Identification and Prioritization of Critical Success Factors for Off-Site Construction Using ISM and MICMAC Analysis
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Interpretive Structural Modeling (ISM)
- -
- Step 1: Identify the variables relevant to the current issue or problem.
- -
- Step 2: Establish a contextual relationship among the variables from the elements identified in Step 1.
- -
- Step 3: Develop a structural self-interaction matrix (SSIM) for variables that identify pairwise relationships among the elements of the system.
- -
- Step 4: Develop a reachability matrix from the SSIM and check the matrix for the transitivity of the contextual relationship. The transitivity is a basic assumption made in ISM. It dictates that if X is related to Y and Y is related to Z, then X is necessarily related to Z.
- -
- Step 5: Partition the reachability matrix obtained in Step 4 into different levels.
- -
- Step 6: Develop a directed graph based on the contextual relationships found in the reachability matrix and remove the transitive links from the digraph.
- -
- Step 7: Convert the digraph developed in Step 6 into an ISM model by replacing the variable nodes with relationship statements
- -
- Step 8: Review the ISM model developed in Step 7 to identify conceptual inconsistencies and make necessary modifications.
3.2. Matrix of Cross-Impact Multiplication Applied to Classification (MICMAC) Analysis
- -
- Cluster I contains “autonomous factors” that have neither high driving power nor high dependence. These factors are relatively disconnected from the system and have weak or no dependence on other factors.
- -
- Cluster II contains “dependent factors” that have low driving power and high dependence. These factors are primarily dependent on other factors.
- -
- Cluster III contains “linkage factors” that have high driving power and high dependence. These factors are unstable and influence other factors.
- -
- Cluster IV contains “independent factors” that have high driving power and low dependence. As strong key factors, these factors have little influence from other factors and have to be paid maximum attention.
4. Identification of Critical Success Factors for Off-Site Construction
- (1).
- F1: Availability and active involvement of key project team members from the earliest stages of the projectOSC projects are divided into design, factory production, transport, and site construction stages, and the information generated at each stage requires integrated management considering continuity. Therefore, the coordination between various steps is essential for the systematic and integrative management of the vast amount of information arising from the project. Considering that the benefits of OSC are realized when modularity is planned earlier in the design development process [3,27], it is essential for key participants such as designers, fabricators, suppliers, and contractors to participate in the process [28,29].
- (2).
- F2: Effective communication and information-sharing among participantsThe OSC project separates between on-site and off-site operations, with various organizations participating in detailed processes such as design, manufacturing, transportation, and assembly. Therefore, the efficient and successful operation of the OSC project dictates the efficient communication of information between on-site and off-site operations [30] as well as the coordination of opinions between various organizations and participants [31]. In particular, it is important to establish effective communication and information sharing channels among all participants throughout the entire project, as OSC projects consider factors such as the manufacturing and transportation of parts, field assembly, and construction from an early stage [10,18,32].
- (3).
- F3: Extensive project planning, scheduling, and controlProject management is a success factor for OSC project management as well as all construction projects. Among the various project management capabilities, “project schedule management” has been identified as a particularly important factor. Extensive activity planning and scheduling in advance are important to ensure project performance, coordination, improved scope control, and smooth project sequences [31]. Avoiding owner delays and transport delays were proposed as measures to ensure the proper scheduling of OSC projects [7,10,11,33].
- (4).
- F4: Effective use of information and communication technology (e.g., BIM)Many researchers have suggested that information and communication technologies such as building information modeling (BIM) and radio frequency identification (RFID) should be utilized to support efficient communication and information sharing [3,34,35]. The use of these information and communication technologies not only supports communication and information sharing among participants but also enables real-time progress monitoring [36], which facilitates the process management and supply chain management of projects [37].
- (5).
- F5: Availability of skilled laborThe successful implementation of the OSC project requires skilled personnel and appropriate skills in the manufacturing and production of OSC parts and field construction [38]. Since the introduction of OSC to address the lack of functional personnel and the degradation of functional levels in the construction industry, securing and utilizing people with higher skill levels in comparison with existing field-oriented construction methods has been highlighted as an essential factor for the success of OSC [37,39]. In response, researchers such as Kamar et al. (2010) [35] and Thanoon et al. (2003) [40] emphasized that proper training such as the on-site installation training of OSC components should secure sufficient functional personnel to improve the skill level of labor.
- (6).
- F6: Design standardization and the more effective use of the concept of repetitionOne of the greatest constraints that reduces the industrial competitiveness of OSC projects is the high value of its direct costs [41]. Several researchers have pointed to low-level design standardization as one of the main reasons for the high direct cost of OSC projects [42,43]. The design standardization of OSC projects can improve the efficiency of module production by facilitating the repeated use of limited configuration modules. This is because the standardization of modules enables mass manufacturing, the specialization of labor, and the automation of production processes using the same materials, equipment, and processes [13]. However, while there is concern that the use of limited modules may undermine the diversity of project designs, standardized modules have the advantage of being able to create different types of differentiated projects that fit the nature of the project [44].
- (7).
- F7: Alignment of module architecture and long-term collaboration among fabricators, suppliers, designers, subcontractors, and contractors.OSC projects are generally divided into design, manufacturing, transport, and assembly processes, but the harmony between processes is highly emphasized [31,45,46]. In this regard, the participation of key participants among project precursors is important. In OSC projects, designers, engineers, OSC part makers (suppliers), and constructors participate in collaboration with each other, enabling more efficient OSC project management. The participation of OSC part makers and builders in the design phase can also prevent the risks associated with actual module production and field installation [16,37,39,47] as well as unnecessary design implementation changes [48].
- (8).
- F8: Effective coordination of supply chain segmentsAs existing construction industries use non-standardized and manpower-oriented production methods, the effects of supply chain management are difficult to determine. However, OSC is expected to maximize the effectiveness of supply chain management, as it can standardize production modules and secure automated production technologies. The OSC project’s supply chain includes a variety of sectors, such as design, engineering, manufacturing, transportation, storage, and field assembly, that have interdependent relationships. Therefore, it is important to proactively prevent risks through the appropriate coordination between various sectors [41]. However, this requires a strategy to support communication between relevant stakeholders, including potential risks in the initial stage, in regard to appropriate information sharing and consultation between various sectors [49].
- (9).
- F9: Robust drawings and specificationsDesign changes should be prevented to reduce the direct costs of OSC projects. While this is an important success factor not only in OSC projects but also in general architectural projects, design changes in OSC projects that affect air and construction costs are even more important. Therefore, many scholars, including Gibb and Isack (2001) [50], Choi (2014) [10], Li and Li et al. (2018) [12], and Wuni and Shen (2019) [13], have noted that design development and early design freeze are important. This requires accurate design at the design stage, considering that OSC projects have shorter lead times than typical projects [2].
- (10).
- F10: Continuous improvement and learningRegarding other construction projects, the performance of OSC projects should be defined and measured to achieve strategic objectives and successful results [7,10,11,33]. This is because the project performance can be continuously improved through performance analysis and by adopting best practices and benchmarking them [41,51]. Choi (2014) [10] and Wong et al. (2018) [52] stated that performance management systems should be applied to measure and manage performance systematically.
- (11).
- F11: Effective coordination of on-site and off-site tradeThe OSC project is divided into factory work to manufacture components and field work to construct factory-manufactured components, but the harmony between the two work types is highly emphasized [31,46]. OSC projects require close coordination between on-site and off-site operations, as they run in parallel [53]. This can prevent problems such as production delays and rework [12].
- (12).
