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Abstract: Having a healthy built environment becomes increasingly important, especially under the
effects of COVID-19. This paper intends to combine sustainable goals based on climate change with
passive design principles to achieve a healthy built environment regarding the building performance
of residential buildings. The Yuedao Residential Community in the Lingnan area was taken as an
example for the research. Based on relevant standards of healthy buildings, the thermal, light, and
acoustic environment requirements were determined. The methods of building performance simu-
lation and on-site measurement were used to quantify the research object environments. Then, the
outcomes were obtained based on these standards. As observed, the thermal environment’s adaptive
thermal comfort level was level III. It was hot indoors, but the light and acoustic environments met
the requirements. Building designs based on a built environment optimized by external shading
systems aim to solve problems through building performance simulation and qualitative analysis.
After optimization, the thermal environment improved. According to the literature review, this re-
search focused on a healthy built environment with a sustainable passive design in terms of building
performance. A research workflow was established that could be used for more practical research,
with abundant research methods. The problems were solved to varying degrees, and the Lingnan
architectural culture was preserved. Moreover, this research filled the gap in interactive research on
healthy built environments with sustainable passive design regarding building performance.

Keywords: sustainability; healthy built environment; passive design; thermal; light; acoustic; resi-
dential building; Lingnan area; building performance

1. Introduction
1.1. Background

The effects of climate change cause an increasing number of environmental problems,
such as urban heat islands, air pollution, bushfire, and flooding [1]. Climate change is
caused by energy consumption with carbon emission under anthropogenic activities to
some extent [2]. Global energy consumption increased until 2019 [3]. Although COVID-19
has prevented many human activities, energy demand is still increasing in 2021 [4]. The
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energy conservation that has occurred since the Kyoto Protocol was signed has been a
global sustainable development issue since 1997 [5]. Therefore, achieving sustainability is
essential and critical.

Meanwhile, with the global effects of the COVID-19 phenomenon, people are paying
more attention than before to a healthy environment [6]. This is especially true for a healthy
built environment, as people spend almost 90% of their time indoors at present [7,8]. With
the large amounts of time spent indoors, avoiding massive energy consumption to maintain
a healthy environment is a big problem. Therefore, this research focuses on sustainable
passive design, aiming to achieve a healthy built environment for the user’s health and
comfort based on building performance.

1.2. Literature Review

To avoid the negative effects of climate change, sustainable goals have been adopted
in recent decades [9]. These are guided by the concept of sustainability. Although the
definition of sustainability still varies [10], the most cited definition is “development that
meets the needs of the present without compromising the ability of future generations to
meet their own needs,” from the 1987 Brundtland Commission Report [11]. In 1994, the
International Council for Building (CIB) defined it as “Creating and operating a healthy
built environment based on resource efficiency and ecological design” at the First Inter-
national Conference on Sustainable Construction [12]. As we can see, the healthy built
environment has been combined with the controversial definition of sustainability, but
sustainability was initially focused on energy consumption. In 1997, the Kyoto Protocol
was issued to promote global energy conservation and emission reductions for sustainable
development [13]. In 2002, the World Summit on Sustainable Development held in South
Africa promoted the development of sustainability tasks, following the United Nations
Stockholm Conference on the Environment in 1972, Rio Earth Summit in 1992, and Mil-
lennium Declaration of 2000 [14]. In 2008, the standard ISO 15392:2008 was formulated to
identify and establish a general principle for sustainability in building construction. This
standard was later revised as ISO 15392:2019 [15]. In recent years, the healthy principle has
been merged with sustainability by the UN. In 2015, “Good Health and Well-being” as well
as “Sustainable Cities and Communities” were two goals of the Sustainable Development
Agenda, adopted by all UN Member States. At present, because of COVID-19, the building
of a healthy human settlement for sustainability is emphasized in the UN-Habitat COVID-
19 Policy and Programme Framework [16]. These show that sustainability has been the
global consensus for almost five decades. Alongside the energy consumption problem, the
achievement of sustainability goals has been considered urgent since sustainability was
first defined. To date, about 40% of energy consumption in the world has been caused
by buildings [17–19]. However, “Buildings don’t use energy, people do” [20]. The way a
building is used determines the energy waste intensity. Passive building is a good way
to save energy for sustainability [21]. Therefore, passive design may be useful in the
development of sustainability in a healthy built environment.

