Using Naturalness for Assessing the Impact of Forestry and Protection on the Quality of Ecosystems in Life Cycle Assessment
Abstract
:1. Introduction
- Establish the relationship between naturalness and species richness and expand the model developed by Côté et al., 2019 [35] to express results in potential disappeared fraction of species (PDF);
- Evaluate the effects on naturalness and PDF of increasing the share of protected area combined with different silvicultural scenarios and compare different forest management strategies in the Québec boreal forest;
- Provide an example of LCA impact score calculation based on a naturalness assessment transformed in PDF to evaluate impacts on the quality of ecosystem of harvested wood products supplied from different forestry management practices in the LCA context.
2. Materials and Methods
2.1. Description of the Test Area and Forest Management Scenarios
2.1.1. Test Area
2.1.2. Forest Management Scenarios and Strategies Tested
2.2. Naturalness Assessment
Expanding Naturalness to Species Richness Assessment
2.3. Life Cycle Assessment Framework of Land Use
3. Results
3.1. Naturalness Assessment Results on the Test Area
3.2. Transformation of NI to PDF
3.3. Life Cycle Assessment Results
3.4. Sensitivity Analysis
4. Discussion
4.1. LCA Impact Assessment
4.2. Consequences for Forest Management
4.2.1. Targeting the Level of Protection Using Naturalness
4.2.2. Considering Protection in Forest Management Strategies Using Naturalness
4.3. Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations | Signification |
ant | Anthropization |
ant_NDP | Naturalness degradation potential from anthropization |
CBD | Convention on Biological Diversity |
CF | Close forests |
CF_pni | Partial naturalness for close forests |
CL | careful clearcut logging |
Compo | Composition |
Compo_PNI | Partial naturalness for composition |
Context | Landscape context |
Context_PNI | Partial naturalness for landscape context |
CS | Companion species |
CS_NDP | Naturalness degradation potential related to companion species |
CT | Cover type |
CT_pni | Partial naturalness index for cover type |
DW | Dead wood |
DW_NDP | Naturalness degradation potential related to dead wood |
DW_PNI | Partial naturalness index for dead wood |
cp | Current protection level |
exo | Exotic species |
exo_NDP | Naturalness degradation potential from exotic species |
FMU | Forest management unit |
Ha | Hectares |
ha_for | Forest area in hectares |
ha_prod | Productive area in hectares |
ha_ter | Terrestrial area in hectares |
HS | Horizontal structure |
HS_NDP | Naturalness degradation potential related to horizontal structure |
IR | Irregular stands |
IR_pni | Partial naturalness index for irregular stands |
IS | Impact score |
IUCN | International Union for Conservation of Nature |
LCA | Life cycle analysis |
LCI | Life cycle inventory |
LCIA | Life cycle impact assessment |
LS | Late successional characteristic species (i. e. Picea spp.) |
LS_pni | Partial naturalness index for late successional characteristic species |
m3 | Cubic meter of wood |
NDP | Naturalness degradation potential |
NE | Natural evolution |
NI | Naturalness index |
OF | Old forests |
OF_pni | Partial naturalness index for old forests |
Potential disappeared fraction of species | |
PL | Plantation |
PNI | Partial naturalness index for a given characteristic of naturalness (characteristic_PNI) |
Pni | Partial naturalness index for a given condition indicator (condition_pni) |
Prod_area | Productive area |
RP | Regeneration process |
RP_NDP | Naturalness degradation potential related to regeneration process |
SAR | Species–area relationship |
SETAC | Society of Environmental Toxicology and Chemistry |
Struc | Structure |
Struc_PNI | Partial naturalness index for structure |
TAR | Terrestrial area annually required to produce 1 m3 of wood |
UNEP | United Nations Environment Program- |
W_CC | Clearcuts on wetlands |
W_CC_NDP | Naturalness degradation potential related to clearcuts on wetlands |
Wm | Modified wetlands |
Wm_NDP | Naturalness degradation potential related to modified wetlands |
yr | Year |
Appendix A. Naturalness Assessment of the 3 FMU and Related Data