- F12: Adequate relevant experience and knowledge of the manufacturerThe manufacturing phase of the OSC project is widely recognized as the greatest point of difference with the traditional field production method [37,54], and the experience and knowledge of OSC part makers are also cited as critical success factors. The knowledge and experience of OSC part makers are important considerations in developing production plans to achieve on-time delivery [55] and preventing physical damage in the loading and unloading of finished OSC parts [56] through the intervention of a well-informed and experienced manufacturer [12].
- (13).
- F13: Suitable procurement strategy and contractingThe effective integration between manufacturers and suppliers in the decision-making process and cooperation between project participants are important factors for efficient procurement strategies and the appropriate contracting of OSC projects [17]. Ismail et al. (2012) [18] proposed partnering and strategic alliances by developing complementary objectives among project participants. Meanwhile, Rentschler et al. (2016) [49] stated that a procurement strategy should be established to select a small number of OSC component manufacturers, if the management objective of the OSC project is to reduce the construction period. They also pointed out that the success of the OSC project depends largely on the capabilities of the OSC part manufacturer, and Wuni & Shen (2019) [13] stated that proper consideration should be given to past project performance, manufacturing capability, and the scope of work when selecting OSC part manufacturers.
- (14).
- F14: Adequate relevant experience and knowledge of the contractorThe experience and knowledge of the contractor performing field installation and assembly work also affect the success or failure of the project. This requires appropriate management. O’Connor et al. (2014) [11] stated that contractors should have sufficient experience in modular approaches and that owners should add modular experience to the criteria for selecting contractors from pre-FEED through detailed design and give significant weight to the decision of selecting contractors. Kamar et al. (2009) [39] and Pan et al. (2008) [37] noted that an understanding of the complexities of transportation, logistics, and interfaces is necessary to integrate and manage complex OSC construction processes.
- (15).
- F15: Maturity of manufacturing technology and facilitiesThe maturity of the technology and equipment applied for each detailed process is also essential for OSC success. In particular, the maturity of the manufacturing technology and facilities of components is critical to the success or failure of the OSC project [11]. Unlike the traditional construction method, where actual construction takes place on site, actual OSC projects are executed in manufacturing facilities. Li and Li et al. (2018) [12] stated that the mechanization and automation of manufacturing technologies would increase the productivity of an OSC project.
- (16).
- F16: Maturity of the transportation method of prefabricated componentsThe maturity of OSC component transport technology has also been identified as an important success factor. Transportation technologies include technologies and equipment that support the movement and transportation between and within factories and sites. The project budget must be considered through a proper advance review of the availability of transportation technologies and equipment [7,11,33].
- (17).
- F17: Adequate relevant experience and knowledge of the designers and engineersLi et al. (2018) [12] emphasized that the most important factors in OSC projects are the experience and knowledge of designers. The experience and knowledge of designers have a significant impact on the success and failure of the project from start to end [57], as accurate design prevents design fluctuations, which in turn affects time and cost savings [58].
- (18).
- F18: Maturity of on-site assembly technology and equipmentThe maturity of field assembly technologies and equipment has a significant impact on OSC success. The efficient use of on-site assembly equipment is effective in reducing construction costs and shortening construction periods [10,41]. In addition, the use of high-level field assembly techniques to prevent quality problems is critical because quality problems occur more frequently in construction sites than in manufacturing plants [12].
- (19).
- F19: Intensive early research on modularizationLee and Kim (2017) [59] suggested “inappropriate selection of the modular system,” “module size not reflecting the road and access conditions to the site,” “module size not reflecting legal regulations for transportation,” and “inconsistent factory fabrication rate per a modular unit” as cost-increasing factors of the OSC project, and they stated that early research on modularization was important. In addition, Choi and O’Connor (2014) [7] stated that owners should be willing to invest in early research studies on modularization to achieve full benefits.
- (20).
- F20: Persistent policies and incentivesTo ensure the activation of OSCs, securing new technologies and differentiated project management technologies is also important. Further, creating an external environment for projects such as government policies and related infrastructure is crucial. One of the key success factors in this regard is the government’s “continuing policies and incentives.” In this regard, Li & Li et al. (2018) [12] pointed out that, at the time of introducing new technologies into the market, relevant contractors resorted to existing mature technologies in lieu of new ones deprived of any incentives. As a result, they emphasized that policies should be devised to encourage the use of new technologies at the government level. Therefore, devising policies related to the activation of the OSC is essential, especially considering that OSCs not only have minimal performance in the construction industry but are also faced with great reluctance from private businesses.
5. Prioritization of Critical Success Factors for Off-Site Construction
5.1. Structural Self-Interaction Matrix
- V: factor i leads to factor j
- A: factor j leads to factor i
- X: factor i and j influence each other
- O: no relation exists between factors i and j
5.2. Reachability Matrix
- (a)
- If entry (i, j) of SSIM is V, then entry (i, j) of the reachability matrix is 1 and entry (j, i) is 0.
- (b)
- If the (i, j) entry of SSIM is A, then the (i, j) entry of the matrix is 0 and the (j, i) entry is 1.
- (c)
- If the (i, j) entry of SSIM is X, then the (i, j) entry of the matrix is 1 and the (j, i) entry is 1.
- (d)
- If the (i, j) entry of the SSIM is O, then the (i, j) entry of the matrix is 0, and so is the (j, i) entry.
5.3. Level Partitions
5.4. ISM Model
5.5. MICMAC Analysis
- Autonomous parameters: Factors in this cluster are relatively less important because of their small dependence and driving power. None of the factors identified in this study fall in this cluster, indicating that they all contribute significantly to the success of OSC.
- Dependent parameters: F3 (extensive project planning, scheduling, and control), F9 (robust drawing and specification), and F13 (suitable procurement strategy and contracting) fall in this quadrant. The factors in this cluster are low in driving power but high in dependence. These factors are mainly dependent on other factors and can vary significantly.
- Linkage parameters: Most factors fall within this quadrant. A total of 15 factors are included in this cluster: F1 (availability and active involvement of key project team members from the earliest stages of the project), F2 (effective communication and information sharing among participants), F4 (effective use of information and communication technology (e.g., BIM)), F5 (availability of skilled labor), F6 (design standardization and more effective use of the concept of repetition), F7 (good working collaboration), F8 (effective coordination of the supply chain segments), F10 (continuous improvement and learning), F11 (effective coordination of on-site and off-site trades), F12 (adequate relevant experience and knowledge of the manufacturer), F14 (adequate relevant experience and knowledge of the contractor), F15 (maturity of manufacturing technology and facility), F16 (maturity of the transportation method of prefabricated components), F18 (maturity of on-site assembly technology and equipment), and F19 (intensive early research on modularization). This cluster is characterized by high dependence and driving power. Factors in this category can be considered critical factors because they have a strong relationship with other factors.
- Independent parameters: F17 (adequate relevant experience and knowledge of designer and engineer) and F20 (persistent policies and incentives) fall in this quadrant. These factors are high in driving power but low in dependence. Therefore, these are critical factors that require the most attention.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barbosa, F.; Woetzel, J.; Mischke, J. Reinventing Construction: A Route of Higher Productivity; McKinsey Global Institute: New York, NY, USA, 2017. [Google Scholar]
- Blismas, N.; Pasquire, C.; Gibb, A. Benefit evaluation for off-site production in construction. Constr. Manag. Econ. 2006, 24, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Wuni, I.Y.; Shen, G.Q.; Osei-Kyei, R. Quantitative evaluation and ranking of the critical success factors for modular integrated construction projects. Int. J. Constr. Manag. 2020, 1–13. [Google Scholar] [CrossRef]
- Smith, R.E.; Quale, J.D. Offsite Architecture: Constructing the Future; Taylor & Francis: Oxford, UK, 2017. [Google Scholar]
- Construction Offsite Expo. About Offsite Construction. 2016. Available online: http://www.offsiteconstructionexpo.com/htmlPage.aspx?name=osce_data&utm_source=Homepage&utm_medium=Offsite-Umbrella-Graphic&utm_campaign=OSCE2016 (accessed on 1 May 2021).