The concept of a healthy built environment, based on healthy buildings and related
to the Architecture discipline, was initiated in 1981 when the 14th International Union of
Architects Conference, held in Warsaw, Poland, published a declaration emphasizing the
relationship between Architecture, Man and the Environment in the promotion of people’s
well-being and health [22]. In 1986, WHO implemented the Healthy Cities Project to drive
the substantial development of a healthy living environment. This aimed to create a long-
term international development project putting health on the agenda of decision makers
in the cities [23]. In 1988, the first Healthy Buildings Conference was held in Stockholm.
The 17th Healthy Buildings conference was recently hosted online in Oslo [24]. As well
as the developments in academia and in practice, the healthy building concept has been
developed in terms of standards and institutions. In 1990, BREEAM, the world standard for
assessing, rating, and certifying a building’s sustainability was generated by the Building
Research Establishment (BRE). To this day, it contains a “Healthy and Well-being” chapter,
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focusing on healthy buildings [25,26]. In 1992, the USA established the National Center for
Lead-Safe Housing to solve housing-related health problems. In 1999, the China National
Engineering Research Center for Human Settlements (CNERCHS), joining hands with
professionals in the areas of Architecture, Physiology, Hygiene, Sociology and Psychology,
initiated research into healthy residential buildings [27]. Subsequently, both global and
local (China) organizations focused on healthy buildings in multiple areas. In 2004, the
first Forum of Theory and Practice on Healthy Housing was held in Beijing, China [28]. In
2006, Professor Hugh Barton from WHO with Marcus Grant published the Health Map,
developed from Dahlgren and Whitehead’s model in 1991, which explained the circle effect
in a healthy environment [29]. In 2014, the International WELL Building Institute published
the WELL standard for assessing healthy buildings, based on the LEED standard, which
is the first integral healthy building standard in the world [30]. In 2016, the Assessment
Standard for Healthy Building (T/ASC02) was published in China to emphasize a healthy
environment according to the local situation. The latest version will be published in
2021 [31]. Recently, the WELL Health-Safety Rating was published in 2020 by the Task
Force on COVID-19. This helps buildings and organizations to address the health, safety,
and well-being of their most valuable asset—people. The healthy built environment concept
was developed in the Architecture discipline at least 40 years ago (Figure 1). This began
with international organizations, then developed in an increasing number of countries,
regarding academic, practice, standard, institutional, or other aspects. China’s focus on
this is increasing, partly because it started at the end of the 1990s. Moreover, the current
effect of COVID-19 is another important reason. With the development of the healthy
built environment, the global consensus, especially in academic areas, is more mature
than before. How this can be used to solve local healthy built environment problems in a
practical way needs further research.

Sustainability 2021, 13, x FOR PEER REVIEW 3 of 23 
 

world standard for assessing, rating, and certifying a building’s sustainability was gen-

erated by the Building Research Establishment (BRE). To this day, it contains a “Healthy 

and Well-being” chapter, focusing on healthy buildings [25,26]. In 1992, the USA estab-

lished the National Center for Lead-Safe Housing to solve housing-related health prob-

lems. In 1999, the China National Engineering Research Center for Human Settlements 

(CNERCHS), joining hands with professionals in the areas of Architecture, Physiology, 

Hygiene, Sociology and Psychology, initiated research into healthy residential buildings 

[27]. Subsequently, both global and local (China) organizations focused on healthy 

buildings in multiple areas. In 2004, the first Forum of Theory and Practice on Healthy 

Housing was held in Beijing, China [28]. In 2006, Professor Hugh Barton from WHO with 

Marcus Grant published the Health Map, developed from Dahlgren and Whitehead’s 

model in 1991, which explained the circle effect in a healthy environment [29]. In 2014, 

the International WELL Building Institute published the WELL standard for assessing 

healthy buildings, based on the LEED standard, which is the first integral healthy 

building standard in the world [30]. In 2016, the Assessment Standard for Healthy 

Building (T/ASC02) was published in China to emphasize a healthy environment ac-

cording to the local situation. The latest version will be published in 2021 [31]. Recently, 

the WELL Health-Safety Rating was published in 2020 by the Task Force on COVID-19. 

