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Abstract: This study investigated the optimization of the bioconcrete engineering properties and
durability as a response of the calcium lactate (CL) content (0.22–2.18 g/L) and curing duration
(7–28 days) using the response surface methodology (RSM). Scanning electronic microscopy (SEM)
was conducted to evaluate the microstructure of calcium precipitated inside the bioconcrete. The
results indicated that the optimal conditions for the engineering properties of concrete and durability
were determined at 2.18 g/L of CL content after 23.4 days. The actual and predicted values of the
compressive strength, splitting tensile strength, flexural strength, and water absorption were 43.51 vs.
43.43, 3.19 vs. 3.19, 6.93 vs. 5.50, and 7.55 vs. 7.55, respectively, with a level of confidence exceeding
95%. The scanning electron microscope (SEM) images and energy-dispersive X-ray spectroscopy
(EDX) proved that the amount of calcium increased with the increase in CL content up to 2.81 g/L at
23.4 days, reducing the pores inside the concrete and making it a great potential option for healing of
concrete structures.

Keywords: B. sphaericus; bioconcrete; engineering properties; calcium lactate; SEM; EDX

1. Introduction

Concrete is still today the most common material in the construction industry due
to its strength and durability. However, the primary drawback of concrete is its low
tensile strength, making it vulnerable to cracks [1,2] and enabling harmful chemicals to
penetrate the concrete causing corrosion of the steel reinforcement [3]. Researchers have
been investigating several approaches to develop new solutions to overcome this weakness
for the past few decades, and one of these solutions is bioconcrete [4]. The term bioconcrete,
as its name indicates, is a combination of biological microorganisms and concrete. It has
the ability to heal itself via the help of bacteria and fungus.

Bacteria have the capability to precipitate calcium carbonate (CaCO3), which plays a
major role in the self-healing of concrete cracks [5,6]. Siddique and Chahal [7] indicated
that the bacteria possess the urease enzyme, which generates carbonate and facilitates
the healing of microcracks. Many researchers have investigated the effect of bacteria
on the concrete mechanical properties [8–12]. Kumari et al. [13] experimentally studied
how the Bacillus conhii affected the cement mortar at cell concentrations of 10, 105, and
107 cell/mL. It was revealed that the highest cell concentration (107 cell/mL) achieved an
increase of 49% in the compressive strength due to both bacteria and the calcium chloride.
Similarly, Ghosh et al. [14] used seven Shewanella sp. concentrations ranging from 10 to
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107 cells/mL and found that a 25% increase in the compressive strength was achieved
with a cell concentration of 105 cells/mL. Furthermore, Andalib et al. [15] investigated five
concentrations of B. megaterium (10 × 105–50 × 105 cells/mL) and found that the highest
improvement in the compressive strength (24%) occurred at 30 × 105 cell/mL due to the
addition of the calcium lactate which enhanced the compressive strength as well.

Kunal et al. [16] tested the effectiveness of bacteria in improving the splitting tensile
strength of concrete by replacing 10% of the cement content with bacteria. The results
showed that the bacteria improved the splitting tensile strength. However, when the
inclusion of bacteria exceeded 10%, the strength started to decrease, which might be due
to the decrease in the hydration process due to the lower cement content. Priya et al. [17]
added silica and B. sphaericus bacteria to concrete to observe their effect on its strength
and durability. It was found that the splitting tensile strength of concrete increased as the
volume of the bacterial solution increased. However, when the solution volume exceeded
20 mL, the splitting tensile strength declined.

Mondal and Ghosh [18] reported that the presence of B. subtilis reduced the water
absorption of the mortar mix, and the reduction increased with the increase in the cell
concentrations. Chahal et al. [19] found that the addition of Sporoscarcina pasteurii bacteria
reduced the concrete water absorption by four times compared to that of the normal
concrete. Moreover, three types of bacteria (S. pasteurii, B. subtilis, and B. sphaericus) were
employed to improve the permeability resistance of concrete [20]. The three bacteria
reduced the water absorption of the concrete due to the formation of a calcium carbonate
layer on the concrete surface with the lowest improvement found to be in the B. subtilis mix.