Appendix A.1. Historical Data of the Test Area
Condition Indicator | Value (% 1) |
Cover type (CT) | 79.54 |
Late successional species group (LS) | 46.03 |
Closed forest (CF) | 62.29 |
Old forests (OF) | 49.31 |
Irregular stands (IR) | 31.54 |
Appendix A.2. Ecological Effects of Careful Logging and Plantations
Appendix A.3. Scenario Naturalness Assessment
Scenario Component | CT | LS | IR | OF |
Young CL (<20 yr) | 6.54 | 1.09 | ||
Older CL (≥20 yr) | 48.11 | 13.10 | 0 1 | 0 1 |
Young PL (<20 yr) | 42.81 | 0.41 | ||
Older PL (≥20 yr) | 86.57 | 9.70 | 0 1 | 0 1 |
Natural evolution | 79.54 | 46.03 | 31.54 | 49.31 |
Scenario Component | Horizontal Structure | Dead Wood | Regeneration Process |
---|---|---|---|
CL | 0.35 | 0.65 | 0.4 |
PL | 1 | 0.95 | 0.9 |
Natural evolution | 0 | 0 | 0 |
Appendix A.4. Scenario Yield Hypotheses
Pressure Level | Species Richness (Mean [3] 1) | PDF (100 Mean Richness) ÷ 100 |
---|---|---|
Mature secondary vegetation (light/intense use) | 117.1 | −0.171 |
Intermediate secondary vegetation (light/intense use) | 90.1 | 0.099 |
Young secondary vegetation (light/intense use) | 79.9 | 0.201 |
Plantation forest (minimal use) | 80.8 | 0.192 |
Plantation forest (light use) | 73.1 | 0.269 |
Plantation forest (intense use) | 60.6 | 0.394 |
Appendix B. NI-PDF Curve Setting
References
- Zabalza Bribián, I.; Valero Capilla, A.; Aranda Usón, A. Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build. Environ. 2011, 46, 1133–1140. [Google Scholar] [CrossRef]
- Souza, D.M.; Teixeira, R.F.; Ostermann, O.P. Assessing biodiversity loss due to land use with Life Cycle Assessment: Are we there yet? Glob. Chang. Biol. 2015, 21, 32–47. [Google Scholar] [CrossRef] [Green Version]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Borger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrette, M.; Dumais, D.; Auger, I.; Boucher, Y.; Bouchard, M.; Bouliane, J. Naturalness assessment performed using forestry maps to validate forest management sustainability. Ecol. Indic. 2020, 119, 106832. [Google Scholar] [CrossRef]
- Turner, P.A.M.; Ximenes, F.A.; Penman, T.D.; Law, B.S.; Waters, C.M.; Grant, T.; Mo, M.; Brock, P.M. Accounting for biodiversity in life cycle impact assessments of forestry and agricultural systems—The BioImpact metric. Int. J. Life Cycle Assess. 2019, 24, 1985–2007. [Google Scholar] [CrossRef]
- Winter, L.; Lehmann, A.; Finogenova, N.; Finkbeiner, M. Including biodiversity in life cycle assessment—State of the art, gaps and research needs. Environ. Impact Assess. Rev. 2017, 67, 88–100. [Google Scholar] [CrossRef]
- Koellner, T.; de Baan, L.; Beck, T.; Brandao, M.; Civit, B.; Margni, M.; Canals, L.; Saad, R.; Souza, D.M.; Muller-Wenk, R. UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int. J. Life Cycle Assess. 2013, 18, 1188–1202. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, R.F.M.; de Souza, D.M.; Curran, M.P.; Antón, A.; Michelsen, O.; Milà i Canals, L. Towards consensus on land use impacts on biodiversity in LCA: UNEP/SETAC Life Cycle Initiative preliminary recommendations based on expert contributions. J. Clean. Prod. 2016, 112, 4283–4287. [Google Scholar] [CrossRef]
- MEA. Ecosystems and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005; p. 86. Available online: https://www.millenniumassessment.org/documents/document.354.aspx.pdf (accessed on 16 July 2018).
- Milà i Canals, L.; Bauer, C.; Depestele, J.; Dubreuil, A.; Freiermuth Knuchel, R.; Gaillard, G.; Michelsen, O.; Müller-Wenk, R.; Rydgren, B. Key Elements in a Framework for Land Use Impact Assessment Within LCA (11 pp). Int. J. Life Cycle Assess. 2007, 12, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Verones, F.; Bare, J.; Bulle, C.; Frischknecht, R.; Hauschild, M.; Hellweg, S.; Henderson, A.; Jolliet, O.; Laurent, A.; Liao, X.; et al. LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. J. Clean. Prod. 2017, 161, 957–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CBD. Convention on Biological Diversity. 2006. Available online: https://www.cbd.int/convention/articles/?a=cbd-02#:~:text=%22Biological%20diversity%22%20means%20the%20variability,between%20species%20and%20of%20ecosystems (accessed on 30 September 2020).