This helps buildings and organizations to address the health, safety, and well-being of 

their most valuable asset—people. The healthy built environment concept was devel-

oped in the Architecture discipline at least 40 years ago (Figure 1). This began with in-

ternational organizations, then developed in an increasing number of countries, regard-

ing academic, practice, standard, institutional, or other aspects. China’s focus on this is 

increasing, partly because it started at the end of the 1990s. Moreover, the current effect of 

COVID-19 is another important reason. With the development of the healthy built envi-

ronment, the global consensus, especially in academic areas, is more mature than before. 

How this can be used to solve local healthy built environment problems in a practical 

way needs further research. 

 

Figure 1. Healthy built environment development timeline. 

1.3. Research Framework 

Based on the literature review of sustainability and the healthy built environment, it 

is clear that sustainable passive design can be used to achieve a healthy built environ-

ment in a practical way. Many researchers have verified that passive building has the 

strongest effect on a building’s energy demands. Passive building designs can reduce 

energy use [32–34]. This helps avoid climate change for sustainable development, but 

few scholars have researched the direct relationship between sustainable passive design 

and the healthy built environment, especially regarding building performance [35,36]. 

Therefore, using sustainable design methods according to the passive building principle 

to achieve a healthy built environment regarding practical building performance is the 

focus of our research. 

In the built environment, residential buildings accommodate the largest proportion 

of the 7 billion people in the world [37]. Furthermore, the residential sector is the third 

highest consumer of energy, following the industrial and transportation sectors [38]. 

Therefore, this research used the local case study of the Yuedao Residential Community 

in the Lingnan area to explore the use of sustainable passive design to achieve a healthy 

built environment from the building performance perspective. The research met the re-

quirements of related healthy building standards. After the building performance simu-

Figure 1. Healthy built environment development timeline.

1.3. Research Framework

Based on the literature review of sustainability and the healthy built environment, it is
clear that sustainable passive design can be used to achieve a healthy built environment in a
practical way. Many researchers have verified that passive building has the strongest effect
on a building’s energy demands. Passive building designs can reduce energy use [32–34].
This helps avoid climate change for sustainable development, but few scholars have
researched the direct relationship between sustainable passive design and the healthy
built environment, especially regarding building performance [35,36]. Therefore, using
sustainable design methods according to the passive building principle to achieve a healthy
built environment regarding practical building performance is the focus of our research.

In the built environment, residential buildings accommodate the largest proportion of
the 7 billion people in the world [37]. Furthermore, the residential sector is the third highest
consumer of energy, following the industrial and transportation sectors [38]. Therefore, this
research used the local case study of the Yuedao Residential Community in the Lingnan area
to explore the use of sustainable passive design to achieve a healthy built environment from
the building performance perspective. The research met the requirements of related healthy
building standards. After the building performance simulation and on-site measurement
methods, the initial and optimized results will be discussed and conclusions made. The
research framework is shown in Figure 2.
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2. Research Objects
2.1. Residential Building

The research object is part of the Yuedao Residential Community. The Yuedao Res-
idential Community extends from north to south, with roads dividing it into different
residential groups. It can be classified into “neighborhood”, “block”, and “single court-
yard” by scale. However, all the groups are formed with the same single courtyard. It
is mirrored in the east–west direction. There are two main kinds of residential buildings
with an entrance facing west or east (Figure 3). The single courtyard is 135 m2 in size,
with two floors on the north side that include three bedrooms and three bathrooms, and
one floor on the south side with one living room, one dining room, one kitchen, and one
bathroom. The total site area is 232 m2, with an FAR of 0.58. All the single courtyards are
connected by a high surrounding courtyard wall (Figure 4). This hardly affects the nearby
buildings, but each of them forms a microclimate in the courtyard. This is affected by the
local meteorological environment.
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The meteorological environment is a hot summer and warm winter, according to the
Chinese standard in the Yuedao Residential Community, which is located in Jiangmen city,
Lingnan area, south China [39,40]. It features a long summer, high temperature, and strong
solar radiation. The average temperature in January is higher than 10 ◦C. The average
temperature in July is 25–29 ◦C. Furthermore, in a year there are from 100 to 200 days with
an average daily temperature of ≥25 ◦C. The Lingnan area has a high solar elevation angle
and intense solar radiation. Most places in the Lingnan area feature prevailing northeast
and east winds from October to March, and southeast and southwest winds from April
to September. The annual average wind speed is 1–4 m/s [41,42]. Hence, the important
focuses of this research are thermal, light, and acoustic building performance.