The calcium nutrient source also acts as an additional food source for the bacteria
to precipitate calcium carbonate at a higher rate, which helps increase the strength of
concrete and aids in self-healing of microcracks. Calcium lactate is an organic calcium
source which is used in many milk, cheese, and food products. This concentration can
produce a significant amount of calcium carbonate within a short period. Calcium lactate
comes in a liquid form and is added as a supplement in the water used for concrete
mixing. The bacteria liquid culture and calcium lactate are added directly to the concrete
mix. Researchers have used calcium lactate to enhance the compressive strength and the
self-healing of cracks. Vijay and Murmu [21] investigated the effect of calcium lactate
on the compressive strength of microbial concrete using different concentrations of 0.5%,
1.0%, 1.5%, 2.0%, and 2.5% as a partial replacement of cement. The results showed that
an increase of 12% in the compressive strength of the concrete occurred with the 0.5%
concentration. Ducasse-Lapeyrusse et al. [22] experimentally proved that calcium lactate
significantly increased the self-healing kinetics in large cracks over 150 µm.

Alshaibani et al. [23] indicated that the design approach of one-variable-at-a-time is
complex and time-consuming to conduct for each single factor because the optimization
method entails the use of a single parameter for every trial. For the optimum levels to
be obtained, many experimental trials need to be conducted. One of the investigational
techniques is the response surface methodology (RSM), which represents an important
tool that employs mathematical models and statistics for the optimization of parameters
of fermentation processes. Moreover, RSM consists of multivariable polynomial models,
which are used to optimize a response based on a given set of variables. In addition, there
is a wide application of the RSM approach in the optimization of microbial fermentation
processes, as well as in the determination of the effect of various factors. A different
approach used to increase engineered strain’s expression is the application of biostatistics
to optimize culture conditions, with the RSM optimization with central composite design
(CCD) being the widely accepted design.

Therefore, the contribution of this paper is to experimentally investigate the effect
of calcium lactate and curing period on the durability and engineering properties of
bioconcrete. In addition, RSM is used to optimize the performance of bioconcrete through
the optimization of the two variables simultaneously rather than a single variable. In other
words, the best operating parameters required to achieve a high-quality bioconcrete as well
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as the interaction between the independent factors and their role in the improvement of the
bioconcrete properties are investigated. Furthermore, the microstructure of the bioconcrete
is determined to study the effectiveness of the calcium addition in the enhancement of
bioconcrete compared to the concrete control (without calcium).

2. Experimental Work
2.1. Materials

In this study, a grade 30 concrete mixture was produced. The compositions of the mix
were ordinary Portland cement conforming to BS 197-1:2000 [24], natural river sand with
a fineness modulus of 3.63 conforming to BS 882-1992 [25], coarse aggregates with sizes
ranging from 600 to 20 mm, and tap water as the mixing agent.

2.2. Preparation of Ureolytic Bacteria and Calcium Lactate

Ureolytic bacteria used in this study were isolated from fresh urine by subculturing
10 mL of the urine in one liter of sterilized nutrient broth; the medium was incubated at
35 ◦C in an orbital shaker for 10 days at 125 rpm. The bacterial growth was determined
in terms of optical density (OD) by measuring the rate of absorbance at a wavelength of
500 nm. The bacterial isolates were purified using the streak plate technique on nutrient
agar medium; this step was repeated three times to confirm the purity of the bacterial
isolate. The bacterial isolate was identified as Bacillus sphaericus based on the morphological
and biochemical tests. The bacterial culture was kept in a refrigerator to be used in the
concrete mixture.

The calcium lactate was adopted from the study of Xu et al. [26]. Calcium lactate as a
nutrient source was used to support the bacterial growth since concrete does not contain
an organic compound like glucose which is necessary for the bacterial growth. It also acted
as a calcium ion source. It was prepared by dissolving the calcium lactate powder in 1 L of
sterile water and added into the concrete mixture in three concentrations (0.001, 0.005, and
0.01 mol/L). Table 1 summarizes the concentrations of calcium lactate that were used in
the current study.

Table 1. Calcium lactate concentrations.

