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Abstract: The flue gas desulfurization process in coal-fired power plants is energy and resource-
intensive but the eco-efficiency of this process has scarcely been considered. Given the fluctuating
unit load and complex desulfurization mechanism, optimizing the desulfurization system based
on the traditional mechanistic model poses a great challenge. In this regard, the present study
optimized the eco-efficiency from the perspective of operating data analysis. We formulated the
issue of eco-efficiency improvement into a many-objective optimization problem. Considering the
complexity between the system inputs and outputs and to further reduce the computational cost, we
constructed a Kriging model and made a comparison between this model and the response surface
methodology based on two accuracy metrics. This surrogate model was then incorporated into the
NSGA-III algorithm to obtain the Pareto-optimal front. As this Pareto-optimal front provides multiple
alternative operating options, we applied the TOPSIS to select the most appropriate alternative set
of operating parameters. This approach was validated using the historical operation data from
the desulfurization system at a coal-fired power plant in China with a 600 MW unit. The results
indicated that the optimization would cause an improvement in the efficiency of desulfurization
and energy efficiency but a slight increase in the consumption of limestone slurry. This study
attempted to provide an effective operating strategy to enhance the eco-efficiency performance of
desulfurization systems.

Keywords: data-driven modeling; many-objective optimization; NSGA-III; Kriging model;
eco-efficiency

1. Introduction

China has set particularly ambitious targets for energy saving and carbon emission
mitigation and is increasingly concerned about the eco-efficiency of industrial produc-
tion [1]. Between 2019 and 2024, China was forecast to account for 40% of global renewable
capacity expansion [2]. However, as China’s electricity structure is still coal-dominated,
coal demand and production remain high even in the context of COVID-19. The national
bureau of statistics in China declared that 68.6% of the primary energy supply and 57.7%
of the total energy consumption in 2019 was covered by coal [3]. Hitherto, coal is still
supposed to be the primary energy source in the next decades [4]. As coal-fired power
generation is widely recognized as a high pollution process with considerable atmospheric
emissions, how to elevate the environmental performance has been a critical challenge for
the sustainable transformation of coal-fired power plants.

The supercritical /ultra-supercritical technology and clean coal technology have shown
remarkable progress and contributed to significant emission reductions in coal-fired power
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generation [5]. Nonetheless, the flue gas still contains substantial pollutants, including
SO, among others. Such pollutants can cause serious environmental issues, including fine
sulfate particles [6] and acid rain. Eliminating sulfur dioxide emissions is one of the pivotal
steps in flue gas treatment. The problem with this step is the massive consumption of
energy and. For example, the wet desulfurization system consumes a tremendous amount
of limestone slurry and has various energy-intensive pumps. More importantly, the control
of the desulfurization process is commonly based on the rule-of-thumb which induces
huge energy and slurry wastes [7]. This phenomenon also has significant potential for
optimization for the desulfurization in coal-fired power plants.

Previous works on the ecological performance of the desulfurization system in a coal-
fired power plant are scarce. Additionally, the optimization of desulfurization considered
only one or two objectives. In the present study, the ecological performances we attempt
to optimize are systematic energy use, resources consumption, and desulfurization effi-
ciency. An eco-efficient operation of the system tends to essentially synthesize these three
environment-related indicators which are typically conflicting in nature [8]. The primary
goal of this study was to figure out the optimal operation with high eco-efficiency, and the
outline is presented in Figure 1. This optimization towards eco-efficiency with three objec-
tives is a many-objective problem. An increased number of objectives can exponentially
increase the non-dominated solutions and make the optimization computationally expen-
sive, thereby, bringing obstacles into the subsequent decision-making work [9]. Thus, we
applied the Non-Dominant Sorting Genetic Algorithm-III (NSGA-III) following the work
by the authors of [9,10] to optimize the eco-efficiency of the WFGD system of a coal-fired
power plant. To reduce the computational cost of NSGA-III, we incorporated a surrogate
model (Kriging model) into this algorithm to approximate the objective function revealing
the relationship between the input variables and the outputs of the system, i.e., the values of
ecological indicators. Given that the dense representation of the Pareto-optimal front may
hinder the eco-efficient decision-making, the technique for order preference by similarity
to ideal solution (TOPSIS) was adopted to select the best operational parameter to set as
the optimal operation. The present study provides a robust empirical basis to develop
eco-efficient WFGD strategies and facilitate the sustainable transformation of coal-fired
power plants.
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Figure 1. Overview of the research undertaken in the present study.