- Modor Intelligence, Industry Reports-Prefabricated Buildings. 2020. Available online: https://www.mordorintelligence.com/industry-reports/category/real-estate/prefabricated-buildings (accessed on 1 May 2021).
- Choi, J.O.; O’Connor, J.T. Modularization critical success factors accomplishment: Learning from case studies. In Proceedings of the Construction Research Congress 2014: Construction in a Global Network, Atlanta, Georgia, USA, 19–21 May 2014; pp. 1636–1645. [Google Scholar]
- Attri, R.; Dev, N.; Sharma, V. Interpretive structural modelling (ISM) approach: An overview. Res. J. Manag. Sci. 2013, 2319, 1171. [Google Scholar]
- Ahmad, M.; Tang, X.-W.; Qiu, J.-N.; Ahmad, F. Interpretive structural modeling and MICMAC analysis for identifying and benchmarking significant factors of seismic soil liquefaction. Appl. Sci. 2019, 9, 233. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.O. Links between Modularization Critical Success Factors and Project Performance. Doctoral Dissertation, The University of Texas at Austin, Austin, Texas, USA, 2014. [Google Scholar]
- O’Connor, J.T.; O’Brien, W.J.; Choi, J.O. Critical success factors and enablers for optimum and maximum industrial modularization. J. Constr. Eng. Manag. 2014, 140, 04014012. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Wu, G.; Li, X. Critical success factors for project planning and control in prefabrication housing production: A China study. Sustainability 2018, 10, 836. [Google Scholar] [CrossRef] [Green Version]
- Wuni, I.Y.; Shen, G.Q. Critical success factors for modular integrated construction projects: A review. Build. Res. Inf. 2019, 48, 763–784. [Google Scholar] [CrossRef]
- Azhar, S.; Lukkad, M.Y.; Ahmad, I. An investigation of critical factors and constraints for selecting modular construction over conventional stick-built technique. Int. J. Constr. Educ. Res. 2013, 9, 203–225. [Google Scholar] [CrossRef]
- Blismas, N.; Wakefield, R. Drivers, constraints and the future of offsite manufacture in Australia. Constr. Innov. 2009, 9, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Lau, A.K. Critical success factors in managing modular production design: Six company case studies in Hong Kong, China, and Singapore. J. Eng. Technol. Manag. 2011, 28, 168–183. [Google Scholar] [CrossRef]
- Pan, W.; Gibb, A.G.; Dainty, A.R. Perspectives of UK housebuilders on the use of offsite modern methods of construction. Constr. Manag. Econ. 2007, 25, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Ismail, F.; Yusuwan, N.M.; Baharuddin, H.E.A. Management factors for successful IBS projects implementation. Procedia-Soc. Behav. Sci. 2012, 68, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Warfield, J.N. Developing interconnection matrices in structural modeling. IEEE Trans. Syst. Man Cybern. 1974, SMC-4, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Luthra, S.; Haleem, A. Customer involvement in greening the supply chain: An interpretive structural modeling methodology. J. Ind. Eng. Int. 2013, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sushil, S. Interpreting the interpretive structural model. Glob. J. Flex. Syst. Manag. 2012, 13, 87–106. [Google Scholar] [CrossRef]
- Jayant, A.; Singh, P. Interpretive Structural Modeling (ISM) Approach: A State of the Art Literature Review. Int. J. Res. Mech. Eng. Technol. 2015, 5, 15–21. [Google Scholar]
- Kannan, G.; Pokharel, S.; Kumar, P.S. A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resour. Conserv. Recycl. 2009, 54, 28–36. [Google Scholar] [CrossRef]
- Mandal, A.; Deshmukh, S. Vendor selection using interpretive structural modelling (ISM). Int. J. Oper. Prod. Manag. 1994, 14, 52–59. [Google Scholar] [CrossRef]
- Karamat, J.; Shurong, T.; Ahmad, N.; Afridi, S.; Khan, S.; Mahmood, K. Promoting healthcare sustainability in developing countries: Analysis of knowledge management drivers in public and private hospitals of Pakistan. Int. J. Environ. Res. Public Health 2019, 16, 508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, N.M. Modeling Deming’s quality principles to improve performance using interpretive structural modeling and MICMAC analysis. Int. J. Qual. Reliab. Manag. 2019, 36, 1159–1180. [Google Scholar] [CrossRef]
- Modular Building Institute. Modular advantage for the Commercial Modular Construction Industry: The Offsite Construction Issue; Modular Building Institute’s Quarterly Publication: Toronto, ON, Canada, 2017. [Google Scholar]
- Building and Construction Authority. Overview of Design for Manufacturing and Assembly (DFMA); Building and Construction Authority: Singapore, 2017. [Google Scholar]
- Construction Industry Council. About Modular Integrated Construction; Construction Industry Council: Hong Kong, China, 2018. [Google Scholar]
- Hjort, B.; Lindgren, J.; Larsson, B.; Emmit, S. Success factors related to industrialized building in Sweden. In Proceedings of the International Conference on Construction in a Changing World, Dambulla, Sri Lanka, 4–7 May 2014. [Google Scholar]
- Haas, C.T.; Fagerlund, W.R. Preliminary research on prefabrication, pre-assembly, modularization and off-site fabrication in construction; Construction Industry Institute: Austin, TX, USA, 2002. [Google Scholar]
- Tam, V.W.; Tam, C.M.; Ng, W.C. On prefabrication implementation for different project types and procurement methods in Hong Kong. J. Eng. Des. Technol. 2007, 5, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.O.; O’Connor, J.T.; Kim, T.W. Recipes for Cost and Schedule Successes in Industrial Modular Projects: Qualitative Comparative Analysis. J. Constr. Eng. Manag. 2016, 142, 04016055. [Google Scholar] [CrossRef]
- Yunus, R.; Noor, S.R.M.; Nagapan, S.; Hamid, A.R.A.; Tajudin, S.A.A.; Jusof, S.R.M. Critical success factors for lean thinking in the application of Industrialised Building System (IBS). IOP Conf. Series: Mater. Sci. Eng. 2017, 226, 012045. [Google Scholar] [CrossRef] [Green Version]
- Kamar, K.A.M.; Azman, M.N.A.; Nawi, M.N.M. IBS survey 2010: Drivers, barriers and the critical success factors in adopting industrialised building system (IBS) construction by G7 contractors in Malaysia. J. Eng. Sci. Technol. 2014, 9, 490–501. [Google Scholar]
- Zhong, R.Y.; Peng, Y.; Xue, F.; Fang, J.; Zou, W.; Luo, H.; Ng, S.T.; Lu, W.; Shen, G.Q.; Huang, G.Q. Prefabricated construction enabled by the Internet-of-Things. Autom. Constr. 2017, 76, 59–70. [Google Scholar] [CrossRef]