Chemical Formula of
Calcium Lactate C6H10CaO6

Weight of Calcium Lactate Used
Based on Water (34.2 kg)

Molar mass of calcium lactate 218 g/mol -

0.001 mol/L × 218 g/mol 0.22 g/L 7.5 g

0.005 mol/L × 218 g/mol 1.09 g/L 37.3 g

0.01 mol/L × 218 g/mol 2.18 g/L 74.6 g

2.3. Concrete Mix Design

The mixed design was carried out to achieve a strength of M30 grade at 28 days. Three
types of specimens were prepared. The first specimen contained 5% Bacillus sphaericus (B.
sphaericus) as a water replacement. In total, 5% of the water content was replaced with
B. sphaericus. The second specimens contained B. sphaericus with different contents of
calcium lactate. The mix proportions are presented in Table 2. For the ease of presenting,
the specimens were named as follows: 5% B. sphaericus for the specimens with 5% B.
sphaericus and no calcium lactate; 0.22 B. sphaericus for the specimens with B. sphaericus and
0.22 g/L calcium lactate; 1.09 B. sphaericus for the specimens with B. sphaericus and 1.09
g/L calcium lactate; and 2.18 B. sphaericus for the specimen with B. sphaericus and 2.18 g/L
calcium lactate.
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Table 2. Mix design proportions of control and bacterial specimens.

Batch No. Specimens Cement
(kg)

Fine
Aggregate

(kg)

Coarse
Aggregate

(kg)

Water
(L)

Bacteria in
Nutrient Broth

(L)

Calcium
Lactate

(g)

1 5% B. sphaericus 63 111.6 183 32.5 1.71 -
2 0.22 B. sphaericus 63 111.6 183 32.5 1.71 7.5
3 1.09 B. sphaericus 63 111.6 183 32.5 1.71 37.3
4 2.18 B. sphaericus 63 111.6 183 32.5 1.71 74.6

Half of the total amount of sand was first poured into the mixer, and the coarse
aggregates were then added and mixed. The remaining 50% of sand was then poured
and followed by the cement. Next, water was slowly added, and the whole mixture was
mixed until homogeneity was achieved. After that, the bacteria and calcium lactate were
added into the mix. The mixes were cast in molds and left to harden for 24 h before curing
took place.

2.4. Test Setup and Method
2.4.1. Compressive Strength Test

The test was performed to assess the compressive strength of the specimens at 7, 14,
and 28 days using a universal testing machine. A total of 36 specimens of 150 mm ×
150 mm × 150 mm were prepared and tested under a rate of 14 N/mm2. The test was
conducted in accordance with BS 12390-3:2002 [27].

2.4.2. Splitting Tensile Test

This splitting tensile test was conducted to evaluate the effect of bacteria on the
bonding characteristics of the concrete at 28 days in accordance with BS 12390-6:2009 [28].
Twelve specimens were cast in a 150 mm cylindrical mold with a height of 300 mm. The
load was applied in a continuous manner up to failure using a universal testing machine.

2.4.3. Flexural Strength Test

To measure the bending capacity of the specimens, the flexural test was conducted
at 28 days in accordance with BS EN 12390-5:2009 [29]. Three specimens of 100 mm ×
100 mm × 500 mm were tested for each mix design.

2.4.4. Water Penetration

This test was employed to evaluate the water penetration resistance of the concrete
specimens. First, 12 concrete cubes of size 150 mm were cast and cured at 28 days based on
BS EN 12390-8 [30]. The specimens were then tested using an apparatus with a constant air
pressure of 5 KPa for 72 h.

2.5. Microstructure Analysis

Microstructure analysis was conducted using scanning electronic microscopy (SEM)
machine. The machine was equipped with a JEOL-JSM 5600 LV microscope and 6587 EDS
detectors with an accelerating voltage of 15 Kv. For the microstructure analysis, fragments
of about 1–2.5 cm long were collected after the compressive strength test, coated with a gold
sputter platting, and then fixed on the testing plate using a carbon tape. The specimens’
images were magnified from 500× to 1500× magnification based on the obtained clarity of
the image. The images captured for SEM were transferred to an energy dispersive X-ray
(EDX) detector to analyze elements within each concrete matrix.