2. Literature Review

The desulfurization system can be optimized in different ways, e.g., using alternative
sorbent composition and redesigning the structures of critical components. Researchers
have attempted to explore effective and affordable fume sorbents to enhance desulfur-
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ization performance. Magnesium oxide [11], iodine [12], magnesium hydrate [13], and
amine [14] were demonstrated to be rather efficient but price prohibitive for massive
applications. The modified structural property and device of the absorber promoted
the gas—liquid mass transfer resulting in higher desulfurization efficiency. Chen and
colleagues [15] designed a flow pattern controlling device with a perforated plate to en-
hance the desulfurization performance. Dou et al. [16] introduced an electrostatic spaying
absorber to increase the contact area between SO, and Ca(OH); slurry droplets. Fang
et al. [17] simulated the flow in the spray tower numerically and found that a specific
increase in the flue gas entrance velocity and a decrease in the inlet angle can extend the
residence time of flue gas. Another important type of desulfurization enhancement method
is based on the absorption mechanism. These approaches identified the characteristics of
the desulfurization process and modified the influential factors. Michalski [18] studied the
scrubber aerodynamic properties based on the balance of forces on droplets falling in the
spray tower. Their model unveiled the relationship between pressure drop, residence time,
and droplet concentration. Dou et al. [19] applied the two-film theory of mass transfer
to the SO, removal process and further investigated how the droplet size of the spray,
the flow rates of gas and liquid, and the pH value of the liquid compound influenced
the reaction between SO, and slurry. Shen et al. [20] illustrated the oxidation mechanism
in the magnesium-based wet flue gas desulfurization (WFGD) process. Understanding
the kinetics and mechanism of sulfite oxidation contributes to the optimization of the
FGD system. However, uncovering the mechanism of WFGD in specific cases requires
solid knowledge of the physicochemical absorption and the characteristics of the relevant
devices in the tower. Additionally, the excessive assumptions made in the mechanism
models and the high computation cost limits the accurate capture of the complexities and
characteristics of the WFGD system [21].

The desulfurization performance is closely related to a wide range of variables, which
technically complicate the improvement of the WFGD process. Fortunately, the operation
data can be monitored and stored by the distributed control system and the management
information system, respectively, in the coal-fired power plant. Such an enormous amount
of data makes artificial intelligence and data mining techniques alternative options to
address the optimization of the desulfurization process. Liu et al. [7] adopted data mining
techniques to optimize the economic cost and desulfurization efficiency under varying
conditions. Uddin et al. [22] incorporated the Monte Carlo experiment into artificial neural
network process models to establish the relationship between nine input and output
variables. They further determined the optimal control variables and demonstrated the
environmental benefits of the optimization. Qiao et al. [23] proposed an improved fuzzy
clustering algorithm integrating K-means, information entropy, and C-means to select
the optimum operation data with minimum cost. The basic idea of this type of approach
is to extract the operation parameters with the best performance based on the historical
operation data presenting the varying states of the desulfurization process.