- Maier, S.D.; Lindner, J.P.; Francisco, J. Conceptual Framework for Biodiversity Assessments in Global Value Chains. Sustainability 2019, 11, 1841. [Google Scholar] [CrossRef] [Green Version]
- Brentrup, F.; Küsters, J.; Lammel, J.; Kuhlmann, H. Life Cycle Impact Assessment of Land Use Based on the Hemeroby Concept. Int. J. Life Cycle Assess. 2002, 7, 339–348. [Google Scholar] [CrossRef]
- Fehrenbach, H.; Grahl, B.; Giegrich, J.; Busch, M. Hemeroby as an impact category indicator for the integration of land use into life cycle (impact) assessment. Int. J. Life Cycle Assess. 2015, 20, 1511–1527. [Google Scholar] [CrossRef]
- Curran, M.; De Souza, D.M.; Anton, A.; Teixeira, R.F.M.; Michelsen, O.; Vidal-Legaz, B.; Sala, S.; Mil i Canals, L. How Well Does LCA Model Land Use Impacts on Biodiversity?-A Comparison with Approaches from Ecology and Conservation. Environ. Sci. Technol. 2016, 50, 2782–2795. [Google Scholar] [CrossRef] [PubMed]
- De Baan, L.; Alkemade, R.; Koellner, T. Land use impacts on biodiversity in LCA: A global approach. Int. J. Life Cycle Assess. 2013, 18, 1216–1230. [Google Scholar] [CrossRef]
- Chaudhary, A.; Burivalova, Z.; Koh, L.P.; Hellweg, S. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs. Sci. Rep. 2016, 6, 23954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schryver, A.; Goedkoop, M.; Leuven, R.; Huijbregts, M. Uncertainties in the application of the species area relationship for characterisation factors of land occupation in life cycle assessment. Int. J. Life Cycle Assess. 2010, 15, 682–691. [Google Scholar] [CrossRef] [Green Version]
- De Baan, L.; Mutel, C.L.; Curran, M.; Hellweg, S.; Koellner, T. Land use in life cycle assessment: Global characterization factors based on regional and global potential species extinction. Environ. Sci. Technol. 2013, 47, 9281–9290. [Google Scholar] [CrossRef]
- Lindner, J.P.; Niblick, B.; Eberle, U.; Bos, U.; Schmincke, E.; Schwarz, S.; Luick, R.; Blumberg, M.; Urbanek, A. Proposal of a unified biodiversity impact assessment method. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014), San Francisco, CA, USA, 8–10 October 2014. [Google Scholar]
- Winter, L.; Pflugmacher, S.; Berger, M.; Finkbeiner, M. Biodiversity impact assessment (BIA+)—methodological framework for screening biodiversity. Integr. Environ. Assess. Manag. 2018, 14, 282–297. [Google Scholar] [CrossRef]
- Chaudhary, A.; Brooks, T.M. Land Use Intensity-specific Global Characterization Factors to Assess Product Biodiversity Footprints. Environ. Sci. Technol. 2018, 52, 5094–5104. [Google Scholar] [CrossRef]
- Gaudreault, C.; Loehle, C.; Prisley, S.; Solarik, K.; Verschuyl, J. Are the factors recommended by UNEP-SETAC for evaluating biodiversity in LCA achieving their promises: A case study of corrugated boxes produced in the US. Int. J. Life Cycle Assess. 2020, 25, 1013–1026. [Google Scholar] [CrossRef]
- Alkemade, R.; Oorschot, M.; Miles, L.; Nellemann, C.; Bakkenes, M.; ten Brink, B. GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss. Ecosystems 2009, 12, 374–390. [Google Scholar] [CrossRef] [Green Version]
- Newbold, T.; Hudson, L.N.; Arnell, A.P.; Contu, S.; De Palma, A.; Ferrier, S.; Hill, S.L.L.; Hoskins, A.J.; Lysenko, I.; Phillips, H.R.P.; et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 2016, 353, 288. [Google Scholar] [CrossRef] [PubMed]
- Brooks, T.M.; Pimm, S.L.; Oyugi, J.O. Time Lag between Deforestation and Bird Extinction in Tropical Forest Fragments. Conserv. Biol. 1999, 13, 1140. [Google Scholar] [CrossRef]