Furthermore, the chemical composition of the specimens was investigated via con-
ducting an X-ray spectroscopy (XRF). This test requires pellets to be made using the sample
and wax. The samples were crushed, ground, and sieved via a 63 µm sieve. Next, 8 g of the
sample was mixed with 2 g of wax and pressed with a hand-hydraulic pressing machine to
form pellets.
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2.6. Design of Experiment

The response surface methodology (RSM) was employed to study the effects of the
calcium lactate content (x1) and curing period (x2) on the compressive strength (y1), splitting
tensile strength (y2), flexural strength (y3), and water penetration (y4) of bioconcrete. A
total of 12 experiments was determined using the central composite design method. The
response (Y) is the function of the levels of independent variables as shown in Equation (1).

Y = f (x1x2) + ε (1)

where ε is the experimental error.
The quadratic model was also used to predict the responses and describe the relation-

ship between the independent variables.

Y = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix2
i +

k

∑
i<j

βijxixj (2)

where Y is the predicted responses (compressive strength, splitting tensile strength, flexural
strength, and water penetration); β0 is a constant coefficient; βi, βii and βij are the regression
coefficients; and k is the number of the independent variables (CL content and curing
period).

To analyze the obtained data and investigate the first order response surface equations
of the model, RSM was employed. The significance of the two variables on the strength
and durability of bioconcrete was analyzed using the analysis of variance (ANOVA) with
p < 0.05 to check the fit of the linear model, and the adjusted coefficient of determination
(R2

adjusted) was used. Furthermore, a three-dimensional graphical representation was also
used to depict the interactions between the independent variables and their effects on the
responses.

3. Results and Discussion
3.1. Independent Factors Screening

The central composite design with two independent variables was utilized to optimize
the effect of the CL content (x1) and curing period (x2) on the strength and durability of
bioconcrete. A total of twelve runs was conducted as summarized in Table 3. The collected
data were analyzed via the analysis of variance (ANOVA, p < 0.05).

Table 3. Central composite design arrangement and responses of bioconcrete with CL content (0–2.18 g/L) (x1) and curing
period (7–28 days) (x2).

Run x1 x2
y1 y2 y3 y4

Experiment Prediction Experiment Prediction Experiment Prediction Experiment Prediction

1 0 7 26.40 26.60 2.54 2.56 3.74 3.75 5.65 5.54

2 0.22 7 26.60 26.79 2.56 2.53 3.77 3.76 5.29 5.46

3 1.09 7 28.60 27.75 2.58 2.58 3.78 3.79 5.23 5.17

4 2.18 7 28.90 29.36 3.01 3.01 3.82 3.82 4.81 4.81

5 0 14 33.10 32.86 2.63 2.65 5.20 5.22 7.23 7.07

6 0.22 14 33.20 33.17 2.65 2.62 5.24 5.23 6.77 6.97

7 1.09 14 33.90 34.59 2.67 2.68 5.26 5.26 6.69 6.62

8 2.18 14 37.20 36.78 3.12 3.11 5.31 5.31 6.15 6.19

9 0 28 38.20 39.03 2.70 2.72 6.60 6.61 9.40 9.20

10 0.22 28 40.84 39.58 2.72 2.69 6.65 6.63 8.80 9.08

11 1.09 28 41.37 41.93 2.74 2.75 6.67 6.68 8.70 8.60

12 2.18 28 45.41 45.28 3.20 3.20 6.74 6.74 8.00 8.02

(y1) compressive strength; (y2) splitting tensile strength; (y3) flexural strength; and (y4) water penetration.
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3.2. Compressive Strength

Figure 1 depicts the experimental results of the compressive strength test. It shows
the variation in the compressive strength for the different specimens. A slight increase
in the compressive strength with the addition of CL was noticed, and the increase was
proportional to the CL content (x1) and curing period (x2). At 7 days, the increase varied
between 0.75 and 9.5% compared to that of the control. Similarly, at 14 and 28 days, the
compressive strength reached a maximum increment of 12.4% and 13.4%, respectively.
The improvement in the compressive strength was due to the higher amount of calcite
precipitated with the addition of CL. Figure 2 shows the interaction between CL and
curing period.
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Table 4 indicates that the CL content (x1) and curing period (x2) had a positive signifi-
cant linear effect on the compressive strength (y1) due to the precipitation of calcite within
the concrete matrix pores.
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Table 4. Regression coefficients of the CL content and curing period and their significance on the
bioconcrete compressive strength.