- Pan, W.; Gibb, A.G.; Dainty, A.R. Leading UK housebuilders’ utilization of offsite construction methods. Build. Res. Inf. 2008, 36, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Warszawski, A. Industrialized and Automated Building Systems: A Managerial Approach, 2nd ed.; E & FN Spon, Routledge: London, UK, 1999. [Google Scholar]
- Kamar, K.; Alshawi, M.; Hamid, Z. Industrialised building system: The critical success factors. In Proceedings of the 9th International Postgraduate Research Conference (IPGRC), Salford Quays, Greater Manchester, UK, 29–30 January 2009; pp. 29–30. [Google Scholar]
- Thanoon, W.; Peng, L.W.; Kadir, M.R.A.; Jaafar, M.S.; Salit, M.S. The essential characteristics of industrialised building system. In Proceedings of the International Conference on Industrialised Building Systems, Kuala Lumpur, Malaysia, 10–11 September 2003; pp. 283–292. [Google Scholar]
- Hwang, B.-G.; Shan, M.; Looi, K.-Y. Knowledge-based decision support system for prefabricated prefinished volumetric construction. Autom. Constr. 2018, 94, 168–178. [Google Scholar] [CrossRef]
- Barlow, J.; Childerhouse, P.; Gann, D.; Hong-Minh, S.; Naim, M.; Ozaki, R. Choice and delivery in housebuilding: Lessons from Japan for UK housebuilders. Build. Res. Inf. 2003, 31, 134–145. [Google Scholar] [CrossRef]
- O’Connor, J.T.; O’Brien, W.J.; Choi, J.O. Standardization strategy for modular industrial plants. J. Constr. Eng. Manag. 2015, 141, 04015026. [Google Scholar] [CrossRef]
- Richard, R.B. Industrialized, Flexible and Demountable Building Systems Quality, Economy and Sustainability. Proceeding of the International Symposium on Advancement of Construction Management & Real Estate CRIOCM 2006, Beijing, China, 3–5 November 2006. [Google Scholar]
- Li, C.Z.; Hong, J.; Xue, F.; Shen, G.Q.; Xu, X.; Mok, M.K. Schedule risks in prefabrication housing production in Hong Kong: A social network analysis. J. Clean. Prod. 2016, 134, 482–494. [Google Scholar] [CrossRef] [Green Version]
- Lessing, J.; Stehn, L.; Ekholm, A. Industrialised housing: Definition and categorization of the concept. In Proceedings of the Annual conference of the International Group for Lean Construction, Sydney, Australia, 18–21 July 2005; pp. 471–480. [Google Scholar]
- Mydin, M.A.O.; Mohd Nawi, M.N.; Mohd Yunos, M.Y.; Utaberta, N.U. Decisive success factors in executing prefabrication system in Malaysia. Aust. J. Basic Appl. Sci. 2015, 9, 160–163. [Google Scholar]
- Nadim, W.; Goulding, J.S. Offsite production: A model for building down barriers. Eng. Constr. Archit. Manag. 2011, 18, 82–101. [Google Scholar] [CrossRef]
- Rentschler, C.; Mulrooney, M.; Shahani, G. Modularization: The key to success in today’s market. Hydrocarb. Process. 2016, 95, 27–30. [Google Scholar]
- Gibb, A.G.; Isack, F. Client drivers for construction projects: Implications for standardization. Eng. Constr. Archit. Manag. 2001, 8, 46–58. [Google Scholar] [CrossRef]
- Murtaza, M.B.; Fisher, D.J.; Skibniewski, M.J. Knowledge-based approach to modular construction decision support. J. Constr. Eng. Manag. 1993, 119, 115–130. [Google Scholar] [CrossRef]
- Wong, P.S.; Whelan, B.; Holdsworth, S. Are contractors ready for greater use of prefabrication in projects? An empirical analysis on the role of unlearning and counter-knowledge. Int. J. Constr. Manag. 2018, 21, 353–368. [Google Scholar] [CrossRef]
- Babič, N.Č.; Podbreznik, P.; Rebolj, D. Integrating resource production and construction using BIM. Autom. Constr. 2010, 19, 539–543. [Google Scholar] [CrossRef]
- Jaillon, L.; Poon, C.S. The evolution of prefabricated residential building systems in Hong Kong: A review of the public and the private sector. Autom. Constr. 2009, 18, 239–248. [Google Scholar] [CrossRef]
- Ko, C.H. An integrated framework for reducing precast fabrication inventory. J. Civ. Eng. Manag. 2010, 16, 418–427. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Low, S.P. Barriers to achieving green precast concrete stock management–a survey of current stock management practices in Singapore. Int. J. Constr. Manag. 2014, 14, 78–89. [Google Scholar] [CrossRef]
- Chan, A.P.; Scott, D.; Chan, A.P. Factors affecting the success of a construction project. J. Constr. Eng. Manag. 2004, 130, 153–155. [Google Scholar] [CrossRef] [Green Version]
- Haller, M.; Lu, W.; Stehn, L.; Jansson, G. An indicator for superfluous iteration in offsite building design processes. Archit. Eng. Des. Manag. 2015, 11, 360–375. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, Y.S. Analysis of cost-increasing risk factors in modular construction in Korea using FMEA. KSCE J. Civ. Eng. 2017, 21, 1999–2010. [Google Scholar] [CrossRef]
- Gibb, A.G. Off-Site Fabrication: Prefabrication, Pre-Assembly and Modularisation; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Kamar, K.; Hamid, Z.; Alshawi, M. The critical success factors (CSFs) to the implementation of industrialized building system (IBS) in Malaysia. In Proceedings of the 18th CIB World Building Congress, TG57-Industrialization in Construction, Salford, UK, 10–13 May 2010; pp. 64–76. [Google Scholar]
- Li, C.Z.; Xue, F.; Li, X.; Hong, J.; Shen, G.Q. An Internet of Things-enabled BIM platform for on-site assembly services in prefabricated construction. Autom. Constr. 2018, 89, 146–161. [Google Scholar] [CrossRef]
- Ojoko, E.O.; Osman, M.H.; Rahman, A.B.A.; Bakhary, N. Evaluating the critical success factors of industrialised building system implementation in Nigeria: The stakeholders’ perception. Int. J. Built Environ. Sustain. 2018, 5. [Google Scholar] [CrossRef]
- O’Connor, J.T.; O’Brien, W.J.; Choi, J.O. Industrial project execution planning: Modularization versus stick-built. Pract. Period. Struct. Des. Constr. 2016, 21, 04015014. [Google Scholar] [CrossRef]
- Pan, W.; Gibb, A.G.; Dainty, A.R. Strategies for integrating the use of off-site production technologies in house building. J. Constr. Eng. Manag. 2012, 138, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, A.; Ibrahim, R. Industrialized construction chronology: The disputes and success factors for a resilient construction industry in Malaysia. Open Constr. Build. Technol. J. 2017, 11, 286–300. [Google Scholar] [CrossRef]
- Song, J.; Fagerlund, W.R.; Haas, C.T.; Tatum, C.B.; Vanegas, J.A. Considering prework on industrial projects. J. Constr. Eng. Manag. 2005, 131, 723–733. [Google Scholar] [CrossRef]
- Triumph Modular Corporation. Critical Success Factors for Volumetric Modular Construction. Littleton: Triumph Modular. 2019. Available online: https://triumphmodular.com/permanent-modular/how-to-start/critical-success-factors/ (accessed on 1 May 2021).