This case study focused on the single courtyard with an entrance facing west. In this
situation, the research results contributed at least 50% to the overall optimization of the
Yuedao Residential Community. Sustainable residential building design for a healthy built
environment according to passive building principles in the Lingnan area was the ideal way
to achieve this without energy use. Therefore, the research used mainly passive building
design methods to achieve healthy environments in terms of their thermal, light, and
acoustic aspects, according to the related standards of healthy building requirements [43].

2.2. Standard Requirements

Healthy environments involve thermal, light, and acoustic aspects. The achievement
of a healthy environment in these three aspects, regarding building performance for users,
needs to be researched. However, many researchers have been trying to establish standards
for designers to reference. These are required in the related standards. The first integral
healthy building standard was WELL from the USA, but T/ASC02 in China was used as
the reference in this research because of the local environmental effect [44,45].

For healthy thermal environment requirements, T/ASC02 requires that the maximum
temperature of the indoor layers of roof and walls does not exceed the exterior annual
maximum daily average temperature (te·max). For indoor thermal environments, it is
necessary to reference the Evaluation Standard for Indoor Thermal Environment in Civil
Buildings (GB/T 50785) [46]. According to GB/T 50785, the evaluation of an indoor thermal
environment should be conducted in the main rooms or a single building. When evaluating
a single building, at least 90% of its main rooms should meet relevant requirements before
it can be regarded as reaching the corresponding level. There are three levels in the natural
ventilation environment, as shown in Table 1. The healthy indoor thermal comfort should
achieve level I or level II under natural ventilation. The APMV refers to the “adaptive
predicted mean vote” generated by optimizing the PMV, which is affected by the local
environment [47]. The formula is shown in Equation (1). In fact, GB/T 50785 was generated
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based on ISO 7730 and ASHARE 55. Therefore, the results of the indoor thermal comfort
should display the same trend [48].

APMV = PMV/(1 + λ·PMV) (1)

where APMV is adaptive predicted mean vote, PMV is predicted mean vote, and λ is the
adaptive coefficient. In this research, λ is 0.21 according to GB/T 50785.

Table 1. Evaluation levels of indoor thermal comfort.

Level Range

I −0.5 ≤ APMV ≤ 0.5
II −1 ≤ APMV < −0.5 or 0.5 < APMV ≤ 1
III APMV < −1 or APMV > 1

For healthy light environment requirements, according to T/ASC02, at least one
bedroom should meet the requirement of sunshine time of no less than 3 h, from 8:00 to
16:00 on 20 January in the Lingnan area [49]. The bedroom, living room, and kitchen should
directly receive natural daylight. The Standard for Daylighting Design of Buildings (GB
50033) should be followed to ensure that at least one bedroom meets the daylight factor,
which is between 2.2 and 7% in Lingnan area. When there are more than three bedrooms,
at least two of them should meet the requirements [50]. For illumination, based on the
Standard for Lighting Design of Buildings (GB 50034), the residential building should meet
the requirements in Table 2.

Table 2. Standard illumination values for residential buildings.

Room Function Illumination Value (lx)

Living room General activity 100
Reading and writing 300

Bedroom
General activity 75

Reading and writing 150

Dining room 150
Bathroom 100

For healthy acoustic environment requirements, the indoor noise level should be lower
than 37 dB (A) in the bedroom during the night. It is necessary to follow the Environmental
Quality Standard for Noise (GB 3096), which states that the indoor noise level of the
residential building should be lower than 55 dB (A) during the day and 45 dB (A) at
night [51].

3. Methods
3.1. Building Performance Simulation

Building performance simulation is the replication of aspects of the building perfor-
mance using a computer-based, mathematical model created on the basis of fundamental
physical principles and sound engineering practice [52]. This method was used to simulate
thermal, light, and acoustic environments to complement on-site measurement. In addition,
building performance simulation met relevant standards such as the Standard for Green
Performance Calculation of Civil Buildings (JGJ/T 449) and previous research from other
scholars [53].

