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Abstract: Electrification alters the energy demand and environmental impacts of vehicles, which
brings about new challenges for sustainability in the transport sector. To further enhance the energy
economy of electric vehicles (EVs) and offer an energy-efficient driving strategy for next-generation
intelligent mobility in daily synthetic traffic situations with mixed driving scenarios, the model
predictive control (MPC) algorithm is exploited to develop a predictive cruise control (PCC) system
for eco-driving based on a detailed driving scenario switching logic (DSSL). The proposed PCC
system is designed hierarchically into three typical driving scenarios, including car-following, signal
anticipation, and free driving scenario, using one linear MPC and two nonlinear MPC controllers,
respectively. The performances of the proposed tri-level MPC-based PCC system for EV eco-driving
were investigated by a numerical simulation using the real road and traffic data of Japan under three
typical driving scenarios and an integrated traffic situation. The results showed that the proposed
PCC system can not only realize driving safety and comfortability, but also harvest considerable
energy-saving rates during either car-following (16.70%), signal anticipation (12.50%), and free
driving scenario (30.30%), or under the synthetic traffic situation (19.97%) in urban areas of Japan.

Keywords: model predictive control; eco-driving; electric vehicles; energy consumption; synthetic
urban transport system

1. Introduction
1.1. Research Background and Significance

Following the Paris Agreement signed at COP21 in 2015 and to achieve the Sustain-
able Development Goals (SDGs), governments and industries around the world have
been developing innovative solutions to intensify the development of a sustainable low-
carbon society. The public road transport sector consumes about 20% of global energy
and contributes nearly 25% of energy-related CO2 emissions [1]. Therefore, as one of the
largest global emitters, improving the environmental performance of automobiles is the
top priority. Vehicle electrification is one of the key technologies making revolutionary
changes to the automotive industry. In Japan, the market share for electrified vehicles is
approximately 30% [2], which brings about the highest level of contribution to realize a
“Well-to-Wheel Emission”. However, the latest report issued by the Agency for Natural
Resources and Energy in 2021 indicated that Japan generates the fifth-most CO2 emissions
in the world, and 56% of CO2 emissions were from electricity production [3]. According to
the Institute of Energy Economics Japan (IEEJ) [4], Japan’s electricity demand is expected to
increase by around 132 TWh/year (15% growth) if all Japanese gasoline- and diesel-fueled
vehicles shift to EVs. As a result, it is not advisable to rely solely on vehicle electrification
targeting future electric mobility for sustainability.
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Energy consumption during vehicle driving is not only pertinent to the status of
the vehicle itself, but also subject to road conditions and the traffic situation. Moreover,
it largely depends on the motion or driving behavior of the vehicle in a complex road
traffic environment [5]. Eco-driving, as one of the conceptual control technologies, has
been considerably noted due to its capability of reducing energy consumption in either
the local microscopic or global macroscopic level [6,7]. The core concept of eco-driving
is to improve vehicle energy economy on the premise of meeting the basic requirements
of travel, such as time or speed limits. The main objective of eco-driving is to attain the
best match between the host vehicle speed and the vehicle surroundings, including road
environment and traffic flow, through the appropriate operation controlled by a driver or
an autonomous driving system. Thus far, eco-driving has paved a new way for energy
saving and emission reduction in road transport and has always been the focus of research
in academia and industry.

Following the developing trend of connected and automated vehicles (CAVs) and
intelligent transportation systems (ITSs), eco-driving assistance systems (EDAS), as the
extension of advanced driver assistance systems (ADASs), present a transcendent energy
economy improvement potential due to higher levels of engagement with the driving
surroundings [8]. Involving autonomous driving features, the predictive cruise control
(PCC) system is an ideal EDAS to take full advantage of the energy saving of eco-driving
because of two reasons: (1) Equipped with an intelligent hardware system including
controllers, sensors, and actuators, the cruise control system can partially or entirely replace
the human driver to realize the energy saving objective automatically, which promotes the
development of next-generation intelligent mobility; (2) Cruise control technology, as an
embedded system into the EV, does not influence the energy-saving technologies of the EV
itself, which means that the PCC system manipulates the EV to execute the eco-driving
strategy that can be combined with the energy-saving technologies of the vehicle itself to
maximize the energy-saving potential simultaneously [9].

1.2. Literature Review

The integration of eco-driving and intelligent driving originated from fuel-efficient
cruise control, called predictive cruise control (PCC), in 2004 [10]. A representative research
work done by E. Hellström et al. is the transportation task of a given route, in which
the optimal control algorithm is applied to obtain the economic velocity [11]. Generally,
eco-driving research combined with intelligent driving in urban transport systems can be
categorized into three typical driving scenarios.

• Freeway-based eco-driving considering the road gradient to minimize fuel consumption

For freeway-based eco-driving, it mainly considers the influence of road terrain (road
grade) on the vehicular fuel economy, planning the economic (or ecological) velocity of
a single vehicle in a freeway driving situation without considering the influence from
surrounding vehicles on the cruise vehicle.

Erik Hellström et al. [12–15] conducted a series of studies on the fuel economy problem
of heavy trucks driving on a sloped road from 2005 to 2010 and developed a fuel-optimal
look-ahead controller utilizing road topography information. This look-ahead controller
took the weighted functions of fuel consumption, velocity variation, gear shifting, and
braking times into the optimization objective function, transforming it into a dynamic
programming (DP) problem. This research achieved higher fuel economy by generating
smooth speed profiles with the result of fuel consumption reduction by 2.5%. However,
this look-ahead controller needs to constantly search for the optimal control signal, which
is computationally burdensome.

In 2011, Kamal et al. [16] utilized the model predictive control algorithm, combined
with the information of road gradient, vehicle dynamics model, and fuel consumption
model, to plan vehicular speed from passing up and down a hilly road. The results
demonstrated that the fuel consumption could be effectively reduced by accelerating before
climbing the uphill in a preplanned manner so as to avoid hard acceleration. In downslope,
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it takes advantage of the downhill gradient, and without any braking, the velocity is
allowed to increase to some extent and finally settle at a specified speed.

In 2014, Yu [17] designed a hierarchical eco-driving system with two layers. The first
layer applied the Dijkstra algorithm to optimize the average eco-speed at multiple signal-
ized intersections considering traffic light information, traffic flow, and speed constraints
at certain road sections. For the second layer, it considered the road slope information and
calculated the real-time eco-speed.

The ACC InnoDrive system of Porsche adopted a similar method and achieved
fuel consumption reduction of about 10% [18]. InnoDrive integrated an adaptive cruise
control (ACC) system, GPS, and GIS to analyze driving intention based on real-time road
traffic information. Then, the optimal velocity profile can be obtained based on the above
information. Finally, it cooperatively controlled the engine, transmission, and braking
system to follow the obtained optimal velocity profile to minimize fuel consumption.

• Urban roadway eco-driving considering traffic signal light information

In urban driving conditions, optimization of speed trajectory is performed to minimize
fuel consumption by using upcoming traffic signal phase and timing (SPnT) information
with the advancement of V2X technology, including Vehicle-to-Vehicle (V2V) communica-
tion and Vehicle-to-Infrastructure (V2I) interaction. Furthermore, the intelligent transport
system (ITS) makes it possible to engage higher levels of real-time dynamic monitoring of
the vehicle performance, enabling the eco-driving system to perform more efficiently.

In 2011, Asadi and Vahidi [19] proposed a vehicle-centered predictive cruise control
system that controlled the vehicle based on traffic signal light information through the ITS
to reduce the waiting time at the red interval of traffic signal lights and avoid unnecessarily
frequent acceleration or deceleration. The simulation results showed that 47% fuel con-
sumption and 56% CO2 emissions can be reduced by the predictive use of signal timing. In
addition, this research offered the possibility of applying model predictive control (MPC)
framework to formulate travel optimization considering the traffic signal light information.

In 2013, Kamal et al. [20] developed a comprehensive and innovative eco-driving
model based on MPC, predicting the velocity of the preceding vehicle and taking into
account the changing traffic signals at intersections to compute the optimal vehicle control
input. The breakthrough of this research is that the MPC vehicle uses the upcoming signal
status to choose its acceleration/deceleration behind a preceding vehicle to stop at a red
signal by smooth deceleration instead of hard braking. The simulation results showed that
up to 13.21% fuel savings could be achieved.

In 2015, De Nunzio et al. [21] further improved the energy efficiency for vehicles going
through many successive signalized intersections. The presented pruning algorithm is
capable of finding the energy-efficient path and returning the speed advisory to the drivers
in a sub-optimal way. Although the simulated vehicles are independently equipped with
the proposed algorithm and do not share information among vehicles, the noticeable traffic
energy consumption reduction can be achieved without affecting travel time.

