Uncertainty Analysis of Multisource Land Cover Products in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Land Cover Data
2.2. Method
3. Results
3.1. Area Uncertainty
3.2. Spatial Uncertainty
3.3. Uncertainty of Temporal and Spatial Changes
3.4. Resolution Uncertainty
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giri, C.; Pengra, B.; Long, J.; Loveland, T. Next generation of global land cover characterization, mapping, and monitoring. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 30–37. [Google Scholar] [CrossRef]
- Sexton, J.O.; Song, X.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 2013, 6, 427–448. [Google Scholar] [CrossRef] [Green Version]
- Yongke, Y.; Pengfeng, X.; Xuezhi, F.; Haixing, L.; Xiao, C.; Weiding, F. Comparison and assessment of large-scale land cover datasets in China and adjacent regions. J. Remote. Sens. 2014, 18, 453–475. [Google Scholar]
- Erb, K.H.; Luyssaert, S.; Meyfroidt, P.; Pongratz, J.; Don, A.; Kloster, S.; Kuemmerle, T.; Fetzel, T.; Fuchs, R.; Herold, M.; et al. Land management: Data availability and process understanding for global change studies. Glob. Chang. Biol. 2017, 23, 512–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambin, E.; Ehrlich, D. Land-cover changes in sub-Saharan Africa (1982–1991): Application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote Sens. Environ. 1997, 61, 181–200. [Google Scholar] [CrossRef]
- Giglio, L.; Loboda, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 2008, 113, 408–420. [Google Scholar] [CrossRef]
- Ganguly, S.; Friedl, M.; Tan, B.; Zhang, X.; Verma, M. Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote Sens. Environ. 2010, 114, 1805–1816. [Google Scholar] [CrossRef] [Green Version]
- Grekousis, G.; Mountrakis, G.; Kavouras, M. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 2015, 36, 5309–5335. [Google Scholar] [CrossRef]
- Hua, T.; Zhao, W.; Liu, Y.; Wang, S.; Yang, S. Spatial Consistency Assessments for Global Land-Cover Datasets: A Comparison among GLC2000, CCI LC, MCD12, GLOBCOVER and GLCNMO. Remote Sens. 2018, 10, 1846. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Tang, P.; Zhao, L. Fast and accurate land cover classification on medium resolution remote sensing images using segmentation models. Int. J. Remote Sens. 2021, 42, 3277–3301. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Price, J.C. Comparing MODIS and ETM+ data for regional and global land classification. Remote Sens. Environ. 2003, 86, 491–499. [Google Scholar] [CrossRef]
- Ling, F.; Li, W.; Du, Y.; Li, X. Land Cover Change Mapping at the Subpixel Scale With Different Spatial-Resolution Remotely Sensed Imagery. IEEE Geosci. Remote Sens. Lett. 2011, 8, 182–186. [Google Scholar] [CrossRef]
- Urbanski, S.P.; Hao, W.M.; Nordgren, B. The wildland fire emission inventory: Western United States emission estimates and an evaluation of uncertainty. Atmos. Chem. Phys. 2011, 11, 12973–13000. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Huang, Y.; Di, L.; Hang, D. Large-scale subpixel mapping of landcover from MODIS imagery using the improved spatial attraction model. J. Appl. Remote Sens. 2018, 12, 046017. [Google Scholar] [CrossRef]
- Argles, A.P.K.; Moore, J.R.; Huntingford, C.; Wiltshire, A.J.; Harper, A.B.; Jones, C.D.; Cox, P.M. Robust Ecosystem Demography (RED version 1.0): A parsimonious approach to modelling vegetation dynamics in Earth system models. Geosci. Model Dev. 2020, 13, 4067–4089. [Google Scholar] [CrossRef]
- McCallum, I.; Obersteiner, M.; Nilsson, S.; Shvidenko, A. A spatial comparison of four satellite derived 1 km global land cover datasets. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 246–255. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Lu, L. Evaluation of four remote sensing based land cover products over China. Int. J. Remote Sens. 2010, 31, 391–401. [Google Scholar] [CrossRef]