For thermal environmental simulation, the temperatures of the indoor layers of the
roof and walls were simulated with Kvalue software to compare them with the te max.
Kvalue is a national certified software developed by the Institute of Building Environment
and Energy. It is officially used in the Code for the Thermal Design of Civil Buildings (GB
50176) from 2016. According to GB 50176 and the actual project information, the roof and
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wall parameters were set in the Kvalue software. The built model is shown in Figure 5.
Because of the surrounding walls, all used the same structure; the model displayed one of
these, and then the results corresponded to the four directions.
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For the light environment simulation, the sunshine time and daylight factor were
simulated by Ecotect software based on T/ASC02 and GB 50033 [54–56]. These analyses
mainly focused on bedrooms located on the north side of the single courtyard. There were
three bedrooms with casement windows. The visible transmittance was 0.639. The window
cleanliness reduction factor was 0.9. The reflectance of the ceiling, interior wall, and floor
were 0.75, 0.6, and 0.4, respectively. The design illuminance of exterior daylight in Lingnan
was 13,500 lx. The daylight climate coefficient was 1.1. All the settings in the software
complied with standards and the actual situation (Figure 6).
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For the acoustic environment, considering the effect of a complicated outdoor envi-
ronment, Cadna/A was used to simulate the outdoor noise level [57]. Cadna/A is the
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simulation software from DataKustik GmbH for the calculation, presentation, assessment,
and prediction of environmental noise, which was certified by ISO 9001:2015 [58]. The
simulation model, according to the neighborhood situation, was built in the software in
line with the traffic, terrain, and buildings (Figure 7).
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3.2. On-Site Measurement

The on-site measurement method was also used in this research to develop com-
prehensive results [59]. The data were collected by the related instruments [60]. For the
thermal environment, the BX portable weather station was used to collect the outdoor
air velocity (V), wind direction, atmospheric pressure (atm), air temperature (tout), and
humidity (RHout) data. At the same time, the data were collected using TES-1341 anemome-
ters and JTR04 black-bulb thermometers in 10 rooms to record indoor air temperature
(tin), humidity (RHin), air velocity (Va), and 24-h black globe temperature (tg), starting at
1:30 a.m. on 18 July 2019 (Figure 8). Based on the Standard of Test Methods for Thermal
Environment of Buildings [61], the data of RHin and tg were collected 0.6 m above the
ground, while the data of tin and Va were collected 1.1 m above the ground (Figure 8 and
Table 3).
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Table 3. Thermal environment instruments and parameters.

Monitoring
Parameters Instrument Name Instrument Range Instrument Precision Instrument

Photograph

v (m/s)

BX portable weather
station

0~70.0 m/s ±0.3 m/s
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For the light environment, on-site measurement focused on illumination during
the night and was conducted with the TES-1339R illuminometer (Table 4). The illumi-
nance was detected according to GB 50034 and Measurement Methods for Lighting (GB\T
5700) [62,63]. The detection time ranged from 7:00 p.m. to 12:00 p.m. on 18 July 2019. The
measurement height was 0.75 m above the ground. The detected positions were located in
No.1 Kitchen, No. 3 Bathroom, No. 6 Bedroom, and No. 10 Cloakroom.

Table 4. Light environment instruments and parameters.

Instrument range 99.99–999,900 Lx/9.999–99,990
Fc
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For the acoustic environment, the indoor noise level was detected by the GM1356
noise meter according to GB 3096 (Table 5). In this standard, daytime refers to the time
period from 6:00 a.m. to 10:00 p.m., and the nighttime period is from 10:00 p.m. to 6:00 a.m.
Because most users go to work during the daytime, under the limitation of the detection
situation, the on-site measurement started at 6:00 p.m. on 18 July 2019 and ended at
6:00 a.m. on 19 July 2019. The measurement positions were 1 m away from the wall and
window in case of reflecting effects. The measurement height was 1.5 m above the ground,
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according to the GB 3096. No. 2 Living room, No. 5 Bedroom, No. 6 Bedroom, and No. 8
Bedroom were detected indoors.

Table 5. Acoustic environment instruments and parameters.