In 2019, an optimal parametric approach [22] was proposed to analytically solve
an eco-driving problem for autonomous vehicles crossing multi-intersections without
stopping. The traffic light information was described as spatial equality and temporal
inequality constraints. The simulation results showed the advantages of considering
multiple intersections jointly rather than dealing with them individually. An Ecological
Adaptive Cruise Control (Eco-ACC) was proposed [23] to minimize energy consumption
while avoiding collisions and complying with traffic signals, which was an extension
of the conventional ACC system. In the higher-level controller, Eco-ACC computes the
energy-optimal velocity reference incorporating red light duration. In the lower level, the
ACC controller ensures safety against a collision with the preceding vehicle.
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• Urban roadway eco-driving under car-following driving scenario

The development of optimal fuel economy under the circumstance of car-following
requires considering the car-following safety. Due to the high unpredictability of driver
behavior, the eco-driving cruise control under the mode of car-following is a more chal-
lenging task.

In 2006, Zhang and Ioannou [24] designed a PID controller for a truck-following sys-
tem. This paper proposed that fuel consumption could be reduced by avoiding unnecessary
acceleration and braking, and the goal of the controller was set to track the speed of the
preceding vehicle while maintaining the specified inter-distance.

In 2008, Li et al. [25] took vehicle tracking and fuel efficiency into consideration in a
study of adaptive cruise control. The research group used the inverse model to compensate
for the nonlinearity of vehicle longitudinal dynamics. Given the tradeoff between fuel
economy and vehicle tracking capability, the MPC framework was used to manage the
optimization problem. The experimental results showed that the fuel-saving rate of the
model is 8.8% and 2% on city roads and expressways, respectively.

In 2013, Kamal et al. [26] developed a new control system aimed at controlling the
vehicle to improve its fuel economy in the changing urban transport system. By measuring
the current road and traffic-related information, the system predicted the future traffic
state of the preceding vehicle and calculated the optimal input signal into the vehicle. The
experimental simulation results showed that the controller saved 13% fuel consumption in
the urban traffic environment.

In 2019, Ma et al. [27] developed an ecological cooperative adaptive cruise control
(eCACC) strategy to improve the fuel economy under V2V communication. The research
work achieved better car-following performance results in significant energy savings in
different driving cycles. In 2020, Nie and Farzaneh [28] proposed a multi-objective opti-
mization ACC system for eco-driving based on the MPC algorithm, which dynamically
computed an optimal acceleration command as the input to the host vehicle to realize driv-
ing safety, comfortability, and fuel consumption minimization. To reduce fuel consumption
and emissions, considering the car-following scenario, Hu et al. [29] developed a model
predictive multi-objective control framework and realized a 10.49% fuel consumption
reduction. In 2021, Yang et al. [30] developed a car-following-oriented MPC controller with
the purpose of maintaining a safe distance between the preceding vehicle while improving
fuel economy.

Another approach for fuel efficiency is based on the utilization of new technologies.
In 2007, Manzie et al. [31] proposed to remotely acquire the vehicle surrounding traffic in-
formation through an intelligent transportation system and thereby adjust driving strategy
according to such required information. Experiments showed that the acquisition of remote
traffic information enabled the vehicle with 7 s ahead preview capability, resulting in the
improvement of fuel economy. In 2012, Li et al. [32] proposed a servo-loop control design
of a Pulse-and-Gliding (PnG) strategy to minimize fuel consumption in the automated
car-following scenario. Simulation experimental results showed that compared with the
linear-quadratic (LQ)-based benchmark controller, the PnG controller improved the fuel
economy by up to 20%.

1.3. What Will Be Elucidated in This Research

As reviewed so far, current existing research is mostly focused on eco-driving strategy
development for specific driving scenarios, either car-following scenario, speed regulation
based on traffic signal lights, or simply speed optimization considering road grade infor-
mation. However, most of the time, a vehicle may experience an integrated traffic system
with synthetic driving scenarios in an actual daily trip. For example, a common driving
task may concern starting from an idling stop and accelerating to the maximum allowable
speed in certain road section, during which the energy consumption is influenced by road
gradient information. Moreover, when it is approaching a signalized intersection, the
anticipation of an upcoming traffic signal phase and timing (SPnT) information directly
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affects the motion of the vehicle, during which the vehicle may follow a preceding vehicle
to keep a safe driving distance. For such a common synthetic driving situation with various
scenarios, a conventional eco-driving system solely designed for a specific driving scenario
is far from meeting the requirements of handling and optimizing daily trips with the
integrated traffic situation in urban transport systems. Hence, it is indispensable to develop
a comprehensive eco-driving strategy that can automatically cope with multiple driving
scenarios to minimize the energy consumption for the entire driving task.

Instead of taking various traffic constraints simultaneously and avoiding solving the
complex global optimization problem once for all, a predictive cruise control system is
designed hierarchically based on three MPC controllers: a linear MPC for the car-following
scenario, a nonlinear MPC for the signal anticipation scenario, and another nonlinear MPC
for the free driving scenario. A detailed driving scenario switching logic (DSSL) under the
support of CAVs and ITS is formulated so that the proposed PCC system can automatically
switch to the real-time driving scenario. Based on an artificial neural network (ANN)
instantaneous EV energy consumption model (IECM), different optimization objectives
can be defined for each driving scenario. For the car-following scenario, taking the driving
velocity of the preceding vehicle into account, the control objectives of the linear model
predictive controller (LMPC) include ensuring driving safety and comfortability of the host
vehicle while minimizing the energy consumption. For the signal anticipation scenario,
the control objective of the nonlinear model predictive controller (NLMPC) is to track an
optimal reference velocity planned by a Reference Velocity Planning Algorithm based on
upcoming SPnT information to pass the upcoming signalized intersection without any stop
as well as reducing the energy consumption in approaching the intersection. For the free
driving scenario, the control objective becomes integrating the gradient information of the
road ahead to optimize the driving velocity of the host EV so that the energy economy can
be enhanced.

Compared to the previous studies, the following originalities of this article can
be highlighted:

• A comprehensive PCC system for EVs eco-driving was proposed based on a tri-level
MPC algorithm and an ANN-ICEM.

• A detailed DSSL is designed so that the proposed tri-level MPC-based PCC system
can automatically handle synthetic daily driving scenarios.

• The performance of the overall PCC system is investigated based on a customized
simulation platform using real urban road and transport data in Japan.

• The role of MPC for enhancing the eco-driving of EV is explored and exploited.

The rest of this article is organized as follows. The problem formulation and overall
proposed PCC system structure is demonstrated in Section 2. In Section 3, system modeling,
tri-level MPC controller design and the corresponding optimization problem are explained.
In Section 4, the establishment of the simulation platform and real urban road and transport
data collection is introduced at first. Then, the simulation results are discussed in detail for
each driving scenario and an integrated traffic situation with synthetic driving scenarios.
Finally, the conclusion and future prospects are presented in Section 5.

2. Problem Formulation

To deal with the synthetic driving scenarios with multiple real driving constraints and
realize the decoupled optimization for the different driving scenarios for the significance of
practical implementation, the solution to design such a comprehensive eco-driving system
for EV is to divide the mixed and coupled driving scenarios into three sub-scenarios,
including free driving, car-following, and the signal anticipation scenario, instead of
deriving the global optimal control for the overall driving task. The decoupling of each
single driving scenario handled by the respective single MPC controller makes it possible
to explore the internal mechanism and obtain the universal control strategy of MPC.
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As illustrated in Figure 1, the schematic of the proposed tri-level MPC-based PCC
system for eco-driving is designed based on the technical background of CAVs and ITS. The
ITS enables Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication for
the host vehicle to access real-time road and traffic information in making optimal driving
scenario switch decisions.
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The V2V data interaction provides the real-time driving state information of the
surrounding vehicles so that, e.g., in the car-following driving situation, the velocity of the
preceding vehicle is crucial to the maintenance of safety distance. The data exchange used
in this research includes real-time inter-vehicle distance or relative spacing between the
host and preceding vehicle, drel , and the real-time velocity of the preceding vehicle vpre.
The real-time traffic and road conditions are important in working out an operative and
eco-cruise strategy. The V2I communication realizes the real-time data transmission from
the roadside to vehicle sides, such as driving speed limitation on certain road sections,
the traffic signal phase and timing (SPnT) information, the distance to the upcoming
signalized intersection, road altitude information according to the driving position, etc. In
this research, the V2I interaction contains the dynamic distance to the upcoming signalized
intersection dTSL, the speed limitation [vmin, vmax], the road altitude for certain driving
position 〈, the traffic signal lights state STSL, and the remaining time for the current traffic
signal light tremain, as explained in Table 1.
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Table 1. V2V and V2I data interaction in this research.