Term Coefficient F Value p Value

y1 y1 y1

Model 37.45 116.73 <0.0001

x1 2.07 46.98 0.0005

x2 7.18 500.64 <0.0001

x1x2 0.7859 5.44 0.0585

x2
1 0.1849 0.1451 0.7164

x2
2 −2.38 15.94 0.0072

R2 = 0.9898; R2
adjusted = 0.9813.

The synergistic effects of the investigated factors were based on the ANOVA analysis.
For the compressive strength (y1), the results revealed that both the CL content and curing
period had a positive significant synergic effect with p = 0.0005 and p < 0.0001, respectively.
In addition, the interaction between the CL content and curing period (x1 x2) was positive
but slightly insignificant (p > 0.05) with an 94% significance level. The regression model
for the compressive strength was significant with a confidence level of 95% (p < 0.05),
and a determination coefficient (R2

adjusted) equaled 0.9813, indicating the suitability of the
current model.

The relationship between the response (compressive strength, y1) and the independent
variables (CL content, x1 and curing period, x2) is described as follows:

y1 = 37.45 + 2.07x1 + 7.18x2 + 0.7859x1x2 + 0.1849x2
1 − 2.38x2

2 (3)

The residual plots were examined for the model adequacy checking in Figure 3.
Figure 3a depicts the normal % probability and studentized residuals plot. The residuals
show how well the model satisfies the assumptions of the analysis of variance (ANOVA)
where the studentized residuals measure the number of standard deviations separating the
actual and predicted values. It is clear that neither is a response transformation needed nor
is there any problem with normality.
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Figure 3b shows the studentized residuals and predicted compressive strength. Ac-
cording to Myers and Montgomery [31], when the variance of the response relies on the
mean level of y, the plot exhibits a funnel-shaped pattern. Based on Figure 3b, there is no
transformation needed for the response because the patterned formed is not a funnel.

3.3. Splitting Tensile Strength

Figure 4 shows the experimental results of the splitting tensile strength test which
increased with the addition of CL. It is obvious that the increase in the splitting tensile
strength is proportional to the CL content and curing period. The highest increment was
noticed at 28 days with 2.18 B. sphaericus by 18.5%. A slight increment in tensile strength
was also seen with 0.22 B. sphaericus and 1.09 B. sphaericus by almost 0.74% and 1.48%,
respectively. The interaction of both CL and curing period is depicted in Figure 5.
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Figure 5. Interaction of CL content and curing period and their effects on the splitting tensile strength.

The effects of x1 and x2 on the splitting tensile strength are shown in Figure 5 and
Table 5. The two variables (x1 and x2) showed a significant linear effect on the splitting
tensile strength (y2). As the CL content increased, the splitting tensile strength increased
by almost 0.74–18.5% compared to the splitting tensile strength of the control specimen.
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The strength also increased from 0.74% at 7 days to 18.5% at 28 days. This indicates that
the inclusion of calcium lactate improved the bioconcrete matrix integrity leading to a
significant increase in the tensile strength.

Table 5. Regression coefficients of the CL content and curing period and their effects on the biocon-
crete splitting tensile strength.

Term Coefficient F Value p Value

y2 y2 y2

Model 2.74 175.04 <0.0001

x1 0.2464 773.37 <0.0001

x2 0.0858 82.80 <0.0001

x1x2 0.0061 0.3749 0.5628

x2
1 0.1634 131.22 <0.0001

x2
2 −0.0441 6.33 0.0455

R2 = 0.9932; R2
adjusted = 0.9875.