- Wuni, I.Y.; Shen, G.Q. Critical success factors for management of the early stages of prefabricated prefinished volumetric construction project life cycle. Eng. Constr. Arch. Manag. 2020, 27, 2315–2333. [Google Scholar] [CrossRef]
- Xue, H.; Zhang, S.; Su, Y.; Wu, Z. Factors affecting the capital cost of prefabrication—A case study of China. Sustainability 2017, 9, 1512. [Google Scholar] [CrossRef] [Green Version]
- BSRIA. Prefabrication and Preassembly-applying the technique to building engineering services. In Advance Construction Technique ACT 1/99; Wilson, D.G., Smith, M.H., Deal, J., Eds.; Department of Environment Transport Region (DETR) and the Building Services Research and InformatFactors Affecting Large Scale Modular Construction Projecion Association (BSRIA): Bracknell, UK, 1998. [Google Scholar]
- Lessing, J.; Brege, S. Industrialized building companies’ business models: Multiple case study of Swedish and North American companies. J. Constr. Eng. Manag. 2018, 144, 05017019. [Google Scholar] [CrossRef]
- Nawi, M.N.M.; Lee, A.; Kamar, K.A.M.; Hamid, Z. Critical success factors for improving team integration in Industrialised Building System (IBS) construction projects: The Malaysian case. Malays. Constr. Res. J. 2012, 10, 45–63. [Google Scholar]
- Toor, S.u.R.; Ogunlana, S.O. Construction professionals’ perception of critical success factors for large-scale construction projects. Constr. Innov. 2009, 9, 149–167. [Google Scholar] [CrossRef]
- Benjaoran, V.; Dawood, N. Intelligence approach to production planning system for bespoke precast concrete products. Autom. Constr. 2006, 15, 737–745. [Google Scholar] [CrossRef]
- Gibb, A.G. Standardization and pre-assembly-distinguishing myth from reality using case study research. Constr. Manag. Econ. 2001, 19, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Gibb, A.; Isack, F. Re-engineering through pre-assembly: Client expectations and drivers. Build. Res. Inf. 2003, 31, 146–160. [Google Scholar] [CrossRef] [Green Version]
- Demiralp, G.; Guven, G.; Ergen, E. Analyzing the benefits of RFID technology for cost sharing in construction supply chains: A case study on prefabricated precast components. Autom. Constr. 2012, 24, 120–129. [Google Scholar] [CrossRef]
- Ergen, E.; Akinci, B. Formalization of the flow of component-related information in precast concrete supply chains. J. Constr. Eng. Manag. 2008, 134, 112–121. [Google Scholar] [CrossRef]
- Ergen, E.; Akinci, B.; Sacks, R. Tracking and locating components in a precast storage yard utilizing radio frequency identification technology and GPS. Autom. Constr. 2007, 16, 354–367. [Google Scholar] [CrossRef]
- Liu, H.; Al-Hussein, M.; Lu, M. BIM-based integrated approach for detailed construction scheduling under resource constraints. Autom. Constr. 2015, 53, 29–43. [Google Scholar] [CrossRef]
- Lu, W.; Yuan, H. Investigating waste reduction potential in the upstream processes of offshore prefabrication construction. Renew. Sustain. Energy Rev. 2013, 28, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Sharafi, P.; Rashidi, M.; Samali, B.; Ronagh, H.; Mortazavi, M. Identification of factors and decision analysis of the level of modularization in building construction. J. Archit. Eng. 2018, 24, 04018010. [Google Scholar] [CrossRef]
- Chiang, Y.-H.; Chan, E.H.-W.; Lok, L.K.-L. Prefabrication and barriers to entry—a case study of public housing and institutional buildings in Hong Kong. Habitat Int. 2006, 30, 482–499. [Google Scholar] [CrossRef]
- Zhang, X.; Skitmore, M.; Peng, Y. Exploring the challenges to industrialized residential building in China. Habitat Int. 2014, 41, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Mole, T. Prefabrication in UK Housing: Innovation or Deja Vu. In Proceedings of the CEEC/AEEBC Conference, Dublin, Ireland, 4–6 October 2001. [Google Scholar]
- Arashpour, M.; Bai, Y.; Aranda-mena, G.; Bab-Hadiashar, A.; Hosseini, R.; Kalutara, P. Optimizing decisions in advanced manufacturing of prefabricated products: Theorizing supply chain configurations in off-site construction. Autom. Constr. 2017, 84, 146–153. [Google Scholar] [CrossRef]
- Hofman, E.; Voordijk, H.; Halman, J. Matching supply networks to a modular product architecture in the house-building industry. Build. Res. Inf. 2009, 37, 31–42. [Google Scholar] [CrossRef]
- Lu, N.; Liska, R.W. Designers’ and general contractors’ perceptions of offsite construction techniques in the United State construction industry. Int. J. Constr. Educ. Res. 2008, 4, 177–188. [Google Scholar] [CrossRef]
- Carriker, M.; Langar, S. Factors affecting large scale modular construction projects. In Proceeding of the Associated School of Construction international Conference, Washington, DC, USA,, 26–28 March 2014. [Google Scholar]
- Hsu, P.-Y.; Angeloudis, P.; Aurisicchio, M. Optimal logistics planning for modular construction using two-stage stochastic programming. Autom. Constr. 2018, 94, 47–61. [Google Scholar] [CrossRef]
- Marchesi, M.; Matt, D.T. Design for mass customization: Rethinking prefabricated housing using axiomatic design. J. Archit. Eng. 2017, 23, 05017004. [Google Scholar] [CrossRef]
- Neala, R.; Price, A.; Suer, W. Prefabricated modules in construction: A Study of Current Practice in the United Kingdom; Chartered Institute of Building: Bracknell, UK, 1993. [Google Scholar]
- Vrijhoef, R.; Cuperus, Y.; Voordijk, H. Exploring the connection between open building and lean construction: Defining a postponement strategy for supply chain management. In Proceedings of the IGLC-10, Gramado, Brazil, 6–8 August 2002; pp. 149–160. [Google Scholar]
- Mao, C.; Shen, Q.; Pan, W.; Ye, K. Major barriers to off-site construction: The developer’s perspective in China. J. Manag. Eng. 2015, 31, 04014043. [Google Scholar] [CrossRef]