Data Explanation Unit

drel
The relative distance between the host and the preceding vehicle

in the same lane m

vpre The real-time driving speed of the preceding vehicle m/s
dTSL The distance to the upcoming signalized intersection m

[vmin, vmax] Allowable speed limitation on a given road section m/s
〈(x) Road altitude at a given position m
STSL The traffic signal lights state, including Green, Red, Yellow -

tremain The time left for the traffic light of the upcoming intersection s

As illustrated in Figure 1, the overall PCC system is distributed hierarchically. The
perception of the driving environment for the host vehicle is supported by assumed ITS
and CAVs, and these data streams are fed into the upper-level controller. The upper-level
controller calculates the desired acceleration utilizing the optimization algorithm according
to multiple control objectives based on the vehicle longitudinal dynamics model. The lower-
level controller takes the desired acceleration obtained from the upper-level controller as
input to adjust the throttle and brake pedal pressure and control the vehicle to track the
desired acceleration. The main research content in this thesis is the upper-level controller
design of the economic predictive cruise control system.

In actual daily trips, the proposed PCC system for eco-driving is required to automati-
cally switch catering to different driving scenarios with different optimization objectives.
Hence, a driving scenario switching logic (DSSL) is required to be designed precisely.

To formulate the DSSL of the host vehicle, a general vehicular braking distance model
is firstly introduced [33] as follows:

dbrk = dmin + vhost(k)·tbrk +
v2

host(k)
2·abrk

(1)

where dbrk (m) refers to the braking distance, dmin (m) denotes the minimum critical
distance, vhost(k) (m/s) represents the host vehicle velocity at instant k, tbrk (s) is the
reaction time before braking, and abrk (m/s2) is the deceleration during braking.

The thresholds value for the distance to an upcoming signalized intersection dTSL
and the relative distance between the host and preceding vehicles in the same lane drel
are defined as dTSL,limit and drel,limit, respectively. They are numerically equal to the maxi-
mum braking distance based on Equation (2) using the parameters from [33], expressed
as follows:

dTSL,limit = drel,limit = 10 + vhost(k) + 0.0825·v2
host(k) (2)

If the actual distance to the upcoming signalized intersection, dTSL, is greater than
the threshold value, dTSL,limit, as well as the actual relative distance between host and
preceding vehicle, drel , greater than the threshold value, drel,limit, the DSSL will switch
into the free driving scenario, i.e., there is no need to consider the constraints from both
the preceding vehicle and upcoming traffic signal light. However, once the drel becomes
less than or equal to the drel,limit, the motion of preceding vehicle has to be considered,
i.e., the DSSL switching into car-following scenario. If the real-time dTSL is less than or
equal to dTSL,limit with drel greater than drel,limit, either the signal anticipation scenario or
free driving scenario will be selected by the DSSL. Otherwise, either the car-following
scenario or free driving scenario will be selected. The critical factor is the upcoming traffic
signal status and its remaining time to change from green light to red light. As long as the
upcoming traffic signal is in the green interval and its remaining time is less than tlimit, the
DSSL will select the signal anticipation scenario.
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The real-time estimated time length to pass the upcoming signalized intersection is
defined as follows:

tlimit =

{ dTSL
vhost(k)

vhost(k) > 0
dTSL
amax

vhost(k) = 0
(3)

where amax denotes the maximum physical allowable acceleration of the vehicle.
Thus, the detailed driving scenario switching logic (DSSL), shown in Figure 2, can be

designed and used to switch into one of three studied typical driving scenarios.
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The proposed predictive cruise control (PCC) system for eco-driving is based on
the model predictive control algorithm. For each sampling time step, the MPC takes the
state of the system at the current moment, solves a finite time-domain open-loop online
optimization problem to obtain a sequence of desired acceleration within certain system
constraints, and inputs the first element of the derived control sequence into the system
to realize the closed-loop control, which inherently ensures the robustness of the control
system. In the next time step, the rolling optimization problem is solved in real-time with
the prediction horizon moving forward. Thus, repeatedly, the overall driving task with
certain control and optimization objectives can be completed. The eco-driving system
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architecture based on the MPC algorithm for three typical driving scenarios is shown in
Figure 3. The general vehicular longitudinal dynamics system includes an inter-vehicle
longitudinal dynamics model and a vehicle dynamics model. The inter-vehicle longitudinal
dynamics model describes the car-following behavior using a safety distance strategy and
transfers the desired acceleration output by the MPC to the host vehicle.
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To improve the system robustness for the designed MPC controller, a state observer is
included to realize the feedback correction [34]. The error between the prediction value
from the model and the actual measurement by state observer is taken to improve the
prediction accuracy. In the above figure, the measured values of state and control of the
controlled vehicle are ξ(k) and um(k), respectively; the corresponding prediction values
are ξp and up; and the errors between them are defined as ξe and uc.

3. Proposed MPC-Based Predictive Cruise Control System

According to the specific requirements for different driving scenarios proposed in Sec-
tion 2, the corresponding system dynamics modeling is the prerequisite of developing the
PCC system for eco-driving. For the free driving scenario and signal anticipation scenario,
the electric vehicle longitudinal dynamics model is required to reflect the real-time vehicle
driving condition. For the car-following driving scenario, the inter-vehicle longitudinal dy-
namics model is necessary to represent the coupling relationship between the host vehicle
and the preceding vehicle. Once the DSSL switches into the signal anticipation scenario,
the driving objective at this specific moment is to track the optimal reference velocity that
is able to reduce the idling at red lights given the upcoming SPnT information. Therefore, a
rule-based reference velocity planning algorithm that calculates an instantaneous optimal
vehicle velocity trying to avoid stopping at the red light is proposed. Since the main
target of the proposed PCC system is to evaluate energy consumption, an ANN-based
instantaneous energy consumption estimation model (ANN-IECM) is applied.
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3.1. System Modeling

The electric motor utilizes energy from the onboard battery to generate torque. Re-
versely, during vehicles’ braking, it works as a generator using regenerative braking power
to recharge the battery. As the mapping of motor torque and rotation speed, electric motor
efficiency can be expressed using the following formula [29]:

ηm(t) = f (Tm(t), ωm(t)) (4)

Then, the motor power Pm can be calculated using defined motor efficiency ηm
as follows:

Pm(t) = Tm(t)·ωm(t)·ηα
m (5)

where α =

{
1, working as a generator
−1, working as a electric motor

.

The battery model can be simplified as an internal resistance model [35]. The Rbatt is
the internal resistance, Ibatt is the equivalent current in the circuit, and Ubatt is the open-
circuit voltage. Thus, the battery power providing energy to electric motor can be obtained
as follows [36]:

Pbatt = Ubatt Ibatt − I2
battRbatt (6)

The variation rate of the state of charge (SOC), as an indicator of the remaining battery
energy, is expressed as follows:

.
SOC = − Ibatt

Qbatt
(7)

where Qbatt denotes maximum battery capacity.
Substituting Equation (6) into Equation (7), the following equation can be obtained:

.
SOC = −

Ubatt −
√

U2
batt − 4PbattRbatt

2QbattRbatt
(8)

Consequently, the electric motor output torque can be calculated using power transi-
tion from the onboard battery and the electric motor as shown below:

Tm(t) =
Pbatt
ωm

(9)

When the motor output power Tm is a positive value, the battery works in the dis-
charging process. While Tm is negative, the battery works in the charging procedure.

Therefore, the vehicle longitudinal dynamics is modeled based on the sum of all forces
acting in the longitudinal direction, expressed as follows:

Ftrac =
Tm(t)igηe

rw
dvhost(t)

dt = 1
meq

[
Ftrac(t)− cr·meqg cos(θ(t)) + 1

2 ρa A f CD(κ1vhost(t) + κ2) + meqg sin(θ(t))
] (10)

where meq denotes the equivalent vehicle mass, which is the sum of vehicle weight, driver,
and rotational equivalent masses; Ftrac is the traction force; cr is the rolling resistance
coefficient; ρa is the air density; A f is the frontal area of the vehicle; and CD is the aerody-
namic drag coefficient. Tm is the electric motor output torque, ig is the single gear ratio of
the gearbox, ηe is the transmission efficiency, and rw is the radius of the vehicle wheel. θ is
the road gradien and κ1, κ2 are the approximation coefficients of linearization. The related
parameters used to model the electric vehicle are listed in Table 2.
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Table 2. Specifications of the electric vehicle longitudinal dynamics model.