Instrument range 30~130 dBA
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4. Results
4.1. Initial Results

After the building performance simulation and on-site measurement, the initial results
were worked out. For the thermal environment, Kvalue software simulated te·max, the
maximum temperature of the indoor layers of the roof and walls. The te max was 37 ◦C,
the maximum indoor temperatures of the roof, east wall, west wall, north wall, and south
wall were 34.99, 35.30, 35.35, 35.08, and 35.23 ◦C, respectively. The maximum indoor
temperature of roof and walls was lower than the te max, which met the requirements. The
roof simulation results in Kvalue are shown in Figure 9. From the on-site measurement, the
temperature data of outdoor and indoor were recorded. The BX portable weather station
recorded a daily mean outdoor temperature of 32.61 ◦C. The indoor temperature of the
No.1 kitchen was higher than the outdoor temperature during 14:30–16:00 (Figure 10). That
was because the kitchen window faced west. China is located in the northern hemisphere,
so the sunshine from the west fell directly indoors in the afternoon. This proved that the
maximum temperature of the indoor wall layers could be found on the west wall. The
indoor data were collected from nine rooms to evaluate the adaptive thermal comfort.
The No. 4 Bathroom data were not recorded successfully. However, this still met the
requirements of GB/T 50785, which requires evaluating at least 90% of the rooms. The
result showed that the thermal comfort level of the measurement room was level III,
whether for the single room or the whole building, which meant that the room was hot in
summer under natural ventilation (Figure 11). Therefore, the hot indoors problem should
be optimized.
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For the light environment, the sunshine time for the three bedrooms was at least 4.04 h
according to the Ecotect simulation. This was especially true for the No. 8 Bedroom on the
second floor; the window faces south, so the room receives constant sunshine. The sunshine
time met the requirement of no less than 3 h from 8:00 to 16:00 on 20 January (Figure 12).
Additionally, the bedroom, living room and kitchen with the windows directly obtained
natural daylight. Therefore, this also met the requirements of T/ASC02. Regarding the
daylight factor, the single courtyard simulation results are shown in Figure 13. The average
value of No. 5 and 6 Bedrooms was 6.14% on the first floor. The average value of the No. 8
Bedroom was 5.9% on the second floor. They all fell within the range between 2.2 and 7%,
according to GB 50033. Moreover, for illumination purposes, the stable illumination values
of No. 1 Kitchen, No. 3 Bathroom, No. 6 Bedroom, and No. 10 Cloakroom were 105, 195,
140, and 75 lx, respectively (Figure 14). They all met the requirements, and no optimization
was needed.
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For the acoustic environment, Cadna/A software was used to simulate the outdoor
acoustic environment. The initial simulation results of the neighborhood noise level during
the day and night are shown in Figure 15. The outdoor noise level was 21–55 db (A)
during the day, and 11–45 db (A) at night. They all met the standard requirements. In
the on-site measurement, the indoor noise level was monitored during the day and night.
Most detection values did not exceed 37 db (A), whether during the day or night, and the
noise levels of all detected positions met the requirements (Figure 16). It was evident that
the acoustic environment of the Yuedao Residential Community contributed to a healthy
environment and sustainability.
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4.2. Optimized Results

According to building performance simulations and on-site measurements of thermal,
light, and acoustic environments in a single courtyard (facing west) in Lingnan, the indoor
thermal environment failed to meet the required levels I or II under natural ventilation, but
the light and acoustic environment were good. The problem of the hot indoor environment
should be solved. However, the on-site measurement of an indoor thermal environment
needed to be carried out in a built project, and it was impossible to build a real optimized
project at the time. Thus, a building performance simulation was used to solve this problem.

According to the thermal environment requirements, it was first necessary to ensure
that the structural details of the roof and walls allowed a maximum temperature of indoor
layers lower than te max. This was proved above. Therefore, the optimized building design
needed to focus on the external walls, according to the passive building principle [64].
Combining this with the field survey, as shown in Figure 17, the building’s shading was
not enough. Based on local Lingnan building culture, residential buildings are always
shaded by eaves. Figure 18 shows an example of a Lingnan building with sunshades.
Therefore, the optimization strategies, combined with sunshades, attempted to solve these
problems and reflect the local architectural characteristics. Moreover, many scholars have
proved that the sunshades are a useful way to achieve energy savings. They help to achieve
sustainability [65,66]. Therefore, the optimization design aimed to form external shading.
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The initial results showed that the single courtyard was hot indoors. The No. 1 Kitchen
had a west-facing window, which needed to be optimized first. Considering the function
of the main rooms such as the No. 2 Living room for receiving the public, the No. 8 and
9 Bedrooms with a private bathroom and the No. 10 Cloakroom were too hot, after the
hottest room, the No. 1 Kitchen. The optimization model added sunshades to the windows
of these rooms, shown in Figure 19.
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The building performance simulation was based on Rhinoceros software with Lady-
bug and Honeybee plugins. Ladybug imports standard EnergyPlus Weather files (.epw)
into Grasshopper. Honeybee is an extension of Ladybug that increases its ability to work
with EnergyPlus to calculate the adaptive thermal comfort [67]. The simulation condition
was natural ventilation. After completing the workflow and setting up all the parameters,
the calculation was started (Figure 20).
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Figure 20. Simulation workflow.