- Schaefer, K.; Schwalm, C.R.; Williams, C.; Arain, M.A.; Barr, A.; Chen, J.M.; Davis, K.J.; Dimitrov, D.; Hilton, T.W.; Hollinger, D.Y.; et al. A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis. J. Geophys. Res. Biogeosci. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Levy, P.; Friend, A.; White, A.; Cannell, M. The influence of land use change on global-scale fluxes of carbon from terrestrial ecosystems. Clim. Chang. 2004, 67, 185–209. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, L.; Zhang, X.; Chen, X.; Mi, J.; Xie, S. Consistency Analysis and Accuracy Assessment of Three Global 30-m Land-Cover Products over the European Union using the LUCAS Dataset. Remote Sens. 2020, 12, 3479. [Google Scholar] [CrossRef]
- Zhu, Q.; Jin, J.; Wang, P.; Ji, Y.; Xiao, Y.; Guo, F.; Deng, C.; Qu, L. Contrasting Trends of Forest Coverage between the Inland and Coastal Urban Groups of China over the Past Decades. Sustainability 2019, 11, 4451. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Jin, J.; Zhu, Q.; Zhou, S.; Wang, Y.; Wang, P.; Xiao, Y.; Guo, F.; Lin, X.; Xu, J. Unbalanced forest displacement across the coastal urban groups of eastern China in recent decades. Sci. Total Environ. 2020, 705, 135900. [Google Scholar] [CrossRef] [PubMed]
- Mertens, K.; Verbeke, L.; Westra, T.; De Wulf, R. Sub-pixel mapping and sub-pixel sharpening using neural network predicted wavelet coefficients. Remote Sens. Environ. 2004, 91, 225–236. [Google Scholar] [CrossRef]
- Mingchao, S.; Hongli, S.; Ming, S.; Hongtao, H.; Yimeng, S. Multisource land-cover data category accuracy evaluation and the difference of landscape patterns: A case study of Beijing-Tianjin-Hebei region. Chin. J. Ecol. 2020, 39, 3881–3889. [Google Scholar]
- Bayer, A.D.; Lindeskog, M.; Pugh, T.A.M.; Anthoni, P.M.; Fuchs, R.; Arneth, A. Uncertainties in the land-use flux resulting from land-use change reconstructions and gross land transitions. Earth Syst. Dyn. 2017, 8, 91–111. [Google Scholar] [CrossRef] [Green Version]
- Hartley, A.J.; MacBean, N.; Georgievski, G.; Bontemps, S. Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sens. Environ. 2017, 203, 71–89. [Google Scholar] [CrossRef]
- Bai, Y.; Feng, M.; Jiang, H.; Wang, J.; Zhu, Y.; Liu, Y. Assessing Consistency of Five Global Land Cover Data Sets in China. Remote Sens. 2014, 6, 8739–8759. [Google Scholar] [CrossRef] [Green Version]
- Qionghuan, L.; Yili, Z.; Linshan, L.; Lanhui, L.; Wei, Q. Accuracy evaluation of the seven land cover data in Qiangtang Plateau. Geogr. Res. 2017, 36, 2061–2074. [Google Scholar]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Li, W.; MacBean, N.; Ciais, P.; Defourny, P.; Lamarche, C.; Bontemps, S.; Houghton, R.A.; Peng, S. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 2018, 10, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Ciais, P.; MacBean, N.; Peng, S.; Defourny, P.; Bontemps, S. Major forest changes and land cover transitions based on plant functional types derived from the ESA CCI Land Cover product. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 30–39. [Google Scholar] [CrossRef]
- DeFries, R.; Hansen, M.; Steininger, M.; Dubayah, R.; Sohlberg, R.; Townshend, J. Subpixel forest cover in central Africa from multisensor, multitemporal data. Remote Sens. Environ. 1997, 60, 228–246. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Sexton, J.O.; Noojipady, P.; Huang, C.; Anand, A.; Channan, S.; Feng, M.; Townshend, J.R. Global, Landsat-based forest-cover change from 1990 to 2000. Remote Sens. Environ. 2014, 155, 178–193. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Sawamoto, T.; Li, C.; Kang, G.; Boonjawat, J.; Mosier, A.; Wassmann, R.; Tsuruta, H. Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhang, Q.; Dai, S.; Huang, M.; Yan, H. Agreement analysis of multi-sensor satellite remote sensing derived land cover products in the Europe Continent. Geogr. Res. 2015, 34, 1839–1852. [Google Scholar]