Specification Values

Equivalent total mass of the electric vehicle, meq 1260 kg
Gear ratio, ig 3.905

Total mechanical efficiency of the driveline, ηe 0.95
Effective radius of the vehicle wheel, rw 287 mm

Frontal area of the vehicle, A f 2.22 m2

Rolling resistance coefficient, cr 0.028
Aerodynamic drag coefficient, CD 0.316

Air density, ρa 1.206 kg/m3

Motor Maximum available power: Pm_max = 55 kW;
Maximum output torque: 305 Nm;

Battery

Battery voltage: 6~9 V;
Packs: 40;

Initial charge level: 0.8;
Qbatt: 93 Ah

For the car-following driving scenario, since the controlled plant is the inter-vehicle
longitudinal dynamics, the prerequisite of developing the controller is to model the con-
trolled plant. In this research, the inter-vehicle longitudinal dynamics model is designed,
taking the inter-vehicle distance error, relative velocity, and acceleration of the host vehicle
as state variables, desired acceleration of the host vehicle as a control input, and acceleration
of the preceding vehicle as system disturbance. To calculate the desired acceleration, the
state-space model between host and preceding vehicle is firstly established. The relative
velocity vrel between the host and preceding vehicle is defined as follows:

vrel = vpre − vhost (11)

where vpre and vhost are the velocity of preceding and host vehicles, respectively.
The error of inter-vehicle distance, ∆d, is defined as:

∆d = Dactual − Dsa f e (12)

where Dsa f e can be calculated using a customized variable time headway (VTH) as follows:

Dsa f e = VTH·vhost + dmin =

{
τ1vhost + τ2v2

host − τ3vrelvhost + dmin vhost < vmax

τ1vmax + τ2v2
max − τ3vrelvmax + dmin otherwise

(13)

Then, we take the derivative of Equations (11) and (12):

.
∆d = vrel −

[
2τ1vhost + 3τ2v2

host − 2τ3vrelvhost + τ3v2
host − dmin

]
ahost + τ3v2

hostapre.
vrel = apre − ahost

(14)

where apre denotes the acceleration of the preceding vehicle and ahost is the acceleration
of the host vehicle. τ1, τ2, and τ3 are the constant coefficients and dmin is the minimum
inter-vehicle distance when the vehicles completely stop.

When applying the optimal desired acceleration obtained by the upper-level con-
troller to the lower-level PI controller, there exists a time delay corresponding to the finite
bandwidth of the vehicle’s dynamic response. To eliminate the time delay and process the
obtained desired acceleration signal in time, the first-order lag model is used to model the
inter-vehicle longitudinal dynamics.

ahost,actual =
Kg

Tg + 1
·ahost,desired (15)
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where Kg is the system gain, Tg is the time constant, ahost,actual is the actual acceleration of
the host vehicle, and ahost,desired is the optimal desired acceleration of the host vehicle.

Accordingly, the differential equation about desired and actual acceleration can be
modeled as:

.
ahost,actual =

Kg

Tg
ahost,desired −

1
Tg

ahost,actual (16)

Taking the inter-vehicle distance error ∆d, relative velocity vrel , and actual host vehicle
acceleration ahost,actual � ahost as system state variables, we obtain:

x =

 ∆d
vrel
ahost

 (17)

Taking the calculated desired acceleration as the control input and acceleration of the
preceding vehicle as system disturbance, the system state-space equation can be obtained
as follows [28,37]:

.
x = Ax + Bu + Gw (18)

where system matrices A, B, G are derived as:(
letH = 2τ1vhost + 3τ2v2

host − 2τ3vrelvhost + τ3v2
host − dmin

)
A =

 0 1 −H
0 0 −1
0 0 − 1

Tg

, B =

 0
0

Kg
Tg

, G =

 τ3v2
host

1
0

,

u = ahost,desired � adesired, w = apre.

i.e., 
.

∆d
.

vrel.
ahost

 =

 0 1 −H
0 0 −1
0 0 − 1

Tg


 ∆d

vrel
ahost

+

 0
0

Kg
Tg

adesired +

 τ3v2
host

1
0

apre (19)

The discretized inter-vehicle longitudinal dynamics model can be expressed as fol-
lows [37]:

x(k + 1) = Ax(k) + Bu(k) + Gw(k)
y(k) = Cx(k)

(20)

where k refers to the kth sampling time step, A, B, and G are discretized system coefficient
matrices, y represents the system output, and C is an identity matrix.

Assuming Ts as the sampling period, A, B, and G can be obtained as follows [37]:

A =
∞

∑
k=0

AkTk
s

k!
, B =

∞

∑
k=0

Ak−1Tk
s

k!
B, G =

∞

∑
k=0

Ak−1Tk
s

k!
G (21)

When DSSL switches into the signal anticipation scenario, a reference velocity vre f is
required to be calculated based on the real-time driving state and upcoming traffic signal
phase and timing information. The basic idea of calculating the vre f is to accelerate when
the time of green signal light is enough and decelerate until the start of the next green
signal light so that the host vehicle can pass through the signalized intersection without
any stop. According to research work [19], a non-empty intersection checking algorithm
based on a set of logical rules is proposed.

Once entering the signal anticipation scenario, a vehicle plans to cross the first green
interval of the upcoming traffic signal at the current time step with the velocity range:[

dTSL
∇1

,
dTSL
}1

]
(22)
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where ∇1 and }1 denote the start time of the first red and green interval of the upcoming
traffic signal light, respectively.

Then, the feasibility of crossing the signalized intersection using current velocity
depends on if the above velocity range has the intersection with the allowable speed limits
on a certain road section [vmin, vmax]. If the set intersection is empty, the following green
interval will be checked until a non-empty set intersection can be found. The mathematical
expression of the “non-empty set intersection checking algorithm” is represented by [19]:[

dTSL
∇i

,
dTSL
}1

]
∩ [vmin, vmax] (23)

Finally, the reference velocity vre f at each time step can be obtained by the follow-
ing rule:

vre f = max[[
dTSL
∇i

,
dTSL
}1

] ∩ [vmin, vmax] ] (24)

An instantaneous energy consumption estimation model (IECM) based on machine
learning data mining is proposed catering to the driving characteristics of the electric
vehicle. After smoothing the real chassis dynamometer experimental Drive Cycle data and
determining the network structure, the Levenberg−Marquardt training algorithm [38] is
applied to train the neural network and encapsulate it as a callable function.

Datasets used to develop the ANN-based IECM were derived from the Downloadable
Dynamometer Database and were generated at the Advanced Mobility Technology Labora-
tory (AMTL) at Argonne National Laboratory for funding and guidance from the U.S.

As shown in Figure 4, using the artificial neural network as the fitting tool, the IECM
takes motor torque Tm (N·m), motor speed ωm (rpm), transient vehicle velocity v (m/s),
and transient vehicle acceleration a

(
m/s2) as input features to calculate the mapping 0.1 s

output instantaneous energy consumption Eins (W·0.1 s).
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Note that the IECM is proposed mainly to develop the predictive cruise control
system for eco-driving to evaluate the instantaneous energy economy for specific driving
conditions. Therefore, to ensure the interactivity between each part of the PCC system,
the well-trained ANN-based IECM is deployed in the MATLAB environment as a callable
function as below:

Eins(k) = IECM[v(k), a(k), Tm(k), ωm(k)] (25)

Details of the validation of the IECM are described in Appendix A.

3.2. Tri-Level Model Predictive Controller
3.2.1. LMPC for Car-Following Scenario

As the key component of the entire predictive cruise control system, the car-following
driving scenario is the most frequent and typical driving condition. In following the preced-
ing vehicle, driving comfortability and energy economy are also required to be considered.
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Hence, in this section, the predictive cruise control system for EV eco-driving is designed
based on MPC, taking the inter-vehicle longitudinal dynamics model as the control plant.
By integrating the driving state of the preceding vehicle and the safety distance model, the
motion of the host and preceding vehicle can be predicted within the prediction horizon.
Based on ensuring the car-following safety, the energy economy is maximized. The cost
function is established considering both driving safety and comfortability. By means of
using the rolling horizon optimization algorithm, the optimal control value, i.e., the desired
longitudinal acceleration, can be obtained, which is further fed into the vehicle longitu-
dinal dynamics model. The controller structure of the car-following scenario is shown in
Figure 5.
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During the car-following process, energy consumption is closely related to the lon-
gitudinal acceleration. Hence, by smoothing the acceleration and jerk to reduce hard
acceleration and deceleration, the energy economy can be efficiently improved. The deriva-
tive of vehicle acceleration can be defined as jerk:

j(t) =
a(t)− a(t− 1)

Ts
(26)

The control objective can be mathematically expressed as:

objective
{

min|ahost(k)|
min|jhost(k)|

(27)

where ahost(k) is the transient acceleration of the host vehicle and jhost(k) is the transient
jerk of the host vehicle.

