. Agric. Environ. Biotechnol. 2017, 10, 675–679. [Google Scholar] [CrossRef]
- Maena, H.; Busi, S. Use of microbial biofertilizers technology in agro-environmental sustainability. In New and Future Developments in Microbial Biotechnology and Bioengineering; Singh, J.S., Ed.; Elsevier: Cambridge, MA, USA, 2019; pp. 199–211. [Google Scholar] [CrossRef]
- Fatimah, S.; Alimon, H.; Daud, N.N. The effect of seaweed extract (Sargassum sp.) used as fertilizer on plant growth of Capsicum annum (chilli) and Lycopersicon esculentum (tomato). Indones. J. Sci. Technol. 2018, 3, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Karthik, T.; Sarkar, G.; Babu, S.; Amalraj, L.D.; Jayasri, M.A. Preparation and evaluation of liquid fertilizer from Turbinaria ornata and Ulva reticulata. Biocatal. Agric. Biotechnol. 2020, 28, 101712. [Google Scholar] [CrossRef]
- Soria-Mercado, E.I.; Villarreal-Gomez, L.J.; Rivas, G.G.; Ayala-Sanchez, N.E. Bioactive compounds from bacteria associated to marine algae. In Molecular Studies and Novel Applications for Improved Quality of Human Life; Sammour, R., Ed.; Intech Open: London, UK, 2012; pp. 25–44. [Google Scholar] [CrossRef]
- Soliman, A.S.; Ahmed, A.Y.; Abdel-Ghafour, S.E.; El-Sheekh, M.M.; Sobhy, H.M. Antifungal bio-efficacy of the red algae Gracilaria confervoides extracts against three pathogenic fungi of cucumber plant. Middle East J. Appl. Sci. 2018, 8, 727–735. [Google Scholar]
- Arumugam, N.; Chelliapan, S.; Kamyab, H.; Thirugnana, S.; Othman, N.; Nasri, N.S. Treatment of wastewater using seaweed: A review. Int. J. Environ. Res. Public Health 2018, 15, 2851. [Google Scholar] [CrossRef] [Green Version]
- Elizondo-González, R.; Quiroz-Guzmán, E.; Escobedo-Fregoso, C.; Magallón-Servín, P.; Peña-Rodríguez, A. Use of seaweed Ulva lactuca for water bioremediation and as feed additive for white shrimp Litopenaeus vannamei. Peer J. 2018, 6, e4459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brundu, G.; Chindris, A. Nutrients uptake and growth of Ulva lactuca (Linnaeus, 1753) in grey mullet (Mugil cephalus) wastewater versus natural estuarine water. Chem. Ecol. 2018, 34, 495–505. [Google Scholar] [CrossRef]
- Macchiavello, J.; Bulboa, C. Nutrient uptake efficiency of Gracilaria chilensis and Ulva lactuca in an IMTA system with the red abalone Haliotis rufescens. Lat. Am. J. Aquat. Res. 2014, 42, 523–533. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Nunes, S.; Carneiro, M.; Pereira, D. Nutrients’ removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass Bioenerg. 2009, 33, 327–331. [Google Scholar] [CrossRef]
- Cocozza, C.; Parente, A.; Zaccone, C.; Mininni, C.; Santamaria, P.; Miano, T. Chemical, physical and spectroscopic characterization of Posidonia oceanica (L.) Del. residues and their possible recycle. Biomass Bioenergy 2011, 35, 799–807. [Google Scholar] [CrossRef]
- De Falco, G.; Simeone, S.; Baroli, M. Management of beach-cast Posidonia oceanica Seagrass on the Island of Sardinia (Italy, Western Mediterranean). J. Coast. Res. 2008, 4, 69–75. [Google Scholar] [CrossRef]
- Lee, P.C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST Reading Guide for Broth Microdilution; EUCAST: Växjö, Sweden, 2021. [Google Scholar]
- Nekvapil, F.; Aluas, M.; Barbu, L.-T.; Suciu, M.; Bortnic, R.-A.; Glamuzina, B.; Pinzaru, S.C. From blue bioeconomy toward circular economy through high-sensitivity analytical research on waste blue crab shells. ACS Sustain. Chem. Eng. 2019, 7, 16820–16827. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Why Is the Ocean Salty? Available online: https://oceanservice.noaa.gov/facts/whysalty.html (accessed on 11 November 2020).