Operation strategy optimization for the desulfurization system was primarily per-
formed from the perspectives of economic cost, desulfurization efficiency, and energy
consumption. For example, Wang et al. [24] optimized the combination of pumps with
different types to reduce the power cost. They also investigated the relationship between
the pH of slurry and the efficiency of desulfurization to obtain the optimal pH under the
different power of the ultra-supercritical boil. Guo et al. [25] developed an artificial neural
network for the prediction of SO, emissions and built a cost model of the desulfurization
system. A particle swarm optimization was then designed to minimize the total operation
cost subject to the SO, emission standard. Most of these studies optimized the desulfuriza-
tion system to achieve one single or specific two goals. Bi-objective optimization problems
are common in industrial cases [26-28], and multi-objective optimization in the literature
has seldom involved over three objectives.
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3. Problem Formulation

The limestone—gypsum wet flue gas desulfurization is the most widely used technol-
ogy for SO, removal in coal-fired power plants due to its high efficiency, reliability, and
cost-effectiveness [29]. As depicted in Figure 2, the general limestone-gypsum WFGD
system is comprised of the sorbent preparation system, the gypsum production system,
the flue gas system, the SO, absorption system, and the auxiliary system. The boiler flue
gas pressurized by the booster fan enters the absorption tower from the bottom and flows
upward, while the limestone slurry droplets are sprayed by the atomizer in the opposite
direction. A series of chemical reactions and heat transfer processes simultaneously occur
in the tower. These reactions amongst SO, in the flue gas, the limestone slurry, and the
O; from oxidation fans generate calcium sulfate dihydrate, i.e., gypsum. The mist elimi-
nator on the top of the absorption tower separates and captures the tiny droplets in the
desulfurized flue gas flows to protect the flue pipes from erosion. The flue gas after mist
elimination is directly exhausted into the atmosphere through the chimney.
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Figure 2. Schematic diagram of the general desulfurization process.

Prior studies [29,30] have shown that the performance of the WFGD system is affected
by multiple factors, such as the flue gas flow rate, the slurry flow rate, the air flow rate,
the pH value of the limestone slurry, and the SO, inlet concentration. The operational
parameters, particularly the liquid gas ratio (L/G) and the calcium sulfur ratio (Ca/S),
exert significant influence on sorbent consumption, SO, removal efficiency, energy use,
and equipment corrosion. It should be noted that SO, concentration and the flow rate of
the inlet flue gas are non-adjustable depending on the coal type and plant capacity. The
number of circulation pumps, the flow rate of the limestone slurry, and the flow rate of air
were selected as controllable parameters in this study. These parameters, to some extent,
determine the pH and density of the slurry, the L/G ratio, and the Ca/S ratio affecting the
performance indicators of the WFGD system.

The objective was to optimize the eco-efficiency indicators, i.e., energy use, limestone
slurry consumption, and desulfurization efficiency while satisfying the regulation of SO,
emission. This optimization was based on historical operation data containing empirical
knowledge of the operating characteristics of the WFGD system. We performed the system
optimization for an industrial case, namely, the WFGD of a coal-fired power plant with a
600 MW unit at Chaozhou, Guangdong Province, China. The energy-consuming equip-
ment in the desulfurization system mainly includes four circulation pumps, two oxidation
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fans, and two pressurized fans. Limestone slurry is the primary resource consumed in the
SO, removal process. The vector of the input variables was expressed by x = [x1, x3, X3, x4].
These variables refer to the flow rate of inlet SO,, the air flow rate, the power load, and the
slurry flow rate. According to the legislation proclaimed by the local bureau of environ-
mental protection, the concentration of outlet SO, must be no more than 35 mg/m?3. The
optimization problem can be formulated as follows:

)

where f1(x), f2(x), and f3(x) denote the desulfurization efficiency, power load, and limestone
slurry flow rate, respectively. gi(x) is the concentration of outlet SO, at sample x, and
g2(x) is the desulfurization efficiency at sample x. g1(x) and g»(x) were constructed by a
surrogate model due to the complexity between the variables. X is the set of samples used
in this study. Figure 3 presents 900 samples of critical variables related to this optimization
problem taken at 1 min intervals from the desulfurization system. The historical data of
15 h of desulfurization operations were obtained from the management information system
at a coal-fired power plant in Chaozhou. The energy use in this figure indicates the total
energy consumption of the aforementioned energy-consuming equipment in one minute.
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Figure 3. Critical operation data of the power plant.