According to the analysis by Li [33], an approximate linear relation between energy
consumption and vehicle acceleration can be found. Thus, here the energy economy can
be quantified using the Euclidean norm for desired acceleration and desired jerk of the
host vehicle:

JE = wua2
desired + wdu j2desired (28)

where JE is the performance index of the energy economy, wu is the weight coefficient
of desired acceleration, and wdu is the weight coefficient of the desired jerk. For the
former term, by minimizing JE, the acceleration amplitude can be lowered so that the
energy economy can be improved. For the latter term, it limits the frequent acceleration or
deceleration of the electric motor so as to further improve the energy economy. Besides,
lowering the jerk can efficiently reduce the longitudinal driving impact so that driving
comfortability can be improved.

Driving safety is always the top priority. In the previous section, the desired car-
following model has been proposed based on a customized safety distance model. The
control system regulates the vehicle to reach the desired car-following distance by ma-
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nipulating its acceleration based on the V2V state information. Apart from the desired
car-following distance calculated by the safety distance model as the ultimate control
objective, another real-time safe distance, dsa f e, before reaching the final desired value
is required to constrain the actual inter-vehicle distance. To ensure driving safety and
keep the host vehicle from a collision with the preceding vehicle, the actual car-following
distance should always be greater than the safety distance dsa f e. This real-time safe distance
dsa f e can be defined by a Time-to-Collision (TTC) strategy, which is used to describe the
car-following safety during braking; e.g., when the host vehicle velocity is much greater
than the preceding vehicle, it is still risky to collide with the preceding vehicle even if there
is a long inter-vehicle distance. Therefore, the safety constraints can be defined as follows:

Dactual(k) ≥ dsa f e(k)
dsa f e(k) = max(tTTC·vrel(k) + dmin)

(29)

where Dactual is the actual real-time inter-vehicle distance and tTTC is the time to collision.
When the preceding vehicle is running at a steady state, the control objective is forcing

the actual inter-vehicle distance to approach the desired safety distance calculated by
the safety distance model, i.e., the error ∆d between Dactual and Dsa f e approaching zero.
Simultaneously, to keep the traffic flow as stable as possible, another control objective is to
let the host vehicle’s velocity approach the preceding vehicle’s velocity by adjusting the
acceleration of the host vehicle, i.e., vrel approaching zero.

objective
{

∆d(k)→ 0
vrel(k)→ 0

, k→ ∞ (30)

To quantitatively describe the car-following capability, the Euclidean norm of ∆d and
vrel is used to define the cost function of driving safety:

JS = w∆d∆d2 + wvrel v
2
rel (31)

where JS is the performance index of driving safety, w∆d is the weight coefficient of the
tracking distance error, and wvrel is the weight coefficient of the relative velocity.

However, corresponding to the unstable driving condition of the preceding vehicle,
the host vehicle tends to reflect this as hard acceleration or deceleration, which is against
energy economy. If the weight of fuel economy is greater than driving safety in the final cost
function, it is possible to compromise the vehicle dynamics in pursuing the energy economy.
Therefore, the variables ∆d and vrel are constrained by the following boundary conditions:

∆dmin·S−1
DE ≤ ∆d(k) ≤ ∆dmax·S−1

DE
vrel,min·S−1

VE ≤ vrel(k) ≤ vrel,max·S−1
VE

(32)

where ∆dmin and ∆dmax are the lower and upper boundary of inter-distance error, vrel,min
and vrel,max are the extreme value of relative velocity, and SDE and SVE are the driver’s
sensitivity to the ∆d and vrel , which can be calculated by [38]:

S−1
DE = kSDE·vhost + dSDE

S−1
VE = kSVE·vhost + dSVE

(33)

where kSDE and kSVE are the coefficients of first-order terms and dSDE and dSVE are the
constant terms.

Driving comfortability is presented in two aspects: (1) desired acceleration calculated
by the upper-level controller should be aligned with the driver’s expectation; (2) the vehicle
should maintain a constant speed whenever possible and avoid frequent acceleration or
deceleration. Therefore, the following control objective can be defined:
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adesired,min ≤ adesired(k) ≤ adesired,max
jdesired,min ≤ jdesired(k) ≤ jdesired,max

(34)

where adesired,min and adesired,max are the desired acceleration boundary condition and
jdesire,min and jdesire,max are the desired jerk boundary condition, respectively.

Moreover, considering the physical limitation of vehicle velocity and acceleration, the
control inputs into the host vehicle should be constrained by:

vmin ≤ vhost(k) ≤ vmax
amin ≤ ahost(k) ≤ amax

(35)

where vmin, vmax, amin, and amax are all decided by the braking and acceleration capability
of the vehicle itself.

Consequently, in this research, driving comfortability is realized by constraining the
host vehicle acceleration as follows:

JC = waa2
host (36)

where JC is the performance index of driving comfortability and wa is the weight coefficient
of the host vehicle longitudinal acceleration.

In the car-following scenario, the energy economy, driving safety, and comfortability
are mutually restricted and affected. To obtain the optimal control value, each performance
index is required to be considered cooperatively. Therefore, under the car-following
scenario, the optimization problem of LMPC in each sampling period can be integrated as:

Jcar− f ollowing = JE + JS + JC = wua2
desired + wdu j2desired + w∆d∆d2 + wvrel v

2
rel + waa2

host (37)

where Jcar− f ollowing is the system cost function under car-following scenario.
Replacing the [∆d, vrel , ahost]

T and adesired with y and u, respectively, the following
equation can be obtained:

Jcar− f ollowing = yTwyy + wuu2 + wdu
.
u2 (38)

where wy is the weight matrix of the output vector:

wy =

 w∆d 0 0
0 wvrel 0
0 0 wa

.

As the input to the inter-vehicle longitudinal dynamics model, the comfortability
constraints can be directly transformed into constraints of system inputs, as follows:

ahost,min ≤ u ≤ ahost,max
jhost,min =

.
ahost,min ≤

.
u ≤ .

ahost,max = jhost,max
(39)

Then, Dsa f e can be substituted, and the driving safety constraints can be transformed
into system output constraints:[

1 −tTCC −VTH
1 −VTH

][
∆d
vrel

]
≥
[

VTH·vpre − dmin
−VTH·vpre

]
(40)

For boundary condition 32, it can be transformed into system output constraints: ∆dmin·S−1
DE

vrel,min·S−1
VE

ahost,min

 ≤ y ≤

 ∆dmax·S−1
DE

vrel,max·S−1
VE

ahost,max

 (41)
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Until this point, the multi-objective optimization for the car-following scenario is well-
designed. For each sampling time, such an overall optimization problem, including cost
function and various constraints, can be transformed into a predictive form and quadratic
programming problem and solved using the encapsulated function “quadprog” within
MATLAB to realize the closed-loop control.

3.2.2. NLMPC for Signal Anticipation Scenario

When the host vehicle is driving in the signal anticipation scenario based on the
DSSL, the predictive cruise control system enters the optimization problem defined in
Equation (44), within the nonlinear equality constraints (45)~(46), and linear inequality
constraints (47)~(51). At each sampling time t, a reference velocity is obtained based on
the reference velocity planning algorithm using real-time SPnT information, which is a
velocity that can pass the upcoming signalized intersection without any stop, i.e., it always
captures the green timing of traffic lights crossing the intersection. The cost function in
Equation (44) takes the obtained reference velocity to execute the optimization. The first
term of Equation (43) is to minimize the energy consumption of the vehicle during the signal
anticipation. If only the first term exists, the vehicle would have no moving motivation
because the first term forces the vehicle to consume as little energy as possible. Therefore,
the second term is required to penalize the error between actual driving velocity and
reference velocity so that the host vehicle can track the reference velocity at each moment in
the signal anticipation scenario to realize the passing of the signalized intersection without
any stop and further minimize the energy consumption. The third term is introduced with
the slack factor ε to minimize the variation rate of acceleration/jerk, so that the driving
comfortability during signal anticipation scenario is guaranteed. The velocity is bounded
with the road section speed limitation in Equation (47). The vehicle acceleration, motor
torque, and motor speed are all limited by the technical characteristics of the vehicle itself
in Equations (48), (50) and (51), respectively. After solving the nonlinear optimization
problem with nonlinear constraints in each time step, an optimal control sequence can be
obtained, using the first control in the sequence as the vehicle’s input. Such a nonlinear
online optimization is rolling forward with the moving of the prediction horizon to achieve
real-time reference velocity tracking to minimize energy consumption. The controller
structure of the signal anticipation scenario is shown in Figure 6.
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Rewriting the electric vehicle longitudinal dynamics model into a state equation
results in the following:

f (vhost, u) =

[
vhost

(− 1
2meq

ρa A f CDv2
host − crgcosθ − gsinθ) + u

]
(42)