After simulating the initial and optimization building design, the results showed that
each room’s indoor heat problem was solved to varying degrees. Comparison simulation
initial and optimization results are shown in Figure 21. The most optimized indoor thermal
environment was 25.78% in the No. 8 and 9 Bedrooms with bathroom. Furthermore, the
heat problems of the No. 1 Kitchen and No. 10 Cloakroom were solved by 17.57 and
20.80%, respectively. The No. 2 Living room faced north, with big windows, so it was not
optimized much (9.76%). However, all the indoor thermal environments were better than
before, using only the passive design of sunshades.
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However, the light environment will be directly affected by the sunshades. Even
though the initial light environment was good, the optimized light environment needed to
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be confirmed. Therefore, Ecotect software was used for building performance simulation
based on optimized building design. The sunshine time and daylight factor were simulated
separately (Figures 22 and 23). The sunshine time was especially changed in the No. 8
Bedroom. The value of the No. 5 Bedroom was not changed, as the sunshades were added
only on the second floor. Furthermore, the value of the No. 6 Bedroom changed only a little.
The optimized sunshine time results met the T/ASC02 requirements. The daylight factor
was 6.07% on the first floor and 4.02% on the second floor. It decreased a but still ranged
between 2.2 and 7% according to GB 50033. Therefore, the light environments all met the
requirements offering a healthy environment and sustainability to users of passive design.
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5. Discussion
5.1. Comparisons

In this paper, the single courtyard (facing west) of the Yuedao Residential Community
was used to research how to achieve a healthy built environment using sustainable pas-
sive design. In view of the Lingnan environmental characteristics and related standards,
building performance simulation and on-site measurement methods were used for thermal,
light, and acoustic environments. The initial results showed that the thermal environment
could not meet levels I and II under natural ventilation. It was hot indoors, although
the maximum temperature of the indoor layers was lower than te max, according to the
requirements. For the light environment, the sunshine time and daylight factor all met
the requirements, according to the simulation. The illumination condition in the rooms
detected with on-site measurement also reached the standards. The acoustic environment
satisfied both the outdoor and indoor requirements. Given this, the optimized method for
a single courtyard focused on a shading system that aimed to solve the heat problem and
achieve a healthy built environment and sustainability using passive design. By the way,
this preserved the Lingnan architectural culture.

By comparing the initial and optimized results in terms of the design of a single court-
yard in Lingnan, the heat problem was solved. The light environment was still acceptable
after optimization. The sunshade optimization design improved the healthy built envi-
ronment. Other scholars have carried out similar work at different levels, which provided
evidence to prove various aspects of these findings. Huo et al. conducted research using
a field test study and proved that the external shading system could effectively decrease
the indoor temperature during a hot summer [68]. Lim et al. proved the efficiency of the
shading system in reducing the cooling energy consumption in residential buildings [69].
Manzan et al. described the relationship between energy and daylighting caused by shade
optimization [70].

However, for a healthy built environment and sustainable building design, interactive
research is not enough, as was mentioned in the latest research by Tonne et al. in 2021 [71].
In 2020, Phelan et al. also emphasized that building sustainability, in terms of the building
occupants’ health, has not received much attention [72]. This research into residential
buildings in the Lingnan area adopted an innovative and practical way to study the healthy
built environment with sustainable passive design.

5.2. Contributions

Therefore, this research contributed in five ways. Firstly, it carried out a literature
review of the developing situation and the relationship between the sustainability and
healthy built environment concepts. They have been developed over at least 40 years
but show an integrated developing trend at present. Under the effects of COVID-19, the
healthy built environment is more important than before.