- Hanski, I. Landscape fragmentation, biodiversity loss and the societal response. EMBO Rep. 2005, 6, 388–392. [Google Scholar] [CrossRef] [Green Version]
- Hunter, M.L. (Ed.) Maintaining Biodiversity in Forest Ecosystems; Cambridge University Press: Cambridge, UK, 1999; p. 698. [Google Scholar]
- Paillet, Y.; Bergès, L.; Hjältén, J.; Ódor, P.; Avon, C.; Bernhardt-Römermann, M.; Bijlsma, R.J.; Bruyn, L.D.; Fuhr, M.; Grandin, U.L.F.; et al. Biodiversity Differences between Managed and Unmanaged Forests: Meta-Analysis of Species Richness in Europe. Conserv. Biol. 2010, 24, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Gray, C.L.; Hill, S.L.L.; Newbold, T.; Hudson, L.N.; Börger, L.; Contu, S.; Hoskins, A.J.; Ferrier, S.; Purvis, A.; Scharlemann, J.P.W. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 2016, 7, 12306. [Google Scholar] [CrossRef] [Green Version]
- Dudley, N.; Jonas, H.; Nelson, F.; Parrish, J.; Pyhälä, A.; Stolton, S.; Watson, J.E.M. The essential role of other effective area-based conservation measures in achieving big bold conservation targets. Glob. Ecol. Conserv. 2018, 15, e00424. [Google Scholar] [CrossRef]
- Costanza, A. Review of Land Use and Biodiversity Approaches in Life Cycle Assessments for Forest Management Applications; NCASI White Paper: Cary, NC, USA, 2020; p. 19. Available online: https://www.ncasi.org/wp-content/uploads/2020/05/Biodiversity-LCA-Review-5-2020.pdf (accessed on 26 November 2020).
- Michelsen, O.; McDevitt, J.E.; Coelho, C.R.V. A comparison of three methods to assess land use impacts on biodiversity in a case study of forestry plantations in New Zealand. Int. J. Life Cycle Assess. 2014, 19, 1214–1225. [Google Scholar] [CrossRef]
- Côté, S.; Bélanger, L.; Beauregard, R.; Thiffault, É.; Margni, M. A Conceptual Model for Forest Naturalness Assessment and Application in Quebec’s Boreal Forest. Forests 2019, 10, 325. [Google Scholar] [CrossRef] [Green Version]
- Michelsen, O. Assessment of land use impact on biodiversity. Int. J. Life Cycle Assess. 2008, 13, 22–31. [Google Scholar] [CrossRef]
- Farmery, A.K.; Jennings, S.; Gardner, C.; Watson, R.A.; Green, B.S. Naturalness as a basis for incorporating marine biodiversity into life cycle assessment of seafood. Int. J. Life Cycle Assess. 2017, 22, 1571–1587. [Google Scholar] [CrossRef]
- Rossi, V.; Lehesvirta, T.; Schenker, U.; Lundquist, L.; Koski, O.; Gueye, S.; Taylor, R.; Humbert, S. Capturing the potential biodiversity effects of forestry practices in life cycle assessment. Int. J. Life Cycle Assess. 2018, 23, 1192–1200. [Google Scholar] [CrossRef]
- Winter, S. Forest naturalness assessment as a component of biodiversity monitoring and conservation management. Forestry 2012, 85, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Côté, S.; Bélanger, L.; Beauregard, R.; Thiffault, É.; Margni, M. Naturalness Assessment of Forest Management Scenarios in Abies balsamea–Betula papyrifera Forests. Forests 2020, 11, 601. [Google Scholar] [CrossRef]
- BFEC. Calculs Des Possibilités Forestières. Période 2013–2018. Available online: https://forestierenchef.gouv.qc.ca/documents/calcul-des-possibilites-forestieres/2013-2018/ (accessed on 20 July 2017).
- MFFP. Quebec’s Ecoforest Map with Disturbances. Available online: https://www.donneesquebec.ca/recherche/fr/dataset/carte-ecoforestiere-avec-perturbations (accessed on 13 August 2018).