The cost function is defined as:

L = wEins [Eins(vhost, ahost, Tm, ωm)] + wve

(
vhost − vre f

)2
+ wεε

2 (43)

Therefore, the performance index can be expressed as:

min
u
Jsignal anticipation =

t+T∫
t

L
[
vhost

(
t′
)
, u
(
t′
)]

dt′ (44)

s.t.

ahost =
1

meq

[
−crmeqg cos θ −meqg sin θ − 1

2
ρa A f CDv2

host

]
+ u (45)

Eins = IECM(vhost, ahost, Tm,host, ωm,host) (46)

vmin ≤ vhost ≤ vmax (47)

amin ≤ ahost ≤ amax (48)
.

amin − ε ≤ .
ahost ≤

.
amax + ε (49)

0 ≤ Tm ≤ Tm,max (50)

0 ≤ ωm ≤ ωm,max (51)

During the prediction horizon T, the weights here wEins , wve , and wε are chosen with
the criterion that optimal magnitudes of cost terms are balanced. Finally, the weights
can be tuned through the observation of simulation results to maximize the energy econ-
omy. To solve the above nonlinear optimization problem and derive the optimal control
sequence, the encapsulated function “
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3.2.3. NLMPC for Free Driving Scenario

When the driving scenario switching logic (DSSL) selects the free driving mode, the
vehicle starts eco-driving in the scenario, accessing the upcoming road gradient information.
The basic concept is that a predictive cruise control system utilizes the vehicle longitudinal
dynamics model combined with ANN-IECM to calculate the optimal control input based
on the information of specific road altitude of the driving position to improve the energy
economy over a free-travel distance. In the real implementation, the information of real-
time road altitude is provided by ITS. The basic concept of the free driving scenario is
demonstrated in Figure 8.

Based on the electric vehicle longitudinal dynamics model, the state-space equation of
the electric vehicle in the free driving scenario can be expressed as:

f (vhost, u) =

[
vhost

(− 1
2meq

ρa A f CDv2
host − crgcosθ(x)− gsinθ(x)) + u

]
(52)

The road gradient θ(x) can be calculated using the real-time road altitude information
〈(x) as [20]:

θ(x) = tan−1
[
〈(x + ∆x)− 〈(x− ∆x)

2∆x

]
(53)

The cost function in the free driving scenario is defined as:

L(u) = wEins Eins(vhost, ahost, Tm, ωm) + wv(vhost − vdesired)
2 + wuu2 (54)
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The performance index thereby can be written as:

min
u
J f ree driving =

t+T∫
t

L(u)dt (55)

s.t.
ahost = (− 1

2meq
ρa A f CDv2

host − crgcosθ(x)− gsinθ(x)) + u (56)

Eins = IECM(vhost, ahost, Tm,host, ωm,host) (57)

umin ≤ u(t) ≤ umax (58)

vmin ≤ v(t) ≤ vmax (59)

where the most important parameter is the vdesired. Basically, the efficiency of the electric
motor is relatively stable, which features a broad high-efficiency range and energy con-
version efficiency. However, the power in the high rotation speed will decline, and the
aerodynamics resistance will be the main source of energy consumption when the vehicle
velocity is faster than 60 km/h. Therefore, the most energy-efficient driving velocity for an
electric vehicle will be 50∼60 km/s. Hence, the vdedired for the free driving scenario is set
by 15.28 m/s (55 km/h).
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T is the prediction horizon of the MPC algorithm during which the optimal control
inputs are calculated, and u is the optimal acceleration command. Given the performance
index in Equation (55), T is discretized into N steps with size h. For each prediction horizon,
the future vehicle control sequence {unh(t)}t=nh+T

t=nh is obtained. Then, the first element of
the sequence is input into the vehicle plant. The first term in the cost function is to minimize
the overall energy consumption during the prediction horizon T. The second term is to
penalize the deviation of the actual vehicle velocity vhost from the desired energy-efficient
velocity vdesired. The third term is the cost for acceleration command to avoid hard input
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because of tracking the desired velocity. wEins , wv, and wu are the weight factors for each
term, respectively.

Similarly, the encapsulated function “
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ming (SQP) algorithm from MATLAB is called to solve this nonlinear optimization problem.
The workflow of the MPC problem for the free driving scenario is demonstrated in Figure 9.

Sustainability 2021, 13, x FOR PEER REVIEW 21 of 37 
 

where the most important parameter is the 𝑣ௗ௘௦௜௥௘ௗ. Basically, the efficiency of the electric 
motor is relatively stable, which features a broad high-efficiency range and energy con-
version efficiency. However, the power in the high rotation speed will decline, and the 
aerodynamics resistance will be the main source of energy consumption when the vehicle 
velocity is faster than 60 km/h. Therefore, the most energy-efficient driving velocity for 
an electric vehicle will be 50~60k m/s. Hence, the vୢୣୢ୧୰ୣୢ for the free driving scenario is 
set by 15.28 m/s (55 km/h). 𝑇 is the prediction horizon of the MPC algorithm during which the optimal control 
inputs are calculated, and 𝑢 is the optimal acceleration command. Given the performance 
index in Equation (55), 𝑇 is discretized into 𝑁 steps with size ℎ. For each prediction hori-
zon, the future vehicle control sequence ሼ𝑢௡௛(𝑡)ሽ௧ୀ௡௛௧ୀ௡௛ା் is obtained. Then, the first ele-
ment of the sequence is input into the vehicle plant. The first term in the cost function is 
to minimize the overall energy consumption during the prediction horizon 𝑇. The second 
term is to penalize the deviation of the actual vehicle velocity 𝑣௛௢௦௧ from the desired en-
ergy-efficient velocity 𝑣ௗ௘௦௜௥௘ௗ . The third term is the cost for acceleration command to 
avoid hard input because of tracking the desired velocity. 𝑤ா೔೙ೞ , 𝑤௩ , and 𝑤௨  are the 
weight factors for each term, respectively. 

Similarly, the encapsulated function “𝓯𝒎𝒊𝒏𝒄𝒐𝒏” with sequential quadratic program-
ming (SQP) algorithm from MATLAB is called to solve this nonlinear optimization prob-
lem. The workflow of the MPC problem for the free driving scenario is demonstrated in 
Figure 9. 

 
Figure 9. Workflow of the MPC problem for the free driving scenario. 

4. Results and Discussion of Case Studies 
4.1. Establishment of Simulation Platform Based on CarSim and MATLAB/Simulink 

CarSim is a software that precisely predicts the performance of the vehicle in response 
to driver controls in a user-defined environment. It provides integrated vehicle dynamics 

Figure 9. Workflow of the MPC problem for the free driving scenario.

4. Results and Discussion of Case Studies
4.1. Establishment of Simulation Platform Based on CarSim and MATLAB/Simulink

CarSim is a software that precisely predicts the performance of the vehicle in response
to driver controls in a user-defined environment. It provides integrated vehicle dynamics
simulation for EVs. MATLAB/Simulink is more focused on the development of the con-
trol system. The connection port provided within CarSim makes it possible to link with
MATLAB/Simulink. Therefore, the co-simulation based on these two platforms enables the
accurate and flexible development of the PCC system for EVs eco-driving.

To begin with, the simulation platforms for three representative driving scenarios
(car-following scenario, signal anticipation scenario, free driving scenario) are established,
respectively. The first step is conducting parametric modeling within CarSim according
to the configuration Tables 2 and 3, and then setting the inputs and outputs of the vehicle
dynamics model, shown in Figure 10.

Once completing the settings within CarSim, the “Send to Simulink” button can
connect CarSim with the MATLAB/Simulink. Then, the detailed predictive cruise control
system can be developed within the Simulink environment. The visualization of three
typical driving scenarios is intuitive to check the performance of the overall system, shown
in Figure 11. The respective simulation environments are shown in Figure 12a–c.
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Table 3. Simulation parameters.

Parameter Symbol Values & Unit

System gain Kg 1.05
Time constant τd 0.40 s

Minimal stop distance dmin 5 m
Sampling period Ts 0.1 s

Prediction horizon T 30
Time-to-collision TTC −2.5 s

Sensitivity first-order term coefficient of ∆d kSDE 0.06
Sensitivity first-order term coefficient of vrel kSVE 0.005

Constant term of sensitivity of ∆d dSDE −0.13
Constant term of sensitivity of vrel dSVE 0.92

Upper bound of acceleration ahost,max 1.5 m/s2

Lower bound of acceleration ahost,min −2 m/s2

Upper bound of jerk
.

ahost,max(jerk) 1.5 m/s3

Lower bound of jerk
.

ahost,min(jerk) 2 m/s3
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The core MPC algorithms were written as S-Function, so that the required optimization
problem solver “quadprog” and “fmincon” could be successfully called. The lower-level
controllers which accept the optimal acceleration command are designed using a PID
controller. The ANN-IECM is embedded in the MPC algorithm as a callable function and
deployed as a portable Simulink block to explicitly show instantaneous energy consump-
tion. The external data, such as the SPnT information and the road altitude information,
can be imported using Signal Builder Block.