- Wang, C.; Liu, M.; Hsiang, S.M.; Leming, M.L. Causes and penalties of variation: Case study of a precast concrete slab production facility. J. Constr. Eng. Manag. 2012, 138, 775–785. [Google Scholar] [CrossRef]
- Arif, M.; Egbu, C. Making a case for offsite construction in China. Eng. Constr. Arch. Manag. 2010, 17, 536–548. [Google Scholar] [CrossRef]
- Haron, N.A.; Abdul-Rahman, H.; Wang, C.; Wood, L.C. Quality function deployment modelling to enhance industrialised building system adoption in housing projects. Total. Qual. Manag. Bus. Excel. 2014, 26, 703–718. [Google Scholar] [CrossRef]
No. | Critical Success Factors | Frequency | References |
---|---|---|---|
F1 | Availability and active involvement of key project team members from the earliest stages of the project | 29 | [2,3,7,10,12,13,15,16,18,27,28,29,32,33,35,37,47,50,60,61,62,63,64,65,66,67,68,69,70] |
F2 | Effective communication and information sharing among participants | 28 | [3,10,12,13,14,16,17,18,30,31,32,33,34,35,37,39,43,61,62,63,64,66,68,70,71,72,73,74] |
F3 | Extensive project planning, scheduling, and control | 26 | [3,7,10,11,12,13,14,18,30,31,33,34,35,39,46,61,63,64,66,67,69,72,74,75,76,77] |
F4 | Effective use of information and communication technology (e.g., BIM) | 23 | [3,12,13,14,16,34,35,36,39,46,53,61,62,66,67,69,72,78,79,80,81,82,83] |
F5 | Availability of skilled labor | 22 | [3,12,13,14,15,31,32,35,37,38,39,40,41,51,61,62,67,70,71,76,84,85] |
F6 | Design standardization and more effective use on the concept of repetition | 19 | [3,11,13,14,16,32,35,38,42,43,50,51,61,63,64,65,66,76,86] |
F7 | Good working collaboration | 18 | [3,13,14,17,18,31,33,34,61,62,63,66,69,70,73,87,88,89] |
F8 | Effective coordination of the supply chain segments | 16 | [3,13,18,30,31,35,39,46,49,61,63,66,72,87,90,91] |
F9 | Robust drawings and specifications | 16 | [3,12,13,14,38,42,49,50,52,65,68,69,74,76,85,92] |
F10 | Continuous improvement and learning | 15 | [3,10,13,30,31,33,35,39,52,62,66,70,73,93] |
F11 | Effective coordination of on-site and off-site trades | 15 | [3,7,10,11,12,13,31,33,35,37,39,61,66,73,94] |
F12 | Adequate relevant experience and knowledge of manufacturer | 14 | [7,10,12,13,14,33,47,51,62,67,69,74,95,96] |
F13 | Suitable procurement strategy and contracting | 14 | [13,15,17,18,30,32,37,49,61,66,68,69,70,73] |
F14 | Adequate relevant experience and knowledge of the contractor | 14 | [7,10,11,13,32,33,39,47,51,61,62,68,69,74] |
F15 | The maturity of manufacture technology and facility | 14 | [7,10,11,12,13,14,33,41,45,51,54,63,67,76] |
F16 | The maturity of transportation method of prefabricated components | 14 | [7,10,11,12,13,14,33,41,45,51,54,63,67,76] |
F17 | Adequate relevant experience and knowledge of designer and engineer | 11 | [12,13,14,15,47,51,57,58,62,69,74] |
F18 | The maturity of on-site assembly technology and equipment | 11 | [3,7,10,11,13,14,33,41,51,63,76] |
F19 | Intensive early research on modularization | 9 | [7,10,11,13,31,33,59,68,76] |
F20 | Persistent policies and incentives | 7 | [12,15,32,47,95,97,98] |
F20 | F19 | F18 | F17 | F16 | F15 | F14 | F13 | F12 | F11 | F10 | F9 | F8 | F7 | F6 | F5 | F4 | F3 | F2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | O | O | V | O | V | V | O | V | O | V | V | V | V | X | V | O | A | V | X |
F2 | A | A | V | A | V | V | A | V | A | V | V | V | V | X | A | V | A | V | |
F3 | O | A | A | A | A | A | A | A | A | A | A | A | A | A | A | V | A | ||
F4 | A | X | X | A | X | X | A | V | A | V | V | V | V | V | V | V | |||
F5 | O | A | X | O | X | O | A | O | O | O | A | A | O | A | A | ||||
F6 | A | A | X | A | X | X | A | V | A | V | A | V | V | A | |||||
F7 | A | V | V | A | V | V | A | V | A | V | V | V | V | ||||||
F8 | O | A | O | O | X | A | A | X | A | X | A | A | |||||||
F9 | O | A | O | A | O | O | A | V | A | V | A | ||||||||
F10 | A | X | V | V | V | V | V | V | V | V | |||||||||
F11 | O | A | X | A | X | X | A | X | A | ||||||||||
F12 | O | V | O | O | X | X | O | V | |||||||||||
F13 | O | A | A | O | A | A | A | ||||||||||||
F14 | O | V | X | O | O | O | |||||||||||||
F15 | A | A | O | O | O | ||||||||||||||
F16 | A | A | O | O | |||||||||||||||
F17 | O | V | O | ||||||||||||||||
F18 | A | A | |||||||||||||||||
F19 | A |
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 | F19 | F20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
F2 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
F3 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
F5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
F6 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
F7 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
F8 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
F9 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F10 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
F11 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
F12 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
F13 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F14 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
F15 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
F16 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
F17 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
F18 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
F19 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
F20 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 | F19 | F20 | DrivingPower | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | 1 | 1 | 1 | 1 * | 1 * | 1 | 1 | 1 | 1 | 1 | 1 | 1 * | 1 | 1 * | 1 | 1 | 1 * | 1 | 1 * | 0 | 19 |
F2 | 1 | 1 | 1 | 1 * | 1 | 1 * | 1 | 1 | 1 | 1 | 1 | 1 * | 1 | 1 * | 1 | 1 | 1 * | 1 | 1 * | 0 | 19 |
F3 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 * | 0 | 1 * | 0 | 0 | 4 |
F4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 * | 1 | 1 * | 1 | 1 | 1 * | 1 | 1 | 0 | 19 |