4. Method Description

Understanding the relationship between the inputs and outputs of the WFGD system
is a prerequisite of optimization. To reduce the computational cost in the many-objective
optimization, we utilized a surrogate model to approximate this relationship based on
historical operation data. Commonly used surrogate models in the optimization domain
include Response Surface Methodology (RSM), Support Vector Machine (SVM), Artificial
Neural Networks (ANN), and the Kriging model. SVM and ANN, however, have often
been regarded as ‘black box” and were computationally intensive when applied to problems
with high dimensions and nonlinearity in particular. Therefore, the Kriging model was
adopted in this study and performed based on the MATLAB toolbox “DACE” [31]. RSM
was then employed as a comparative basis to test the accuracy of the surrogate model. Then,
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the surrogate-assisted NSGA-III was applied to optimize the desulfurization efficiency,
energy use, and limestone slurry consumption. Finally, the optimal scheme of operation
conditions was selected from the Pareto front by the TOPSIS method.

4.1. Kriging-Based Surrogate Model
4.1.1. Preliminary of the Kriging Model

The Kriging model is a statistical interpolation technique proposed by the author
of [32], based on the optimal linear unbiased estimation [33]. This model utilizes the train-
ing samples to establish the surrogate model for the prediction of the system output. The
prediction result can provide not only the mean value but also the standard deviation [34].
To approximate the real function, the Kriging model is expressed as follows:

y(x) = F(B,x) + Z(x) @

where F(B, x) is the regression part, 5 is the coefficient vector, x is the variable vector, Z(x)
denotes a Gaussian process with mean 0 and variance ¢. For any two points x' and ¥/,
their covariance can be formulated as:

cov (Z (xi) ,Z (xj)> = 0?R (9, xi, xj) 3)
R(G, X, xj> = ﬁ exp (—Gk x}; v ‘2> (4)
k=1

where R(6; x', ¥/) is the correlation function of two points and is critical to the accuracy of
approximation. 7 is the dimension of variables and 8y is the coefficient representing the
correlation between two points in the k-th direction. Then, the correlation between any two
points in the samples can be used to formulate the correlation matrix as:

R(xt,xt) -+ R(xl,xN)
R = : : 5)
R(xN,xt) -+ R(xN,xN)

NxN

According to the characteristics of the surrogate, i.e., the unbiased estimation and
minimum variance, the parameters 8 and ¢ can be obtained as below. For the detailed
derivation procedure, see the work by the authors of [31].

= (PTR‘1F> “ETR-ly (6)

> 1

0> = (Y~ Fp)'R™'(Y — Fp) )

where F is the vector of polynomial function, F = [f1(x), fa(x), ..., fp(x)]T, and Y is the
response vector of the samples. However, both parameters are associated with coefficient 6.
The definition of 0 is based on the maximum likelihood estimation. Assuming a Gaussian
process, the optimal 0 satisfies the following optimization problem:

1
1 = m 2
min  {9(6) = |R|#?} ®)
where | R is the determinant of R. This unconstrained optimization problem can be solved

using an intelligent algorithm. With the optimal 6, the predicted mean value corresponding
to an unknown point x” is expressed as:

y(x") = () B r(x") ' RTN(Y —FpY) ©)
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where the r(x*) is the vector representing the correlation between x" and the training
samples as below:

r(x*) = [R(6; x1,x¥), R(6; xp, x7), - - - ,R(G;xm,x*)}T (10)

For the surrogate model, the Latin hypercube sampling method is usually adopted to
sample training data [35]. This method can ensure the uniform distribution of samples in a
multi-dimensional space.

4.1.2. Model Accuracy Metrics

To test the performance of the surrogate model, this study used two commonly known
metrics: R-squared (R?) and Root Mean Squared Error (RMSE), as presented below:

nt —~\2
'Z (yi - yi)
RR=1-5— " (11)
,;1(%‘ -7,
nt —~\2
Z (yl - %)
RMSE = | =2 (12)

where y; and ?i are the true response values from the sample and the prediction values
from the surrogate model, respectively. ; is the mean of the true response values, and n;
is the number of samples. A lower RMSE and a greater R? (closer to 1) indicate a higher
global approximation of the model. It should be noted that data in the test set should keep
a certain distance from the data in training set to avoid over-optimistic testing results.