- Dudley, N. Lignes Directrices Pour L’application Des Catégories De Gestion Aux Aires Protégées; UICN: Gland, Switzerland, 2008; p. 96. Available online: https://portals.iucn.org/library/efiles/documents/paps-016-fr.pdf (accessed on 9 December 2020).
- Harvey, B.; Brais, S. Effects of mechanized careful logging on natural regeneration and vegetation competition in the southeastern Canadian boreal forest. Can. J. For. Res. 2002, 32, 653–666. [Google Scholar] [CrossRef]
- Brooks, T.M.; Mittermeier, R.A.; da Fonseca, G.A.B.; Gerlach, J.; Hoffmann, M.; Lamoreux, J.F.; Mittermeier, C.G.; Pilgrim, J.D.; Rodrigues, A.S.L. Global Biodiversity Conservation Priorities. Science 2006, 313, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Hudson, L.N.; Newbold, T.; Contu, S.; Hill, S.L.L.; Lysenko, I.; De Palma, A.; Phillips, H.R.P.; Alhusseini, T.I.; Bedford, F.E.; Bennett, D.J.; et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity in Changing Terrestrial Systems) project. Ecol. Evol. 2017, 7, 145–188. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, A.L.; Kujala, H.; Wintle, B.A. Dealing with Cumulative Biodiversity Impacts in Strategic Environmental Assessment: A New Frontier for Conservation Planning. Conserv. Lett. 2017, 10, 195–204. [Google Scholar] [CrossRef]
- Chaudhary, A.; Verones, F.; de Baan, L.; Hellweg, S. Quantifying Land Use Impacts on Biodiversity: Combining Species-Area Models and Vulnerability Indicators. Environ. Sci. Technol. 2015, 49, 9987–9995. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, M.; Palme, U.; Lindner, J.P. A comparison of two different biodiversity assessment methods in LCA—A case study of Swedish spruce forest. Int. J. Life Cycle Assess. 2016, 21, 190–201. [Google Scholar] [CrossRef]
- Groffman, P.M.; Baron, J.S.; Blett, T.; Gold, A.J.; Goodman, I.; Gunderson, L.H.; Levinson, B.M.; Palmer, M.A.; Paerl, H.W.; Peterson, G.D.; et al. Ecological Thresholds: The Key to Successful Environmental Management or an Important Concept with No Practical Application? Ecosystems 2006, 9, 1–13. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.R. Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends Ecol. Evol. 2003, 18, 648–656. [Google Scholar] [CrossRef]
- Evans, P.; Newton, A.; Cantarello, E.; Martin, P.; Sanderson, N.; Jones, D.; Barsoum, N.; Cottrell, J.; A’Hara, S.; Fuller, L. Thresholds of biodiversity and ecosystem function in a forest ecosystem undergoing dieback. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Tear, T.H.; Kareiva, P.; Angermeier, P.L.; Comer, P.; Czech, B.; Kautz, R.; Landon, L.; Mehlman, D.; Murphy, K.; Ruckelshaus, M.; et al. How Much Is Enough? The Recurrent Problem of Setting Measurable Objectives in Conservation. BioScience 2005, 55, 835–849. [Google Scholar] [CrossRef] [Green Version]
- Wilhere, G.F. The How-Much-Is-Enough Myth. Conserv. Biol. 2008, 22, 514–517. [Google Scholar] [CrossRef]
- Seymour, R.; Hunter, M. New Forestry in Eastern Spruce-Fir Forests: Principles and Applications to Maine; College of Forest Resources, University of Maine: Orono, ME, USA, 1992. [Google Scholar]
- Messier, C.; Tittler, R.; Kneeshaw, D.D.; Gelinas, N.; Paquette, A.; Berninger, K.; Rheault, H.; Meek, P.; Beaulieu, N. TRIAD zoning in Quebec: Experiences and results after 5 years. For. Chron. 2009, 85, 885–896. [Google Scholar] [CrossRef] [Green Version]
- Leverington, F.; Costa, K.L.; Pavese, H.; Lisle, A.; Hockings, M. A global analysis of protected area management effectiveness. Environ. Manag. 2010, 46, 685–698. [Google Scholar] [CrossRef]
- Carnus, J.-M.; Parrotta, J.; Brockerhoff, E.; Arbez, M.; Jactel, H.; Kremer, A.; Lamb, D.; O’Hara, K.; Walters, B. Planted Forests and Biodiversity. J. For. 2006, 104, 65–77. [Google Scholar] [CrossRef]
- Ward, C.; Erdle, T. Evaluation of forest management strategies based on Triad zoning. For. Chron. 2015, 91, 40–51. [Google Scholar] [CrossRef]
- Hartmann, H.; Daoust, G.; Bigué, B. Negative or positive effects of plantation and intensive forestry on biodiversity: A matter of scale and perspective. For. Chron. 2010, 86, 354–364. [Google Scholar] [CrossRef] [Green Version]
- MFFP. Données Cartographiques. Available online: https://www.donneesquebec.ca/recherche/fr/dataset?q=perturbations&organization=mffp&sort=metadata_created+desc (accessed on 9 August 2017).