- Dy Nguyen, V.; Rossbach, M. Ion chromatographic investigation of brown algae (Fucus vesiculosus) of the German Environmental Specimen Bank. J. Chromatogr. 1993, 643, 421–433. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant compounds and their antioxidant mechanism. In Antioxidants; Shalaby, E., Ed.; IntechOpen: London, UK, 2019; pp. 1–28. [Google Scholar]
- Gundermann, K.; Büchel, C. Structure and functional heterogeneity of fucoxanthin-chlorophyll proteins. The structural basis of biological energy generation. In Diatoms; Hohmann-Marriott, M.F., Ed.; Springer Science and Business Media: Dordrecht, The Netherlands, 2014; pp. 21–37. [Google Scholar]
- Pinzaru, S.C.; Müller, C.; Tomšić, S.; Venter, M.M.; Cozar, B.I.; Glamuzina, B. New SERS feature of β-carotene: Consequences for quantitative SERS analysis. J. Raman Spectrosc. 2015, 46, 597–604. [Google Scholar] [CrossRef]
- Flores-Hidalgo, M.; Torres-Rivas, F.; Bensojo, J.-M.; Escobedo-Bretado, M.; Glossman-Mitnik, D.; Barraza-Jimenez, D.; Barraza-Jimenez, D.G.A.D. Electronic Structure of Carotenoids in Natural and Artificial Photosynthesis. In Carotenoids; IntechOpen: London, UK, 2017. [Google Scholar]
- Aleixandre-Tudo, J.L.; Du Toit, W. The role of UV-visible spectroscopy for phenolic compounds quantification in winemaking. In Frontiers and New Trends in the Science of Fermented Food and Beverages; IntechOpen: London, UK, 2019. [Google Scholar]
- Skaar, I.; Adaku, C.; Jordheim, M.; Byamukama, R.; Kiremire, B.; Andersen, Ø.M. Purple anthocyanin colouration on lower (abaxial) leaf surface of Hemigraphis colorata (Acanthaceae). Phytochemistry 2014, 105, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Ray, B. Polysaccharides from Enteromorpha compressa: Isolation, purification and structural features. Carbohydr. Polym. 2006, 66, 408–416. [Google Scholar] [CrossRef]
- Moustafa, A.M.Y.; Khodair, A.I.; Saleh, M.A. Isolation, structural elucidation of flavonoid constituents from Leptadenia pyrotechnicaand evaluation of their toxicity and antitumor activity. Pharm. Biol. 2009, 47, 539–552. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Hernández, I.; Afseth, N.K.; López-Luke, T.; Contreras-Torres, F.F.; Wold, J.P.; Ornelas-Soto, N. Surface enhanced Raman spectroscopy of phenolic antioxidants: A systematic evaluation of ferulic acid, p-coumaric acid, caffeic acid and sinapic acid. Vib. Spectrosc. 2017, 89, 113–122. [Google Scholar] [CrossRef]
- Campos-Vallette, M.M.; Chandía, N.P.; Clavijo, E.; Leal, D.; Matsuhiro, B.; Osorio-Román, I.O.; Torres, S. Characterization of sodium alginate and its block fractions by surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 2009, 41, 758–763. [Google Scholar] [CrossRef]
- Taboada, C.; Millán, R.; Míguez, I. Composition, nutritional aspects and effect on serum parameters of marine algae Ulva rigida. J. Sci. Food Agric. 2010, 90, 445–449. [Google Scholar] [PubMed]
- Massoud, M.S.; El-Sarraf, W.M.; Harfoush, A.A.; El-Said, G.H.F. The effect of fluoride and other ions on algae and fish of coastal water of Mediterranean Sea, Egypt. Am. J. Environ. Sci. 2006, 2, 49–59. [Google Scholar] [CrossRef]
- Tanase, C.; Bujor, O.-C.; Popa, V.I. Phenolic Natural Compounds and Their Influence on Physiological Processes in Plants. In Polyphenols in Plants; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 45–58. [Google Scholar]
- Xuan, T.D.; Khang, D.T. Effects of exogenous application of protocatechuic acid and vanillic acid to chlorophylls, phenolics and antioxidant enzymes of rice (Oryza sativa L.) in submergence. Molecules 2018, 23, 620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dell’Anno, M.; Sotira, S.; Rebucci, R.; Reggi, S.; Castiglioni, B.; Rossi, L. In vitro evaluation of antimicrobial and antioxidant activities of algal extracts. Ital. J. Anim. Sci. 2020, 19, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 2019, 9, 109. [Google Scholar] [CrossRef] [Green Version]
- Arima, H.; Ashida, H.; Danno, G.-I. Rutin-enhanced Antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci. Biotechnol. Biochem. 2002, 66, 1009–1014. [Google Scholar] [CrossRef] [Green Version]