4.2. Surrogate-Assisted NSGA-III Algorithm

As larger number of dimensions and objectives in the optimization problem would
exponentially increase the computational cost, the surrogate-assisted NSGA-III algorithm
in the present study employed the Kriging model to approximate each objective function.
The basic framework of this algorithm is presented in Figure 4. NSGA-III and NSGA-II
have a similar structure but differ in their selection mechanisms. The selection process
in NSGA-II depends on the crowding distance while in NSGA-III, the diversity amongst
the population members is maintained and improved by adaptively updating the well-
spread reference points. The primary stages in this algorithm are highlighted in Figure 4,
including the genetic operators, reference-point determination, non-dominated sorting,
normalization, and association operation. The following section briefly describes these
five stages.

(1) Genetic operators

Genetic operators are of importance to control the optimization process of evolutionary
algorithms. In this section, the crossover and mutation operators were applied to create a
new population with the same size as the initial population. Two parents x;(t) and x,(t)
from the t-th generation were randomly picked and the crossover operation was performed
using the simulated binary crossover technique [36] to generate two offspring x1(t + 1) and
Xo(t+1):

{nlen =08l mn( + (1l "~
X(t+1) = 0.5 x [(1—=7)xi(£) + (1 +7)x2(t)]

7= L\ (14)
( ) 1f}lj>0.5




Sustainability 2021, 13, 9015

9of 17

where the random parameter y; € U(0,1), and usually 7 = 1. 7 is a spreading factor
representing the ratio of absolute difference in offspring to that of the parent.

Initial population
N)

Determination of
reference points

Recombination (2N)

<

Create new N
population?
Y

N Maximum
generation?

Y

Kriging model

Non-dominated
sorting

2

New offspring
solution population
e — = 7777774!
Selection /1—

prnce(lu re

Figure 4. The basic procedure of the Kriging-assisted NSGA-III algorithm.

The mutation process adopted the polynomial mutation method [37], and the operator
is expressed following the equations as below:

x; =Xt + 5,5 (15)
1
T ify <
5 = (2u) 1 1 B ifu <05 (16)
1—[2(1—14)]’7+1 ifu>05

where x; and xi are the solutions before and after the mutation, random parameter
p#; € U(0,1), and 7 is constant. This operator uses a polynomial probability distribution to
perturb a solution in the vicinity of a parent solution.

(2) Determination of reference points on a Hyper-Plane

The predefined reference points guarantee the diversity of individuals in the popu-
lation. For a problem with M objectives, the reference points are distributed on a (M-1)-
dimensional hyperplane. Based on Das and Dennis’s approach [38], if H divisions are
considered for each objective, the total quantity of reference points P are given by:

P_(M+§_1> 17)

Suppose the set of reference points is s = (s1, sp, ..., Sm), si = (Si1, Si2, --- , Sim)
should satisfy:

0 1 H| &
Sife{H'H""'H}']gs"le (1)
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Let set X = {xx |1 <k < P}, xy is an arbitrary combination of (M — 1) elements from the
set{0/H1/H,...,(M+H — 2)/H}, Xk denotes the j-th element in xy, Skj is the j-th element
of the k-th reference point and is determined by:

Sk]':xk]'—o, jZl
Skj = Xkj — Xk(j—1)- 1<j<M (19)
Skal—xk]', ]:M

(3) Non-dominated sorting

The population P; in the t-th generation in conjunction with the new population Q;
created by the crossover and mutation results in a greater population R; with a total of 2
N individuals, among which N individuals should be selected as offspring for the next-
generation P; . 1, as shown in Figure 5. The detailed selection process using non-dominated
sorting (Algorithm 1) is presented in the form of pseudocode below. Notably, the sorting
process was based on the corresponding output value of the individual determined by the
Kriging surrogate model.

Non-dominated Py
sorting

Fl - _____________________ ; -
P,

(| - - |-

F; Selection based on

reference-point
> /
o L
“—— Delete
R (L)

Figure 5. Schematic diagram of the individual selection process.