The data in Table 5 show that the CL content and curing period have a positive
significant synergic effect with p < 0.0001. The model achieved a 95% confidence level
(p < 0.05) and a determination coefficient (R2

adjusted) of 0.9875 indicating the aptness of
the model. Furthermore, the interaction between the CL content and curing period was
positive but insignificant (p > 0.05) with a 44% significance level. This low confidence level
signifies that x1 and x2 interacted positively to enhance the splitting tensile strength of the
bioconcrete, but the interaction was not influential.

The splitting tensile strength (y2) as a function of the CL content (x1) and the curing
period (x2) is obtained as follows:

y2 = 2.74 + 0.2464x1 + 0.0858x2 + 0.0061x1x2 + 0.1634x2
1 − 0.0441x2

2 (4)

The normal % probability and studentized residuals plot for the splitting tensile
strength is shown in Figure 6a. The response transformation looks good and the nor-
mality as well. In addition, the pattern shape of the studentized residuals and predicted
splitting tensile strength is not a funnel indicating that the response does not need any
transformation (Figure 6b).

3.4. Flexural Strength

The flexural strength for the specimens was measured at 7, 14, and 28 days. Figure 7
shows that the flexural strength was directly proportional to the CL content and curing
period. In comparison to the flexural strength of the control specimen, the improvements
in the flexural strength of the 0.22 B. sphaericus, 1.09 B. sphaericus, and 2.18 B. sphaericus
specimens were higher by 0.76%, 1.1%, and 2.2%, respectively. The same increments were
observed for the curing period. The lowest increment (0.76%) was achieved at 7 days, while
the highest (2.2%) was obtained at 28 days. The interaction of both CL and curing period is
depicted in Figure 8. The effects of x1 and x2 on the flexural strength of the bioconcrete are
presented in Figure 8 and Table 6.

The ANOVA analysis (Table 6) shows that the CL content and curing period had a
positive significant effect with p = 0.0002 and p < 0.0001, respectively. The regression model
was also significant with a 95% confidence and a determination coefficient (R2

adjusted) of
0.9998. In addition, the interaction between x1 and x2 was slightly insignificant (p > 0.05)
with 88% significance level.

The flexural strength as a function of x1 and x2 is obtained by:

y3 = 5.81 + 0.0441x1 + 1.45x2 + 0.0115x1x2 − 0.002x2
1 − 0.5766x2

2 (5)
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The normality of the flexural strength had no issues as shown in Figure 9a as well as
the transformation. Like the splitting tensile strength, the predicted flexural strength did
not require any transformation since no funnel-shaped pattern was formed (Figure 9b).
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3.5. Water Penetration

Figure 10 shows that the water absorption capability of the bioconcrete decreased as
the CL content increased from 0.22 to 2.18 g/L. The reduction varied between 6.5% and
15% compared to the control specimen water absorption. On the other hand, the water
penetration increased as the bioconcrete curing period went higher. The penetration depth
ranged from 5.65 mm at 7 days to 9.4 mm at 28 days, and the difference was about 60%.
The interaction of both CL and curing period is depicted in Figure 11.

Table 7 clearly shows that both the CL content and curing period had a positive
significant synergic effect on the water penetration of the bioconcrete with p < 0.05. The
model achieved a significant confidence level of 95% and an R2

adjusted of 0.9998. In addition,
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there existed a positive interaction between x1 and x2 with an interaction significance
of 75.4%.
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Figure 9. (a) Normal % probability and studentized residual plot for flexural strength, (b) the studentized residuals and
predicted response plot for flexural strength.
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Table 6. Regression coefficients of the CL content and curing period and their effects on the biocon-
crete flexural strength.

Term Coefficient F Value p Value

y3 y3 y3

Model 5.81 12,833.29 <0.0001

x1 0.0441 59.45 0.0002

x2 1.45 56,490.15 <0.0001

x1x2 0.0115 3.23 0.1222

x2
1 −0.0020 0.0453 0.8385

x2
2 −0.5766 2595.72 <0.0001

R2 = 0.9999; R2
adjusted = 0.9998.
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Table 7. Regression coefficients of the CL content and curing period and their effects on the biocon-
crete water penetration.

Term Coefficient F Value p Value

y4 y4 y4

Model 7.18 126.06 <0.0001

x1 −0.4288 35.23 0.0010

x2 1.71 492.54 <0.0001

x1x2 −0.1037 1.65 0.2462

x2
1 0.0079 0.0046 0.9484

x2
2 −0.3431 5.78 0.0531

R2 = 0.9999; R2
adjusted = 0.9998.