- Escobar, M.N.A.H.; Uribe, S.V.; Chiappe, R.; Estades, C.N.F.; Russo, D. Effect of Clearcutting Operations on the Survival Rate of a Small Mammal. PLoS ONE 2015, 10, e0118883. [Google Scholar] [CrossRef]
- Keenan, R.J.; Kimmins, J.P. The ecological effects of clear-cutting. Environ. Rev. 1993, 1, 121–144. [Google Scholar] [CrossRef]
- Ross-Davis, A.-L.; Frego, K.A. Comparison of plantations and naturally regenerated clearcuts in the Acadian Forest: Forest floor bryophyte community and habitat features. Can. J. Bot. 2002, 80, 21–33. [Google Scholar] [CrossRef]
- Oliver, C.D.; Larson, B.C. Forest Stand Dynamics; John Wiley & Sons, Inc.: La Vergne, TN, USA, 1996; p. 520. [Google Scholar]
- Hayes, J.P.; Schoenholtz, S.H.; Hartly, M.J.; Murply, G.; Powers, R.F.; Berg, D.; Radosevich, S.R. Environmental Consequences of Intensively Managed Forest Plantations in the Pacific Northwest. J. For. 2005, 103, 85. [Google Scholar]
- Stephens, S.S.; Wagner, M.R. Forest Plantations and Biodiversity: A Fresh Perspective. J. For. 2007, 105, 307–313. [Google Scholar] [CrossRef]
- Paquette, A.; Messier, C. The role of plantations in managing the world’s forests in the Anthropocene. Front. Ecol. Environ. 2010, 8, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Pothier, D.; Savard, F. Actualisation Des Tables De Production Pour Les Principales Espèces Forestières Du Québec; Ministère des Ressources Naturelles, Forêt Québec: Québec, QC, Canada, 1998; p. 183.
- Prégent, G.; Végiard, S. Rendement Anticipé Des Plantations D’épnette Noire Dans Les Domaines Écologiques de la Pessière Moire. Available online: https://mffp.gouv.qc.ca/documents/forets/connaissances/recherche/Note109.pdf (accessed on 16 March 2021).
- Klamerus-Iwan, A.; Lasota, J.; Błońska, E. Interspecific Variability of Water Storage Capacity and Absorbability of Deadwood. Forests 2020, 11, 575. [Google Scholar] [CrossRef]
Naturalness Characteristic | Characteristic_PNI Equation |
---|---|
Landscape context | Context_PNI = CF_pni × (1-(ant_NDP+Wm_NDP+W_CC_NDP)) |
Forest Composition | Compo_PNI = ((CT_pni+LS_pni)/2) × (1-(exo_NDP+CS_NDP)) |
Structure | Struc_PNI = ((OF_pni+IR_pni)/2) × (1-HS_NDP) |
Dead wood | DW_PNI = 1-DW_NDP |
Regeneration process | RP_PNI = 1-RP_NDP |
Naturalness index equation | NI = 1/5 × (Context_PNI + Compo_PNI + Struc_PNI + DW_PNI + RP_PNI) |
Management Strategy | Fixed Productive Areawith Varying Wood Production | Fixed Wood Productionwith Varying Productive Area | ||||
---|---|---|---|---|---|---|
Management scenario | CL only (100CL100-17.9p) | Current Mix (60CL100-40-PL70-17.9p) | PL only (100PL70-17.9p) | CL only(100CL100-17.9p) | Current Mix (60CL100-40-PL70-54.7p) | PL only (100PL70-71.7p) |
Annual Harvest (m3/yr) | 502,100 | 952,870 | 1,629,025 | 502,100 | 502,100 | 502,100 |
Productive area (ha) | 651,610 | 651,610 | 651,610 | 651,610 | 343,356 | 200,840 |
Context_PNI | 0.669 | 0.572 | 0.426 | 0.669 | 0.651 | 0.764 |
Compo_PNI | 0.409 | 0.463 | 0.493 | 0.409 | 0.677 | 0.755 |