Algorithm 1: Input: The population R, Output: levels of each individual in R;.

1: for each individual i in R; do

2:  determine the set s; of individuals dominated by i and number #; of individuals dominating i
3: end

4: save individuals with n; = 0 to the m-th level (F;,), and m = 1

5: for keF,, do

6: for jes; do

7: n] = 1’1]‘-1

8: if nj = 0 then

9: m =m + 1; save j to the level Fj,
10: end

11: end

12: end

13: repeat step 5-12

(4) Normalization of individuals

The ideal point of the t-th population is determined by identifying the minimum value
at each objective function, expressed as z = (z‘l’“i“, zg‘i’“, s, zr]\’}f“). Each objective value is
then translated by the following equation:

fi'(x) = fi(x) —zmn (20)
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Then, the extreme point of each objective is determined via the achievement scalariz-
ing function:
ASF(x,w) = max, f/(x)/w; (21)

Zi,max —g: argminseRt ASFE (S, wi), wi — (T,. . .,T),T = 1076/ 'Z,U; =1 (22)

These M extreme points constitute an (M — 1) dimensional hyper-plane. Let a; denote
the intercept of the i-th objective axis. The objective function can be normalized by:

fre) = (f 0 —zmm) /(0 —=2m),  i=12,...,M (23)

(5) Association operation

After the normalization process, we need to associate each individual with a reference
point. A reference line was defined by connecting the reference point and the origin. Then,
the perpendicular distance of each individual to the reference lines should be calculated.
The basic idea is that, in the normalized space, the individual closest to a reference line
is regarded as associated with the corresponding reference point. For the reference point
with less associated individuals, these individuals have a higher chance of being preserved
to ensure the diversity of the population. For details on the association procedure, see [10].

4.3. TOPSIS for Multicriteria Decision-Making

For the high-dimensional and multi-objective problem, the Pareto front provides
numerous options of operational parameters and hampers informed decision-making. This
section applied the TOPSIS to select the optimum decision scheme from the Pareto-optimal
front. The basic idea is that the best alternative should have the largest distance to the
negative ideal solution but the closest distance to the ideal solution [39]. The detailed
procedure of this method is presented below.

Step 1: construct a decision matrix A:

a1 412 - Ain
) B ()] 2n

A= (aij)mxn = . . . (24)
Am1 Am2 - Amn

where 4;; is the rating value of the i-th alternative on the j-th criterion.

Step 2: normalize the decision matrix.

As the various scales and units of criteria may lead to an unfair comparison, the
element in A should be normalized by the following formula:

- aij
l] - m
\/ Zi:1 aij

where b;; is the corresponding normalized element of 4;; and an element of the normalized
decision matrix B.
Step 3: construct the weighted normalized decision matrix V as below:

b (25)

wp 0 - 0 Vi Vo o Vi,
0 wp 0 Vor Vo Van

V=8B . ) = . ) (26)
0 0 - wy Vil V2 - Vi

where w; is the weight on i-th criterion, and } ! ; w; = 1.
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Step 4: determine the ideal (V*) and negative ideal (V™) solutions as follows:

Vvt = max v;i|j € JT ), min v;;
{<l<i<m i) €7 1<i<m

VT = min v;;li€ "), maxvilie ] |y ={v;, 05,0, 28
{<1<i<mu] ]><1<i<mu] ]>} {v1.9, 0 ) (28)
where J* and ]~ are the benefit criterion and cost criterion, respectively.

Step 5: determine the distance of each alternative to the ideal and negative ideal

solution in Euclidean sense as follows:

fef)}:{vr,v;---,v:} @7)

Pr = j”l(% -9/ )2 (29)
U ¥ (o~ i) 30

where D;r and D; are the distances from the i-th alternative to the ideal and negative ideal
solution, respectively.
Step 6: calculate the relative closeness (RC) of each alternative to the ideal solution
as below:
RC; = D’/(D;r + D;) (31)

Step 7: rank the alternatives according to their RC values, and regard the one with the
highest RC as the best option.