To find the relationship between the bioconcrete water penetration (y4), the CL content
(x1), and the curing period (x2), Equation (6) was used:

y4 = 7.18 − 0.4288x1 + 1.71x2 − 0.1037x1x2 + 0.0079x2
1 − 0.3431x2

2 (6)

The normal % probability and studentized residuals plot for the splitting tensile
strength is shown in Figure 12a. Both response transformation and normality did not have
any issues. Figure 12b also indicates that the pattern shape of the studentized residuals
and predicted penetration depth was not a funnel; therefore, the predicted penetration did
not require any transformation.
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Figure 12. (a) Normal % probability and studentized residual plot for water penetration, (b) the studentized residuals and
predicted response plot for water penetration.

3.6. Optimization of Concrete Properties via RSM

In this study, the point optimization technique in RSM was employed to conduct
the optimization process. The condition for the best behavior was adopted based on the
experimental results that were obtained from the laboratory and analyzed by RSM. The
optimal behavior of the concrete was recorded at 2.18 g/L CL and 23.42 days of curing. The
observed and predicted values in compressive strength (y1), splitting tensile strength (y2),
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flexural strength (y3), and water penetration (y4) were 43.51 MPa vs. 43.43 MPa, 3.19 MPa
vs. 3.19 MPa, 6.93 MPa vs. 6.50 MPa, and 7.55 mm vs. 7.55, respectively (Table 8).

Table 8. The optimal performance to improve the concrete engineering properties.

Run x1 x2
y1 y2 y3 y4

Actual Predicted Actual Predicted Actual Predicted Actual Predicted

1 2.18 23.42 43.51 43.43 3.19 3.19 6.93 6.50 7.55 7.55

3.7. SEM Analysis

The hardened concrete morphology was analyzed in this study via the scanning
electronic microscopy image (SEM) combined with EDX for the four specimens (Figure 13).
The main purpose of this analysis was to study how much calcium was precipitated inside
the bioconcrete at 28 days with the addition of different proportions of CL.
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The results showed that the capability of bioconcrete to precipitate calcium increased
as the amount of CL increased. Compared to the control specimen (0 B. sphaericus), the
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calcium content increased by 5.7%, 10.6%, and 71.6% at 0.22 B. sphaericus, 1.09 B. sphaericus,
and 2.18 B. sphaericus, respectively. This clearly indicates the effectiveness of CL in the
healing process of bioconcrete as it fills up the pores as the calcium carbonate is precipitated.
The increments of calcium mass by addition of calcium lactate were 41.98%, 43.94%, and
68.14% for bioconcrete containing 0.22 B. sphaericus, 1.09 B. sphaericus, and 2.18 B. sphaericus,
respectively. Table 9 summarizes the calcium mass for all specimens at day 28.

Table 9. Ca mass % from SEM/EDX analysis.

Specimen Ca Mass (%)

0 B. sphaericus 39.72
0.22 B. sphaericus 41.98
1.09 B. sphaericus 43.94
2.18 B. sphaericus 68.14

4. Conclusions

The utilization of calcium lactate to enhance the durability and engineering properties
of bioconcrete was successfully optimized. The best operating parameters for improving
the compressive strength was 43.51 vs. 43.43 Mpa; splitting tensile strength was 3.19 vs.
3.19 Mpa; flexural strength was 6.93 vs. 5.50; and water absorption was 7.55 vs. 7.55 mm at a
calcium lactate content of 2.18 g/L and curing period of 23.4 days. These findings indicated
that the compressive strength, the splitting tensile strength, and the flexural strength are
directly proportional to both the CL content and curing duration. This improvement
was due to the higher amount of calcite precipitated with the addition of CL. The water
absorption capability of the bioconcrete decreased as the CL content increased. However, it
increased as the bioconcrete curing period went higher. The SEM/EDX analysis proved
that CL has great potential to be used in the healing process of concrete structures due to
its ability to precipitate huge amounts of calcium.
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