Struc_PNI | 0.089 | 0.064 | 0.027 | 0.089 | 0.479 | 0.654 |
DW_PNI | 0.494 | 0.401 | 0.261 | 0.494 | 0.684 | 0.772 |
RP_PNI | 0.689 | 0.533 | 0.300 | 0.689 | 0.754 | 0.784 |
NI | 0.470 | 0.407 | 0.301 | 0.470 | 0.649 | 0.746 |
Estimated PDF | 0.012 | 0.035 | 0.099 | 0.012 | 0.000 | 0.000 |
Management Strategy | Fixed Productive Areawith Varying Wood Production | Fixed Wood Production with Varying Productive Area | ||||
---|---|---|---|---|---|---|
Management Scenario | CL Only(100CL100-17.9p) | Current Mix (60CL100-40-PL70-17.9p) | PL Only (100PL70-17.9p) | CL Only (100CL100-17.9p) | Current Mix (60CL100-40-PL70-54.7p) | PL Only (100PL70-71.7p) |
Mean productivity (m3/ha_prod x yr) | 0.77 | 1.462 | 2.5 | 0.77 | 1.462 | 2.5 |
Terrestrial area (ha_ter) | 1,072,294 | 1,072,294 | 1,072,294 | 1,072,294 | 1,072,294 | 1,072,294 |
Productive area (ha_prod) | 651,610 | 651,610 | 651,610 | 651,610 | 343,356 | 200,840 |
Excluded area (ha_for) | 36,356 | 36,356 | 36,356 | 36,356 | 36,356 | 36,356 |
Protected area (ha_for) | 149,856 | 149,856 | 149,856 | 149,856 | 458,111 | 600,626 |
Percentage protected (% ha_for) | 17.9% | 17.9% | 17.9% | 17.9% | 54.7% | 71.7% |
Annual harvest (m3) | 502,100 | 952,870 | 1,629,025 | 502,100 | 502,100 | 502,100 |
TAR (ha_ter × yr/m3) | 2.136 | 1.125 | 0.658 | 2.136 | 2.136 | 2.136 |
Potential disappeared fraction of species (PDF) | 0.012 | 0.035 | 0.099 | 0.012 | 0.000 | 0.000 |
Impact score (PDF × (ha_ter × yr)/m3)) | 0.026 | 0.040 | 0.065 | 0.026 | 0.000 | 0.000 |
Strategy/Parameter | TAR ((ha_ter × yr)/m3) | IS (PDF × (ha_ter × yr)/m3) | |
---|---|---|---|
Fixed productive areawith varying wood production | PL > CM > CL | CL > CM > PL | PL > CM > CL |
Fixed wood productionwith varying productive area | CL > CM = PL | CL = CM = PL | CL > CM = CL |
Protection gradient | PL > CM > CL | CL > CM > PL | PL > CM > CL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Côté, S.; Beauregard, R.; Margni, M.; Bélanger, L. Using Naturalness for Assessing the Impact of Forestry and Protection on the Quality of Ecosystems in Life Cycle Assessment. Sustainability 2021, 13, 8859. https://doi.org/10.3390/su13168859
Côté S, Beauregard R, Margni M, Bélanger L. Using Naturalness for Assessing the Impact of Forestry and Protection on the Quality of Ecosystems in Life Cycle Assessment. Sustainability. 2021; 13(16):8859. https://doi.org/10.3390/su13168859
Chicago/Turabian StyleCôté, Sylvie, Robert Beauregard, Manuele Margni, and Louis Bélanger. 2021. "Using Naturalness for Assessing the Impact of Forestry and Protection on the Quality of Ecosystems in Life Cycle Assessment" Sustainability 13, no. 16: 8859. https://doi.org/10.3390/su13168859
APA StyleCôté, S., Beauregard, R., Margni, M., & Bélanger, L. (2021). Using Naturalness for Assessing the Impact of Forestry and Protection on the Quality of Ecosystems in Life Cycle Assessment. Sustainability, 13(16), 8859. https://doi.org/10.3390/su13168859