5. Results and Discussion
5.1. Data Description and Validation for the Kriging Model

In the present case study, we applied the Latin hypercube sampling method to select
operation data under the steady-state conditions in Figure 3 to guarantee uniform distribu-
tion in a multi-dimensional space. The Kriging model for mapping the system inputs to the
output was performed on the training data. This surrogate model reflected the underlying
relationship between the input and output variables. Let x; denote the inlet SO, flow rate,
xy the air flow rate, x3 the energy consumption, x4 limestone slurry flow rate, y; the outlet
SO, concentration, and y, the desulfurization efficiency. A sample i is expressed as s; = [Xj,
Yil = [x1, x2, x3, X4, Y1, Y2], in which the vectors X and Y represent the system input and
output, respectively.

The data of the training set and test set in this study contained 156 and 44 samples,
respectively. To obtain a preliminary understanding of the system inputs and outputs, we
performed the analysis of variation (ANOVA) test on the Minitab platform to examine the
effects of the input variables on the outlet SO, concentration (Figure 6) and desulfurization
efficiency (Figure 7). The outlet SO, concentration is primarily determined by the inlet SO,
flow rate and slurry flow rate, while the desulfurization efficiency is merely dominated
by the inlet SO, flow rate. The Kriging model was built based on the training data. We
compared the accuracy of the Kriging model and traditional response surface methodology
in terms of the R? and RMSE. Table 1 presents their performance in relation to the training
data and training data. It can be observed from this table that the Kriging model perfectly
fits the training data in both system outputs. This phenomenon is in line with the work by
the author of [40]. In the test data set, the Kriging model still had an edge over the RSM on
the prediction of y; and y; in terms of two accuracy metrics. Particularly, the RMSE of the
desulfurization efficiency prediction by the Kriging model was 0.21. To a large extent, the
test set validated the effectiveness of this surrogate model.
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Figure 6. The standardized effects on outlet SO, concentration.
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Figure 7. The standardized effects on desulfurization efficiency.

Table 1. Performance comparison between the surrogate model and the response surface methodology.

Output Regression Training Set Test Set
Variable Method R? RMSE R? RMSE
- ¢1(0) Kriging model 100% 0 70.06% 2.35
=& RSM 83.05% 2.00 65.87% 276
- Kriging model 100% 0 74.65% 0.21
Y2=32 RSM 64.36% 0.38 22.49% 1.16

5.2. Many-Objective Optimization Using Kriging-Assisted NSGA-11I

This optimization problem had three objectives: maximizing the desulfurization
efficiency, minimizing the energy consumption, and limestone slurry consumption. As pre-
viously mentioned, the inlet SO, flow rate is uncontrollable. We conducted a Kolmogorov—
Smirnov test on the historical data. The statistical analysis demonstrated that this pa-
rameter satisfied the triangular distribution, namely, tri(24.34, 30.8, 50.15). We performed
the Kriging-assisted NSGA-III algorithm on the MATLAB R2018b. The size of the initial
population in this algorithm was set as 80, the maximum generation was 50, the number
of reference points was 136, the number of divisions was 15, the rate of crossover was
0.5, and the rate of mutation was 0.02. Hereby, we fixed the flow rate of the inlet SO, at
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the mean value of 36.01 kg/min. The optimal solutions associated with these objectives
were presented in the Pareto front. As shown in Figure 8, the Pareto front is displayed
on a curved surface, on which each point implies a non-dominated optimal solution. As
there are 80 individuals in the population of each generation, the Pareto front provides
80 optimal solutions, or more specifically, 80 possible combinations of operating parameters
for decision-makers.

< e
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Figure 8. The Pareto-optimal front.

5.3. Multi-Criteria Decision-Making for the WFGD System

Selecting a proper solution from 80 alternative solutions in the Pareto front is a typical
multi-criteria decision-making problem. The selection process considered stakeholder’s
interests in the optimization objectives, also referring to the criteria. TOPSIS was applied to
select the most appropriate alternative solution to guide the operating practice.