- Besednova, N.N.; Andryukov, B.G.; Zaporozhets, T.S.; Kryzhanovsky, S.P.; Kuznetsova, T.A.; Fedyanina, L.N.; Makarenkova, I.D.; Zvyagintseva, T.N. Algae polyphenolic compounds and modern antibacterial strategies: Current achievements and immediate prospects. Biomedicines 2020, 8, 342. [Google Scholar] [CrossRef]
- Luo, M.; Hu, K.; Zeng, Q.; Yang, X.; Wang, Y.; Dong, L.; Huang, F.; Zhang, R.; Su, D. Comparative analysis of the morphological property and chemical composition of soluble and insoluble dietary fiber with bound phenolic compounds from different algae. J. Food Sci. 2020, 85, 3843–3851. [Google Scholar] [CrossRef] [PubMed]
- Castaldi, P.; Melis, P. Growth and yield characteristics and heavy metal content on tomatoes grown in different growing media. Commun. Soil Sci. Plant. Anal. 2004, 35, 85–98. [Google Scholar] [CrossRef]
- Lane, D.J.; Ashman, P.J.; Zevenhoven, M.; Hupa, M.; Van Eyk, P.J.; De Nys, R.; Karlström, O.; Lewis, D.M. Combustion behavior of algal biomass: Carbon release, nitrogen release, and char reactivity. Energy Fuels 2013, 28, 41–51. [Google Scholar] [CrossRef]
- Voca, N.; Grubor, M.; Peter, A.; Kricka, T. Evaluation of Posidonia oceanica waste as a biomass source for energy generation. BioEnergy Res. 2019, 12, 1104–1112. [Google Scholar] [CrossRef]
- European Parliament and Council. Regulation (EU) 2019/1009 of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. Off. J. Eur. Union 2019, L170, 1–114. [Google Scholar]
- Shaw, N.S.; Liu, Y.H. Bioavailability of iron from purple laver Porphyra spp. estimated in a rat haemoglobin regeneration biossay. J. Agric. Food Chem. 2000, 48, 1734–1737. [Google Scholar] [CrossRef] [PubMed]
- García-Casal, M.; Pereira, A.C.; Leets, I.; Ramirez, J.; Quiroga, M.F. High iron content and bioavailability in humans from four species of marine algae. J. Nutr. 2007, 137, 2691–2695. [Google Scholar] [CrossRef] [PubMed]
* Cations/Anions | Corallina officinalis | Gelidium pulchellum | Enteromorpha intestinalis |
---|---|---|---|
Na+ | 6272.1 ± 25.6 | 7018.1 ± 29.1 | 7818.0 ± 34.5 |
K+ | 157.4 ± 11.1 | 420.0 ± 16.3 | 381.6 ± 14.2 |
Ca2+ | 5.0 ± 0.1 | 2.8 ± 0.0 | 16.4 ± 1.7 |
Mg2+ | 0.1 ± 0.0 | 39.5 ± 3.5 | 128.1 ± 10.2 |
Cl− | 33. 7 ± 3.1 | 177.5 ± 13.8 | 514.4 ± 17.6 |
SO42− | 8.8 ± 0.4 | 34.9 ± 2.9 | 55.5 ± 4.9 |
NO3− | 2.9 ± 0.1 | 6.7 ± 0.3 | 0.3 ± 0.0 |
F− | 1.9 ± 0.0 | 0.0 ± 0.0 | 0.8 ± 0.0 |
PO43− | 0.7 ± 0.0 | 0.5 ± 0.0 | 0.6 ± 0.0 |
* Metal Ions | Corallina officinalis | Gelidium pulchellum | Enteromorpha intestinalis |
---|---|---|---|
Fe | 0.296 ± 0.009 | 0.233 ± 0.008 | 0.085 ± 0.003 |
Ni | 0.111 ± 0.003 | 0.169 ± 0.005 | 0.129 ± 0.004 |
Zn | 0.095 ± 0.002 | 0.389 ± 0.002 | 0.037 ± 0.001 |
Cu | 0.091 ± 0.002 | 0.348 ± 0.004 | 0.066 ± 0.001 |
Pb | 0.053 ± 0.004 | 0.065 ± 0.005 | 0.062 ± 0.004 |
Cd | 0.038 ± 0.002 | 0.044 ± 0.002 | 0.027 ± 0.001 |
Mn | 0.000 ± 0.0 | 0.030 ± 0.001 | 0.000 ± 0.0 |
Cr | 0.000 ± 0.0 | 0.000 ± 0.0 | 0.000 ± 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekvapil, F.; Ganea, I.-V.; Ciorîță, A.; Hirian, R.; Tomšić, S.; Martonos, I.M.; Cintă Pinzaru, S. A New Biofertilizer Formulation with Enriched Nutrients Content from Wasted Algal Biomass Extracts Incorporated in Biogenic Powders. Sustainability 2021, 13, 8777. https://doi.org/10.3390/su13168777
Nekvapil F, Ganea I-V, Ciorîță A, Hirian R, Tomšić S, Martonos IM, Cintă Pinzaru S. A New Biofertilizer Formulation with Enriched Nutrients Content from Wasted Algal Biomass Extracts Incorporated in Biogenic Powders. Sustainability. 2021; 13(16):8777. https://doi.org/10.3390/su13168777
Chicago/Turabian StyleNekvapil, Fran, Iolanda-Veronica Ganea, Alexandra Ciorîță, Razvan Hirian, Sanja Tomšić, Ildiko Melinda Martonos, and Simona Cintă Pinzaru. 2021. "A New Biofertilizer Formulation with Enriched Nutrients Content from Wasted Algal Biomass Extracts Incorporated in Biogenic Powders" Sustainability 13, no. 16: 8777. https://doi.org/10.3390/su13168777
APA StyleNekvapil, F., Ganea, I. -V., Ciorîță, A., Hirian, R., Tomšić, S., Martonos, I. M., & Cintă Pinzaru, S. (2021). A New Biofertilizer Formulation with Enriched Nutrients Content from Wasted Algal Biomass Extracts Incorporated in Biogenic Powders. Sustainability, 13(16), 8777. https://doi.org/10.3390/su13168777