- Masiliunas, D.; Tsendbazar, N.; Herold, M.; Lesiv, M.; Buchhorn, M.; Verbesselt, J. Global land characterisation using land cover fractions at 100 m resolution. Remote Sens. Environ. 2021, 259, 112409. [Google Scholar] [CrossRef]
- Yu, W.; Li, J.; Liu, Q.; Zeng, Y.; Zhao, J.; Xu, B.; Yin, G. Global Land Cover Heterogeneity Characteristics at Moderate Resolution for Mixed Pixel Modeling and Inversion. Remote Sens. 2018, 10, 856. [Google Scholar] [CrossRef] [Green Version]
- An, R.; Zhang, L.; Wang, Z.; Quaye-Ballard, J.A.; You, J.; Shen, X.; Gao, W.; Huang, L.; Zhao, Y.; Ke, Z. Validation of the ESA CCI soil moisture product in China. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 28–36. [Google Scholar] [CrossRef]
- Bontemps, S.; Herold, M.; Kooistra, L.; Groenestijn, A.V.; Hartley, A.; Arino, O.; Moreau, I.; Defourny, P. Revisiting land cover observation to address the needs of the climate modeling community. Biogeosciences 2012, 9, 2145–2157. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xiao, P.; Feng, X.; Yang, Y.; Wang, L.; Zhang, W.; Wang, X.; Feng, W.; Chang, X. Using Land Long-Term Data Records to Map Land Cover Changes in China Over 1981–2010. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2017, 10, 1372–1389. [Google Scholar] [CrossRef]
- Swetnam, R.; Fisher, B.; Mbilinyi, B.; Munishi, P.; Willcock, S.; Ricketts, T.; Mwakalila, S.; Balmford, A.; Burgess, N.; Marshall, A.; et al. Mapping socio-economic scenarios of land cover change: A GIS method to enable ecosystem service modelling. J. Environ. Manag. 2011, 92, 563–574. [Google Scholar] [CrossRef] [PubMed]
Product | Organization | Resolution | Land Cover Category | Classification | Type |
---|---|---|---|---|---|
MCD12 | Boston University | 1 KM | 17 | Decision tree | Qualitative |
ESA CCI | European Space Agency | 300 M | 37 | Unsupervised classification | Semi-quantitative |
MEaSURES VCF | University of Maryland | 5 KM | 3 | Linear Model Trees | Quantitative |
Class 1 | Class 2 | Class 1 | Class 2 |
---|---|---|---|
Forest | Evergreen broad-leaved forest | Nontree vegetation | Deciduous broad-leaved shrub |
Deciduous broad-leaved forest | Evergreen needle-leaved shrub | ||
Evergreen needle-leaved forest | Deciduous needle-leaved shrub | ||
Deciduous needle-leaved forest | Grassland | ||
Nontree vegetation | Evergreen broad-leaved shrub | Crop |
Land Cover Type | ESA CCI | MCD12 | VCF | |||
---|---|---|---|---|---|---|
Area (%) | Coefficient of Deviation | Area (%) | Coefficient of Deviation | Area (%) | Coefficient of Deviation | |
Forest | 13.24 | −0.1222 | 17.62 | 0.1677 | 14.40 | −0.0456 |
Nontree vegetation | 48.76 | 0.0952 | 45.81 | 0.0287 | 39.01 | −0.1239 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Jin, J. Uncertainty Analysis of Multisource Land Cover Products in China. Sustainability 2021, 13, 8857. https://doi.org/10.3390/su13168857
Wang L, Jin J. Uncertainty Analysis of Multisource Land Cover Products in China. Sustainability. 2021; 13(16):8857. https://doi.org/10.3390/su13168857
Chicago/Turabian StyleWang, Longhao, and Jiaxin Jin. 2021. "Uncertainty Analysis of Multisource Land Cover Products in China" Sustainability 13, no. 16: 8857. https://doi.org/10.3390/su13168857
APA StyleWang, L., & Jin, J. (2021). Uncertainty Analysis of Multisource Land Cover Products in China. Sustainability, 13(16), 8857. https://doi.org/10.3390/su13168857