4.2. Real Road and Transport Data Collection in Urban Area of Japan

For the signal anticipation scenario, the simulative parameters of the traffic signal
lights were configurated based on real data. The SPnT information was collected at
Takeshita road, located near Hakata station in Fukuoka, Japan. There were seven traffic
lights. The signal phase and timing information were collected through analyzing the
videos which were recorded by cameras. The position of the traffic lights can be obtained
using the Google Maps distance measurement tool.

For the car-following scenario and free driving scenario, the required real-world data
includes the speed profile of the preceding vehicle and road elevation information. The
required data, such as road elevation, driving position, driving velocity and acceleration,
can be acquired from built-in sensors on a smartphone using MATLAB Mobile Version.
Then, the collected data can be streamed directly to the Cloud being used by MPC on-
line optimization of the proposed PCC system. The flow chart of data acquisition and
transmission is shown in Figure 13.
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4.3. Real Case Study for Car-Following Driving Scenario

To test the stability of the car-following performance of the proposed PCC system, a
velocity profile that fluctuated from 19.5 to 29.5 m/s and finally decelerated to a complete
stop within 50 s was recorded and taken as the velocity of the preceding vehicle. During
the driving of the host vehicle, if the preceding vehicle is within the radar detection range,
then the PCC system will automatically control the velocity of the host vehicle to follow
the preceding vehicle. The real-time driving scenario is visualized in Figure 14. The
initial velocity of preceding and host vehicles is 25.7 m/s and 26.4 m/s, respectively. The
initial inter-vehicle distance is 43 m, which is larger than the desired inter-vehicle distance.
The corresponding velocity comparison, relative position, battery state-of-charge (SOC),
instantaneous energy consumption, and preceding vehicle detection state are shown in
Figure 15.
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Figure 15. Simulation results of the steady car-following scenario.

From the first plot of Figure 15, with the velocity decrease of the preceding vehicle
from 2 s to 7 s, the host vehicle reacted by slowing down the velocity as well, which
demonstrated effective following performance of the PCC-controlled host vehicle. As
shown in the fifth plot, from 11 s to 39 s, the preceding vehicle was not detected by the
host vehicle PCC system. Therefore, the host vehicle cruised with the driver at a set
velocity of 25.8 m/s. Starting from 39 s, with the braking of the preceding vehicle, the
preceding vehicle was again detected by the host vehicle, which triggered the car-following
function of the PCC system. Therefore, the host vehicle also decreased its velocity. From
the third plot, the battery state of the preceding vehicle finally settled at 78.4%, while the
SOC of the host vehicle finalized at 78.8%. Therefore, it can be concluded that during this
specific driving scenario, the energy consumption reduction was realized by 16.7% from the
cumulative energy consumption. From the second plot, the acceleration of the host vehicle
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with the PCC system is limited within a certain range to guarantee driving comfortability.
By contrast, the acceleration of the preceding vehicle without the PCC system features
aggressive variation, which will make the driver feel uncomfortable. As a result, in the
car-following scenario, an MPC-based PCC system can ensure the reduction of energy
consumption as well as driving safety and comfortability due to the explicit consideration
of input and output constraints and optimization-based control law design.

4.4. Real Case Study for Signal Anticipation Scenario

The case study for the signal anticipation scenario was conducted for the real road
sections in the area located in the core commercial district, which is shown in Figure 16. The
selected location is characterized by an average traffic flow movement of 8.3 to 13.8 m/s
during low traffic flow situations and 9.7 m/s during high traffic flow. The situation of
different times directly influences the running condition of the preceding vehicle. Seven
traffic signal lights were considered in the SPnT data collection process. Assuming that only
the host and preceding vehicles were operating during simulation, without considering the
constraints of other vehicles, the host vehicle maintained a safe distance from the preceding
vehicle using the function of car-following of the PCC system.
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During the low traffic flow situation, the host vehicle reacted to the acceleration of
the preceding vehicle from 60 s. It follows that the PCC system switched to the signal
anticipation scenario to track the reference velocity optimized by upcoming traffic SPnT
information to avoid coming to a red interval. After 320 s, the preceding vehicle imple-
mented a sharp deceleration. However, by managing the velocity of by PCC system, the
host vehicle avoided the arrival at the signalized intersection during the red interval. After
580 s, the traffic flow became heavier. It is clear to see that after a stop in front of the red
interval from 720 s to 735 s, the preceding vehicle started to accelerate. However, the host
vehicle deployed by the proposed PCC system crossed the signalized intersection without
any stop through managing the driving velocity in advance. A sharp deceleration was
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implemented by the preceding vehicle because of the upcoming red interval from 870 s to
890 s, during which the host vehicle was controlled by the PCC system to avoid encounter-
ing the red-light interval. Starting from 1000 s, the signal anticipation scenario began again
to track the reference speed and successfully passed the signalized intersection without
any stop. However, the preceding vehicle without velocity optimization had to experience
a stop at around 1010 s. Figure 17 shows the space−time diagram, which visualizes the
behavior of both the host and preceding vehicles during the overall driving task. It can
be intuitively seen that the preceding vehicle without PCC system executed five times of
stopping in front of the red-light interval. Comparatively, the host vehicle equipped with
the proposed PCC system can always pass the signalized intersection during green-light in-
terval by optimizing the driving velocity. According to instantaneous energy consumption,
12.5% cumulative energy savings were realized by the proposed PCC system.
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4.5. Real Case Study for Free Driving Scenario

The test for the free driving scenario is conducted on a hilly road section covering
2.9 km in total. The simulated scenario is visualized in Figure 18. The global coordinate
of this hilly road section is shown in Figure 19. The comparative analysis was conducted
between the driving pattern controlled by the proposed PCC system and the automatic
speed control drive (ASCD). The initial velocity was the same for both driving patterns,
set as 22.1 m/s. The altitude, gradient of the road section, velocity comparison of both
driving patterns, acceleration comparison, instantaneous motor speed and motor torque
comparison, battery SOC, and instantaneous energy consumption are shown in Figure 20.
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Figure 19. Global coordinate of hilly road section.

From the first plot, it is known that the overall elevation exhibited an upward trend.
The corresponding road gradient information can be obtained from the second plot, with
the gradient range of −26~23◦. Because of the PCC system, the velocity of the PCC-vehicle
varied around the desired velocity 15 m/s. The optimized acceleration of the PCC-vehicle
presented a smoother variation trend. Based on the gradient plot and acceleration plot,
the basic rules can be concluded that the PCC-vehicle always accelerated just before the
upslope, instead of accelerating while climbing the slope. When driving on the downslope
section, the PCC-vehicle tends to rely on the inertia of the vehicle to drive, which was in
line with the principle of eco-driving behavior. From the results of battery state-of-charge, it
can be calculated that the baseline ASCD vehicle finalized at 77.2%, while the PCC-vehicle
settled at 78.3%. The cumulative energy consumption for the baseline ASCD vehicle can
be obtained as 2.63 kWh, while the PCC-vehicle consumed 1.83 kWh in total. The energy-
saving was estimated as 30.3%. Here, in this case study, both the baseline ASCD vehicle
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and PCC-vehicle are electric vehicles with a regenerative braking system, which means that
during the braking process, the vehicles can be charged instantaneously. The instantaneous
energy consumption (IEC) also shows negative values. Therefore, the 30.3% energy savings
rate was already considered in the charging process.
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4.6. A Comprehensive Case Study in Synthetic Driving Scenario