F5 | 1 * | 0 | 1 * | 1 * | 1 | 1 * | 0 | 1 * | 0 | 0 | 1 * | 1 * | 1 * | 1 * | 0 | 1 | 0 | 1 | 0 | 0 | 12 |
F6 | 1 * | 1 | 1 | 1 * | 1 | 1 | 1 * | 1 | 1 | 1 * | 1 | 1 * | 1 | 1 * | 1 | 1 | 0 | 1 | 0 | 0 | 17 |
F7 | 1 | 1 | 1 | 1 * | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 * | 1 | 1 * | 1 | 1 | 1 * | 1 | 1 | 0 | 19 |
F8 | 1 * | 0 | 1 | 1 * | 1 * | 1 * | 0 | 1 | 0 | 0 | 1 | 1 * | 1 | 0 | 1 * | 1 | 0 | 1 * | 0 | 0 | 12 |
F9 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 * | 1 * | 0 | 1 | 0 | 0 | 9 |
F10 | 1 * | 1 * | 1 | 1 * | 1 | 1 | 1 * | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 19 |
F11 | 1 * | 0 | 1 | 1 * | 1 * | 1 * | 0 | 1 | 0 | 0 | 1 | 1 * | 1 | 1 * | 1 | 1 | 0 | 1 | 0 | 0 | 13 |
F12 | 1 * | 1 | 1 | 1 | 1 * | 1 | 1 | 1 | 1 | 1 * | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 * | 1 | 0 | 17 |
F13 | 0 | 0 | 1 | 0 | 1 * | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 * | 1 * | 0 | 1 * | 0 | 0 | 8 |
F14 | 1 * | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 * | 1 | 0 | 1 | 1 | 1 * | 1 * | 0 | 1 | 1 | 0 | 17 |
F15 | 1 * | 1 * | 1 | 1 | 1 * | 1 | 1 * | 1 | 1 * | 1 * | 1 | 1 | 1 | 0 | 1 | 1 * | 0 | 1 * | 1 * | 0 | 17 |
F16 | 1 | 1 * | 1 | 1 | 1 | 1 | 1 * | 1 | 1 * | 1 * | 1 | 1 | 1 | 0 | 1 * | 1 | 0 | 1 * | 1 * | 0 | 17 |
F17 | 1 * | 1 | 1 | 1 | 1 * | 1 | 1 | 1 * | 1 | 1 * | 1 | 0 | 1 * | 0 | 1 * | 1 * | 1 | 1 * | 1 | 0 | 17 |
F18 | 1 * | 1 * | 1 | 1 | 1 | 1 | 1 * | 1 * | 1 * | 1 * | 1 | 0 | 1 | 1 | 1 * | 1 * | 0 | 1 | 1 * | 0 | 17 |
F19 | 1 * | 1 | 1 | 1 | 1 | 1 | 1 * | 1 | 1 | 1 | 1 | 1 * | 1 | 1 * | 1 | 1 | 1 * | 1 | 1 | 0 | 19 |
F20 | 1 * | 1 | 1 * | 1 | 1 * | 1 | 1 | 1 * | 1 * | 1 | 1 * | 1 * | 1 * | 1 * | 1 | 1 | 1 * | 1 | 1 | 1 | 20 |
Dependence | 17 | 14 | 20 | 17 | 20 | 17 | 14 | 19 | 15 | 14 | 19 | 14 | 19 | 12 | 18 | 20 | 8 | 20 | 13 | 1 |
Reachability_Set | Antecedents_Set | Intersection_Set | Level | |
---|---|---|---|---|
F1 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 | F1 F2 F4 F5 F6 F7 F8 F10 F11 F12 F14 F15 F16 F17 F18 F19 F20 | F1 F2 F4 F5 F6 F7 F8 F10 F11 F12 F14 F15 F16 F17 F18 F19 | 0 |
F2 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 | F1 F2 F4 F6 F7 F10 F12 F14 F15 F16 F17 F18 F19 F20 | F1 F2 F4 F6 F7 F10 F12 F14 F15 F16 F17 F18 F19 | 0 |
F3 | F3 F5 F16 F18 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 | F3 F5 F16 F18 | 1 |
F4 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 | F1 F2 F4 F5 F6 F7 F8 F10 F11 F12 F14 F15 F16 F17 F18 F19 F20 | F1 F2 F4 F5 F6 F7 F8 F10 F11 F12 F14 F15 F16 F17 F18 F19 | 0 |
F5 | F1 F3 F4 F5 F6 F8 F11 F12 F13 F14 F16 F18 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 | F1 F3 F4 F5 F6 F8 F11 F12 F13 F14 F16 F18 | 1 |
F6 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F18 | F1 F2 F4 F5 F6 F7 F8 F10 F11 F12 F14 F15 F16 F17 F18 F19 F20 | F1 F2 F4 F5 F6 F7 F8 F10 F11 F12 F14 F15 F16 F18 | 0 |
F7 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 | F1 F2 F4 F6 F7 F10 F12 F14 F15 F16 F17 F18 F19 F20 | F1 F2 F4 F6 F7 F10 F12 F14 F15 F16 F17 F18 F19 | 0 |
F8 | F1 F3 F4 F5 F6 F8 F11 F12 F13 F15 F16 F18 | F1 F2 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 | F1 F4 F5 F6 F8 F11 F12 F13 F15 F16 F18 | 0 |
F9 | F3 F5 F8 F9 F11 F13 F15 F16 F18 | F1 F2 F4 F6 F7 F9 F10 F12 F14 F15 F16 F17 F18 F19 F20 | F9 F15 F16 F18 | 0 |
F10 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 | F1 F2 F4 F6 F7 F10 F12 F14 F15 F16 F17 F18 F19 F20 | F1 F2 F4 F6 F7 F10 F12 F14 F15 F16 F17 F18 F19 | 0 |
F11 | F1 F3 F4 F5 F6 F8 F11 F12 F13 F14 F15 F16 F18 | F1 F2 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 | F1 F4 F5 F6 F8 F11 F12 F13 F14 F15 F16 F18 | 0 |
F12 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F15 F16 F18 F19 | F1 F2 F4 F5 F6 F7 F8 F10 F11 F12 F15 F16 F19 F20 | F1 F2 F4 F5 F6 F7 F8 F10 F11 F12 F15 F16 F19 | 0 |
F13 | F3 F5 F8 F11 F13 F15 F16 F18 | F1 F2 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 | F5 F8 F11 F13 F15 F16 F18 | 0 |
F14 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F13 F14 F15 F16 F18 F19 | F1 F2 F4 F5 F6 F7 F10 F11 F14 F18 F19 F20 | F1 F2 F4 F5 F6 F7 F10 F11 F14 F18 F19 | 0 |
F15 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F15 F16 F18 F19 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F15 F16 F18 F19 | 0 |
F16 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F15 F16 F18 F19 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F15 F16 F18 F19 | 1 |
F17 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F13 F15 F16 F17 F18 F19 | F1 F2 F4 F7 F10 F17 F19 F20 | F1 F2 F4 F7 F10 F17 F19 | 0 |
F18 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F13 F14 F15 F16 F18 F19 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F13 F14 F15 F16 F18 F19 | 1 |
F19 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 | F1 F2 F4 F7 F10 F12 F14 F15 F16 F17 F18 F19 F20 | F1 F2 F4 F7 F10 F12 F14 F15 F16 F17 F18 F19 | 0 |
F20 | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 | F20 | F20 | 0 |
Reachability_Set | Antecedents_Set | Intersection_Set | Level | |
---|---|---|---|---|
F1 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F17 F19 | F1 F2 F4 F6 F7 F12 F14 F15 F17 F19 F20 | F1 F2 F4 F6 F7 F12 F14 F15 F17 F19 | 0 |
F2 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F17 F19 | F1 F2 F4 F6 F7 F10 F12 F14 F15 F17 F19 F20 | F1 F2 F4 F6 F7 F10 F12 F14 F15 F17 F19 | 0 |
F4 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F17 F19 | F1 F2 F4 F6 F7 F10 F11 F12 F14 F15 F17 F19 F20 | F1 F2 F4 F6 F7 F10 F11 F12 F14 F15 F17 F19 | 0 |
F6 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F15 | F1 F2 F4 F6 F7 F10 F11 F12 F14 F15 F17 F19 F20 | F1 F2 F4 F6 F7 F10 F11 F12 F15 | 0 |
F7 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F17 F19 | F1 F2 F4 F6 F7 F10 F12 F14 F15 F17 F19 F20 | F1 F2 F4 F6 F7 F10 F12 F14 F15 F17 F19 | 0 |