The decision matrix was directly derived from the optimization results of NSGA-
111, i.e., the Pareto-optimal front. The normalization process was then performed on the
decision matrix, as the objectives had unequal importance for varying stakeholders. In
this regard, different weighting factors should be allocated to the criteria. Commonly used
methods to determine the weighting factors include the analytic hierarchy process (AHP),
the Delphi method, the entropy method, and the principal components analysis [41]. The
present study adopted the AHP to determine the weighting factors of desulfurization
efficiency (f1), energy consumption (f3), and limestone slurry consumption (f3), and the
results were 0.2, 0.5, and 0.3, respectively. The weighted normalized decision matrix was
constructed subsequently. The ideal and negative ideal solutions were V* ={0.2 0.5 0.3} and
V= ={1.997 0.1195 0.0462}. We further calculated the Euclidean distance of each alternative
to the ideal and negative ideal solution and ranked the alternatives according to their
relative closeness. The results indicated that the optimal solution in the Pareto front was
[f1, f2, f3] = [98.11%, 4498.8 kW, 0.272 m3 /min].

To further illustrate the eco-efficiency of the optimization, Table 2 lists the empirical
and optimal values related to average desulfurization efficiency, energy consumption, and
limestone slurry consumption. As evident from this table, the desulfurization efficiency
was improved by 0.23%. Although the number seems quite small, this improvement implies
a substantial reduction in SO; due to its huge emission base. Additionally, the efficiency
of limestone slurry decreased by 34.6% but the energy efficiency increased by 45.8%.
Increased SO, absorption would inevitably lead to a higher consumption of limestone
slurry. However, the reduction in energy use is enough to offset this negative effect. From
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the perspective of total environmental impact, the optimal eco-efficient operating condition
would gain significant environmental benefits even though the limestone consumption
would increase slightly.

Table 2. Comparison between the empirical and optimal results.

. Desulfurization Limestone Slurry
Indicator Efficiency (%) Power Load (kW) Flow Rate (m3/min)
Optimal value 98.11 4498.8 0.272
Empirical value 97.88 8302.5 0.178
Rate of improvement 0.23% 45.8% x34.6%

6. Conclusions

The desulfurization system is energy and resource-intensive in the coal-fired power
plant and its eco-efficiency requires considerable improvement. This paper developed a
mathematical model for a many-objective optimization of the operating parameters from
the perspective of eco-efficiency. Based on the historical operating data, a Kriging model
was constructed to reveal the relationship between the input and output variables of the
WEGD system. We incorporated the Kriging model as a surrogate of objective function into
the NSGA-III algorithm to reduce the computational cost. The Pareto-optimal front was
then obtained from this evolutionary algorithm. TOPSIS was utilized to select an appropri-
ate solution from the Pareto-optimal front. The results indicated that the optimization of
the operating parameters would improve the desulfurization efficiency and energy use but
increase the limestone slurry slightly. The optimal operating scheme would gain overall
environmental benefits. When the external factor changes, for example, combustion of
another type of coal or the installation of new equipment substituting outdated equipment,
the optimization method proposed in the present study might be adopted to rapidly im-
prove the eco-efficiency based on historical operational data. Additionally, our operation
strategy can also be extended to a wide range of applications, for example, dust elimination
and the denitration process in the flue gas treatment.

A limitation of the present study is that we conducted the optimization merely based
on the selective and offline operating data at steady-state conditions. Follow-up works
on the sufficient utilization of operating data and a deeper exploration of the optimiza-
tion strategy would be more desirable. As the operating data was monitored with high
frequency, efforts could be made for a real-time optimization that adaptively enhances
the overall performance of the desulfurization system. However, in this case, the highly
efficient optimization algorithm would pose a greater challenge to the online optimization
of the WFGD system in future work. This study has validated the effectiveness via the
industrial case of WFGD. It provides a scientific basis for developing eco-efficient operating
strategies in the WFGD system and will enhance the environmental performance of the
desulfurization process.
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