To test the capability of handling the synthetic daily driving scenarios, including all
of the above three typical driving scenarios, an area near Kyushu University in Fukuoka,
Japan was selected to conduct the comprehensive simulation. The initial velocity of the
PCC-vehicle was set as 8.9 m/s. The baseline vehicle was simulated by the automatic
speed control drive (ASCD) with Gipps model for car-following. Except for initial velocity,
other initial conditions for the baseline vehicle were the same as the PCC-vehicle. Given
different control styles, the PCC-vehicle and ASCD-Gipps vehicle faced different traffic
situations. The proposed PCC system controlled the vehicle based on the designed eco-
driving algorithm, which leads to a relatively conservative driving style while dealing
with the car-following scenario, signal anticipation scenario, and free driving scenario.
However, the ASCD-Gipps vehicle was controlled by aggressive control actions, imitating
the style of a human driver. The detailed description of the Gipps model can be referred
to in the book Traffic Flow Dynamics—Data, Models, and Simulation by Martin Treiber and
Arne Kesting [39]. The roadmap for the selected area and the simulated synthetic driving
scenario is shown in Figure 21.
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As shown in Figure 22, the first plot shows the velocity comparison between the PCC-
vehicle and baseline ASCD+Gipps-vehicle. The region with different colors represents
that the PCC system dynamically switched into driving scenarios, with red representing
the signal anticipation scenario, green for the free driving scenario, and blue for the
car-following scenario. Within the beginning 50 s, the baseline vehicle first accelerated
under the control of ASCD. Then, under the manipulation of the Gipps model, it sharply
decelerated to follow the preceding vehicle, while the PCC-vehicle could steadily follow
the preceding vehicle without aggressive maneuvers. In the first free driving period, the
PCC-vehicle was capable of adjusting its velocity to the desired velocity of 15 m/s based on
the road slope information. In the first signal anticipation period, the PCC-vehicle started
automatically following the optimal reference velocity to avoid stopping in the upcoming
traffic signalized intersection. By contrast, the baseline vehicle was still under acceleration.
It turned out that during 260 to 310 s, the PCC-vehicle can pass the intersection without
any stop, but the baseline vehicle implemented a stop during the red interval. The same
results happened during 406 s to 430 s. The battery SOC percentages for baseline and PCC
vehicles are 77.4% and 78.0%, respectively. The cumulative 19.97% energy savings can
be achieved.
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5. Conclusions

In this research, a tri-level model predictive control (MPC)-based predictive cruise
control (PCC) system for electric vehicle (EV) eco-driving is proposed that can be adapted
to the urban transport system with synthetic driving scenarios, including car-following,
signal anticipation, and free driving scenarios. A co-simulation platform based on CarSim
and MATLAB/Simulink was established to validate the effectiveness of the proposed PCC
system. Not only the driving comfortability and safety, but the considerable energy-saving
rates were also achieved at 16.7%, 12.5%, and 30.3% for three typical driving scenarios,
respectively. Finally, a synthetic driving scenario was simulated to test the comprehensive
performance of handling the mixed driving scenarios of the proposed PCC system; the
simulation results indicated that 19.97% cumulative energy savings was obtained by using
the proposed PCC system. The role of MPC in developing an eco-driving strategy for EVs
can be justified in the following ways: At first, it can explicitly deal with various state-space
variables, especially inequality constraints, which ensures the realization of driving safety
and comfortability. Second, MPC features optimization-based control, realizing open-
loop optimization and closed-loop control, which guarantees the requirement of energy
economy. The proposed PCC system was currently solely tested based on the co-simulation
platform using CarSim and MATLAB/Simulink. As a next step, a hardware-in-loop test can
be implemented further to test the feasibility of the proposed algorithm and models.
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Nomenclature

EVs Electric vehicles -
MPC Model predictive control -
LMPC Linear model predictive control -
NLMPC Nonlinear model predictive control -
PCC Predictive cruise control -
DSSL Driving scenario switching logic -
SPnT Signal phase and timing information -
CAVs Connected and autonomous vehicles -
ITS Intelligent transport system -
ANN Artificial neural network -
IECM Instantaneous energy consumption model -
V2V Vehicle-to-Vehicle -
V2I Vehicle-to-Infrastructure -
drel The relative distance between the host and the preceding vehicle in the same lane m
vpre The real-time driving speed of the preceding vehicle m/s
dTSL The distance to the upcoming signalized intersection m
[vmin, vmax] Allowable speed limitation on a given road section m/s
〈(x) Road altitude at a given position m
STSL The traffic signal lights state, including Green, Red, and Yellow -
tremain The time left for the traffic light of the upcoming intersection s
dbrk Braking distance m
dmin Minimum critical distance m
vhost Host vehicle velocity m/s
tbrk Reaction time before braking s
abrk Deceleration during braking m/s2

dTSL,limit Thresholds value for the distance to an upcoming signalized intersection m

drel,limit
Thresholds value for the relative distance between the host and preceding vehicles in the same

m
lane

tlimit Real-time estimated time length to pass the upcoming signalized intersection s
amax Maximum physical allowable acceleration of the vehicle m/s2

ξ Measured state values of the controlled vehicle -
um Measured control values of the controlled vehicle -
ξp Prediction state values -
up Prediction control values -
ξe, uc Errors between measured values and prediction values -
ηm Electric motor efficiency -
Tm Motor torque Nm
ωm Motor speed rpm
Pm Motor power W
Rbatt Equivalent internal resistance of the battery Ω
Ibatt Equivalent current in the circuit of the battery A
Ubatt Battery open-circuit voltage V
SOC Battery state of charge %
Qbatt Maximum battery capacity Ah
Ftrac Vehicle traction force N
Pm_max Battery maximum power W
ρa Air density kg/m3

CD Aerodynamic drag coefficient -
cr Rolling resistance coefficient -
A f Frontal area of the vehicle m2

rw Effective radius of the vehicle wheel mm
ηe Total mechanical efficiency of the driveline -
ig Gear ratio -
meq Equivalent total mass of the electric vehicle kg
θ Road gradient ◦

vrel Relative velocity between the host and preceding vehicle m/s
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Dsa f e Safe inter-distance between the host and preceding vehicle m
Dactual Actual inter-distance between the host and preceding vehicle m
∆d Error of inter-vehicle distance m
VTH Variable time headway -
apre Acceleration of the preceding vehicle m/s2

ahost Acceleration of the host vehicle m/s2

Kg System gain -
Tg Time constant s
ahost,actual Actual acceleration of the host vehicle m/s2

ahost,desired Optimal desired acceleration of the host vehicle m/s2

∇i, }i Start time of the ith red and green interval of the upcoming traffic signal light s
vre f Reference velocity optimized in signal anticipation scenario m/s
Eins Instantaneous energy consumption per 0.1 s W·0.1 s
j Jerk m/s3

JE Performance index of the energy economy -
wu Weight coefficient of desired acceleration -
wdu Weight coefficient of the desired jerk -
dsa f e Real-time safe distance m
tTTC Time-to-collision s
JS Performance index of driving safety -
w∆d Weight coefficient of the tracking distance error -
wvrel Weight coefficient of the relative velocity -
∆dmin, ∆dmax The lower and upper boundary of inter-distance error m
vrel,min, vrel,max The extreme value of relative velocity m/s
SDE, SVE Driver’s sensitivity to the ∆d and vrel -
adesired,min, adesired,max The desired acceleration boundary condition m/s2

jdesire,min, jdesire,max The desired jerk boundary condition m/s3

JC Performance index of driving comfortability -
wa Weight coefficient of the host vehicle longitudinal acceleration -
Jcar− f ollowing System cost function under car-following scenario -
Jsignal anticipation System cost function under signal anticipation scenario -
u Control input m/s2

T Prediction horizon s
wEins Weight for the energy consumption under signal anticipation scenario -
wve Weight for tracking the reference velocity under signal anticipation -
ε Slack factor -
SQP Sequential quadratic programming -
wv Weight for tracking the desired velocity under free driving scenario -
wu Weight for acceleration command to avoid hard input because of tracking the desired velocity -
J f ree driving System cost function under free driving scenario -
ASCD Automatic speed control drive -

Appendix A

To validate the accuracy of the proposed ANN-based IECM, a multivariate fitting
energy consumption model for electric vehicles (EV-MFECM) from reference [40] is com-
pared to show the estimation improvement of ANN-based IECM. EV-MFECM, based on
the method of “steady-state estimation + transient correction”, consists of two modules.

From Table A1, the comparative result shows that, under a standard Highway Drive
Cycle, both the MSE and MAPI values of proposed ANN-based IECM are lower than the
corresponding values of baseline EV-MFECM, which indicates that estimation performance
of ANN-based IECM is superior to the one based on statistical multivariate regression
method. From Figure A1, it is easy to see that both ANN-based IECM and EV-MFECM
are capable of reflecting the trend of energy consumption under the Highway Drive
Cycle. However, it is evident that the proposed ANN-based IECM fits better and is more
accurate than the baseline. The error of ANN-based IECM is closer to zero without any
spikes. Besides, the EV-MFECM contains the polynomial combination, which makes it
too complicated to be deployed in real applications. On the contrary, ANN-based IECM
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features an explicit model structure and is easy to encode into the hardware, making it
more suitable for vehicle eco-driving optimization systems.

Table A1. The comparative validation result of ANN-ICEM.

MAPE (%) MSE (W·0.1 s)

ANN-based IECM 1.25 1.4231× 106

EV-MFECM 3.20 1.6850× 106
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