F8 | F8 F11 F13 F15 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F17 F19 F20 | F8 F11 F13 F15 | 2 |
F9 | F8 F9 F11 F13 F15 | F1 F2 F4 F6 F7 F9 F10 F12 F14 F15 F17 F19 F20 | F9 F15 | 0 |
F10 | F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F17 F19 | F1 F2 F4 F6 F7 F10 F12 F14 F15 F17 F19 F20 | F2 F4 F6 F7 F10 F12 F14 F15 F17 F19 | 0 |
F11 | F4 F6 F8 F11 F12 F13 F15 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F17 F19 F20 | F4 F6 F8 F11 F12 F13 F15 | 2 |
F12 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F15 F19 | F1 F2 F4 F6 F7 F10 F11 F12 F15 F19 F20 | F1 F2 F4 F6 F7 F10 F11 F12 F15 F19 | 0 |
F13 | F8 F11 F13 F15 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F17 F19 F20 | F8 F11 F13 F15 | 2 |
F14 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F13 F14 F15 F19 | F1 F2 F4 F7 F10 F14 F19 F20 | F1 F2 F4 F7 F10 F14 F19 | 0 |
F15 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F15 F19 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F17 F19 F20 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F15 F19 | 2 |
F17 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F13 F15 F17 F19 | F1 F2 F4 F7 F10 F17 F19 F20 | F1 F2 F4 F7 F10 F17 F19 | 0 |
F19 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F17 F19 | F1 F2 F4 F7 F10 F12 F14 F15 F17 F19 F20 | F1 F2 F4 F7 F10 F12 F14 F15 F17 F19 | 0 |
F20 | F1 F2 F4 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F17 F19 F20 | F20 | F20 | 0 |
Reachability_Set | Antecedents_Set | Intersection_Set | Level | |
---|---|---|---|---|
F1 | F1 F2 F6 F7 F9 F10 F12 F14 F17 F19 | F1 F2 F4 F6 F7 F12 F14 F17 F19 F20 | F1 F2 F6 F7 F12 F14 F17 F19 | 0 |
F2 | F1 F2 F6 F7 F9 F10 F12 F14 F17 F19 | F1 F2 F4 F6 F7 F10 F12 F14 F17 F19 F20 | F1 F2 F6 F7 F10 F12 F14 F17 F19 | 0 |
F4 | F1 F2 F4 F6 F7 F9 F10 F12 F14 F17 F19 | F4 F7 F10 F12 F14 F17 F19 F20 | F4 F7 F10 F12 F14 F17 F19 | 0 |
F6 | F1 F2 F6 F7 F9 F10 | F1 F2 F4 F6 F7 F10 F12 F14 F17 F19 F20 | F1 F2 F6 F7 F10 | 0 |
F7 | F1 F2 F4 F6 F7 F9 F10 F12 F14 F17 F19 | F1 F2 F4 F6 F7 F10 F12 F14 F17 F19 F20 | F1 F2 F4 F6 F7 F10 F12 F14 F17 F19 | 0 |
F9 | F9 | F1 F2 F4 F6 F7 F9 F10 F12 F14 F17 F19 F20 | F9 | 3 |
F10 | F2 F4 F6 F7 F9 F10 F12 F14 F17 F19 | F1 F2 F4 F6 F7 F10 F12 F14 F17 F19 F20 | F2 F4 F6 F7 F10 F12 F14 F17 F19 | 0 |
F12 | F1 F2 F4 F6 F7 F9 F10 F12 F19 | F1 F2 F4 F7 F10 F12 F19 F20 | F1 F2 F4 F7 F10 F12 F19 | 0 |
F14 | F1 F2 F4 F6 F7 F9 F10 F14 F19 | F1 F2 F4 F7 F10 F14 F19 F20 | F1 F2 F4 F7 F10 F14 F19 | 0 |
F17 | F1 F2 F4 F6 F7 F9 F10 F17 F19 | F1 F2 F4 F7 F10 F17 F19 F20 | F1 F2 F4 F7 F10 F17 F19 | 0 |
F19 | F1 F2 F4 F6 F7 F9 F10 F12 F14 F17 F19 | F1 F2 F4 F7 F10 F12 F14 F17 F19 F20 | F1 F2 F4 F7 F10 F12 F14 F17 F19 | 0 |
F20 | F1 F2 F4 F6 F7 F9 F10 F12 F14 F17 F19 F20 | F20 | F20 | 0 |
Reachability_Set | Antecedents_Set | Intersection_Set | Level | |
---|---|---|---|---|
F1 | F1 F2 F6 F7 F10 F12 F14 F17 F19 | F1 F2 F4 F6 F7 F12 F14 F17 F19 F20 | F1 F2 F6 F7 F12 F14 F17 F19 | 0 |
F2 | F1 F2 F6 F7 F10 F12 F14 F17 F19 | F1 F2 F4 F6 F7 F10 F12 F14 F17 F19 F20 | F1 F2 F6 F7 F10 F12 F14 F17 F19 | 4 |
F4 | F1 F2 F4 F6 F7 F10 F12 F14 F17 F19 | F4 F7 F10 F12 F14 F17 F19 F20 | F4 F7 F10 F12 F14 F17 F19 | 0 |
F6 | F1 F2 F6 F7 F10 | F1 F2 F4 F6 F7 F10 F12 F14 F17 F19 F20 | F1 F2 F6 F7 F10 | 4 |
F7 | F1 F2 F4 F6 F7 F10 F12 F14 F17 F19 | F1 F2 F4 F6 F7 F10 F12 F14 F17 F19 F20 | F1 F2 F4 F6 F7 F10 F12 F14 F17 F19 | 4 |
F10 | F2 F4 F6 F7 F10 F12 F14 F17 F19 | F1 F2 F4 F6 F7 F10 F12 F14 F17 F19 F20 | F2 F4 F6 F7 F10 F12 F14 F17 F19 | 4 |
F12 | F1 F2 F4 F6 F7 F10 F12 F19 | F1 F2 F4 F7 F10 F12 F19 F20 | F1 F2 F4 F7 F10 F12 F19 | 0 |
F14 | F1 F2 F4 F6 F7 F10 F14 F19 | F1 F2 F4 F7 F10 F14 F19 F20 | F1 F2 F4 F7 F10 F14 F19 | 0 |
F17 | F1 F2 F4 F6 F7 F10 F17 F19 | F1 F2 F4 F7 F10 F17 F19 F20 | F1 F2 F4 F7 F10 F17 F19 | 0 |
F19 | F1 F2 F4 F6 F7 F10 F12 F14 F17 F19 | F1 F2 F4 F7 F10 F12 F14 F17 F19 F20 | F1 F2 F4 F7 F10 F12 F14 F17 F19 | 0 |
F20 | F1 F2 F4 F6 F7 F10 F12 F14 F17 F19 F20 | F20 | F20 | 0 |
Reachability_Set | Antecedents_Set | Intersection_Set | Level | |
---|---|---|---|---|
F1 | F1 | F1 F4 F12 F14 F17 F19 F20 | F1 | 5 |
F4 | F1 F4 F19 | F4 F12 F14 F17 F19 F20 | F4 F19 | 0 |
F12 | F1 F4 F12 F19 | F12 | F12 | 0 |
F14 | F1 F4 F14 F19 | F14 | F14 | 0 |
F17 | F1 F4 F17 F19 | F17 | F17 | 0 |
F19 | F1 F4 F19 | F4 F12 F14 F17 F19 F20 | F4 F19 | 0 |
F20 | F1 F4 F19 F20 | F20 | F20 | 0 |
Reachability_Set | Antecedents_Set | Intersection_Set | Level | |
---|---|---|---|---|
F4 | F4 F19 | F4 F12 F14 F17 F19 F20 | F4 F19 | 6 |
F12 | F4 F12 F19 | F12 | F12 | 0 |
F14 | F4 F14 F19 | F14 | F14 | 0 |
F17 | F4 F17 F19 | F17 | F17 | 0 |
F19 | F4 F19 | F4 F12 F14 F17 F19 F20 | F4 F19 | 6 |
F20 | F4 F19 F20 | F20 | F20 | 0 |
Reachability_Set | Antecedents_Set | Intersection_Set | Level | |
---|---|---|---|---|
F12 | F12 | F12 | F12 | 7 |
F14 | F14 | F14 | F14 | 7 |
F17 | F17 | F17 | F17 | 7 |
F20 | F20 | F20 | F20 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.; Lee, S.; Yu, J. Identification and Prioritization of Critical Success Factors for Off-Site Construction Using ISM and MICMAC Analysis. Sustainability 2021, 13, 8911. https://doi.org/10.3390/su13168911
Jung S, Lee S, Yu J. Identification and Prioritization of Critical Success Factors for Off-Site Construction Using ISM and MICMAC Analysis. Sustainability. 2021; 13(16):8911. https://doi.org/10.3390/su13168911
Chicago/Turabian StyleJung, Seoyoung, Seulki Lee, and Jungho Yu. 2021. "Identification and Prioritization of Critical Success Factors for Off-Site Construction Using ISM and MICMAC Analysis" Sustainability 13, no. 16: 8911. https://doi.org/10.3390/su13168911
APA StyleJung, S., Lee, S., & Yu, J. (2021). Identification and Prioritization of Critical Success Factors for Off-Site Construction Using ISM and MICMAC Analysis. Sustainability, 13(16), 8911. https://doi.org/10.3390/su13168911