The second way was building a clear research workflow to clarify how to achieve a
healthy built environment in a sustainable way using passive design. The single courtyard
(facing west) in the Yuedao Residential Community was used as a case study to solve the
practical problems while complying with the requirements of healthy building standards.
The methods of building performance simulation and on-site measurement were used to
get the initial and optimized results. This research process is applicable to other projects.

Third, this research used a wealth of research tools for the simulation of building
performance and on-site measurement methods. Kvalue, Ecotect, Cadna/A and Grasshop-
per software programs were used to analyze thermal, light, and acoustic environments.
The BX portable weather station, TES-1341 anemometers, JTR04 black-bulb thermometers,
TES-1339R illuminometer, and GM1356 noise meter were used to collect different parame-
ters data. The research methods were used in a complementary way for comprehensive
outcomes according to the related standards and references. These provided abundant
research details.
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Fourth, the results of the optimization building design not only solved the local
problems to varying degrees, but also highlighted the architectural culture in the Lingnan
area. The sunshades in the optimization building design focused on the entrance to the
west-facing single courtyard, and they provided overall contributions of at least 50% to the
optimization of the Yuedao Residential Community. This research can be used in practical
situations, especially in China, according to the local standards.

Fifth, this research filled the gap in the interactive research into the healthy built
environment with sustainable passive design. Although few researchers have focused
on this to date, the healthy built environment is much more important than before. It
is the current trend and a research hotspot in both academic and practical aspects. In
the current research, achieving this by sustainable building design according to passive
building principles decreased energy use and offered a healthy environment at the same
time. This clearly contributes to filling the research gap.

5.3. Limitations

A few limitations exist that need to be improved in future research. The first limitation
of this research is the difficulty of data collection posed by the on-site measurement
conditions. The on-site measurement of the thermal environment did not provide all
the data for the ten rooms, although nine rooms were enough, according to GB/T 50785.
Regarding the light environment, because the illumination environment is closely related to
the selection of lamps, a sampling inspection of ten rooms was carried out. For the acoustic
environment, the on-site measurement started at 6:00 p.m. and was mainly focused on the
time when users stayed at home.

Second, the optimization building design was only analyzed with the building perfor-
mance simulation method. On-site measurement was not carried out because of the lack
of an actual optimized single courtyard. This can be carried out if there are appropriate
conditions in the future.

The third limitation is that the paper focused on researching the relationship between
a healthy built environment and sustainable passive design, so the exact optimization of
building design by sunshades was not described in detail. In fact, there are many types of
shading systems and other solutions; therefore, these can be researched in future.

The fourth limitation is that this research focused solely on thermal, light, and acoustic
environments, according to the related standards. In fact, a healthy built environment must
not only pay attention to these three aspects but should also consider the air impacts, Life
Cycle Assessment (LAC), GHG emission and so on. These will be researched in the next
step [73,74].

6. Conclusions

This paper researched how a healthy built environment can be achieved by sustainable
passive design. Based on the relevant healthy building standards, the paper summarized
the requirements of thermal, light, and acoustic environments. The residential buildings in
the Lingnan area were taken as examples of building performance simulation and on-site
measurement. After the initial results, the optimized results were analyzed, focusing
on solving the existing problems by adding sunshades according to the passive design
principle. The main conclusions are as follows:

1. With the focus on the healthy environment and sustainable development over the
last 40 years, interactive research, especially into the healthy built environment, is
increasingly important at present.

2. This research established a useful workflow for research into the achievement of a
healthy built environment using sustainable building design according to the passive
building design principle.

3. In this paper, building performance simulation and on-site measurement methods
were analyzed with abundant research tools. These tools can be used for more
research.
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4. The initial results showed that the temperature of the walls and roof was lower than
the te max. However, the thermal level of the single courtyard was level III. The indoor
heat problem remains to be solved, even though the light and acoustic environments
met the relevant standards.

5. After optimization, the sunshades offered a better indoor thermal environment. Ad-
ditionally, the light environment was still good, according to the standards. The
optimization design preserved the Lingnan architectural culture.

6. The practical problems were solved to varying degrees. The study made a contribution
of at least a 50% to optimizing the entire Yuedao Residential Community as the
buildings that we studied in the single courtyard reflected the whole community
except for their orientation.

7. Our study also filled a gap in the interactive research into a healthy built environment
with sustainable passive design. This will require more research in the future.
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