Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe2O3 NPs on Biogas Production from Red Algae Pterocladia capillacea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Red Algae P. capillacea
2.2. Preparation of Unmodified and Modified Sawdust Raw Materials
2.3. Characterization and Measurement
2.4. Inoculum and Substrates Preparation
2.5. Biogas Tests
2.6. Green Synthesis of α-Fe2O3 Nanoparticles
2.7. Kinetics Study and Statistical Analysis
3. Results
3.1. Chemical Compositions of P. capillacea
3.2. Characterization of Green α-Fe2O3 NPs
3.2.1. Fourier Transform Infrared Spectrum (FTIR)
3.2.2. Raman Spectroscopy
3.2.3. X-ray Diffraction (XRD)
3.2.4. Transmission Electron Microscopy (TEM)
3.2.5. Particle Size Analyzer (PSA) and BET Analysis of the Surface Area
3.3. Characterization of Biochar
3.3.1. Fourier Transform Infrared Spectra (FTIR)
3.3.2. X-ray Diffraction (XRD)
3.3.3. Thermal Analysis (TGA)
3.3.4. BET Analysis of the Surface Area
3.4. Impact of Pretreatment on Anaerobic Digestion by Batch
3.5. Kinetic Study
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AD | Anaerobic digestion |
NPs | Nanoparticles |
Fe2O3 NPs | Hematite nanoparticles |
SD | Sawdust |
SD+NH2 | Modified sawdust with NH4OH |
FTIR | Fourier transform infrared |
XRD | X-ray diffractograms |
TEM | Transmission electron microscopy |
EDX | Energy dispersive X-ray spectroscopy |
BET | Brunauer–Emmett–Teller |
TGA | Thermo gravimetric analysis |
TS | Total solids |
Rm | The maximum biogas production rate |
VS | Volatile solids |
The lag phase time (days) |
References
- Baena-Moreno, F.M.; Malico, I.; Marques, I.P. Promoting Sustainability: Wastewater Treatment Plants as a Source of Biomethane in Regions Far from a High-Pressure Grid. A Real Portuguese Case Study. Sustainability 2021, 13, 8933. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Huisingh, D.; Morone, P. A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond? Renew. Energy 2021, 163, 1660–1672. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Morone, P. A new socio-economic indicator to measure the performance of bioeconomy sectors in Europe. Ecol. Econ. 2020, 176, 106724. [Google Scholar] [CrossRef]
- Pedišius, N.; Praspaliauskas, M.; Pedišius, J.; Dzenajavičienė, E.F. Analysis of Wood Chip Characteristics for Energy Production in Lithuania. Energies 2021, 14, 3931. [Google Scholar] [CrossRef]
- Romero-Güiza, M.; Vila, J.; Mata-Alvarez, J.; Chimenos, J.; Astals, S. The role of additives on anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2016, 58, 1486–1499. [Google Scholar] [CrossRef]
- Wambugu, C.W.; Rene, E.R.; van de Vossenberg, J.; Dupont, C.; van Hullebusch, E.D. Role of biochar in anaerobic digestion based biorefinery for food waste. Front. Energy Res. 2019, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- El Nemr, A.; El Sikaily, A.; Khaled, A.; Abdelwahab, O. Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arab. J. Chem. 2015, 8, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Hassaan, M.A.; Hosny, S.; ElKatory, M.R.; Ali, R.M.; Rangreez, T.A.; El Nemr, A. Dual action of both green and chemically synthesized zinc oxide nanoparticles: Antibacterial activity and removal of Congo red dye. Desalin. Water Treat. 2021, 218, 423–435. [Google Scholar] [CrossRef]
- Ali, R.M.; Hassaan, M.A.; Elkatory, M.R. Towards Potential Removal of Malachite Green from Wastewater: Adsorption Process Optimization and Prediction. In Materials Science Forum; Trans. Tech. Publications Ltd.: Stafa-Zurich, Switzerland, 2020; Volume 1008, pp. 213–221. [Google Scholar]
- Zhang, L.; Zhang, J.; Loh, K.-C. Activated carbon enhanced anaerobic digestion of food waste-Laboratory-scale and Pilot-scale operation. Waste Manag. 2018, 75, 270–279. [Google Scholar] [CrossRef]
- Maneerung, T.; Liew, J.; Dai, Y.; Kawi, S.; Chong, C.; Wang, C.-H. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresour. Technol. 2016, 200, 350–359. [Google Scholar] [CrossRef]
- Hassaan, M.A.; El Nemr, A.; Elkatory, M.R.; Eleryan, A.; Ragab, S.; El Sikaily, A.; Pantaleo, A. Enhancement of Biogas Production from Macroalgae Ulva latuca via Ozonation Pretreatment. Energies 2021, 14, 1703. [Google Scholar] [CrossRef]
- Skouteris, G.; Saroj, D.; Melidis, P.; Hai, F.I.; Ouki, S. The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation—A critical review. Bioresour. Technol. 2015, 185, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, P.; Ortiz, F.G. Techno-economic assessment of biogas plant upgrading by adsorption of hydrogen sulfide on treated sewage–sludge. Energy Convers. Manag. 2016, 126, 411–420. [Google Scholar] [CrossRef]
- Cha, J.S.; Park, S.H.; Jung, S.-C.; Ryu, C.; Jeon, J.-K.; Shin, M.-C. Production and utilization of biochar: A review. J. Ind. Eng. Chem. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- Man, Y.; Wang, B.; Wang, J.; Slaný, M.; Yan, H.; Li, P.; El-Naggar, A.; Shaheen, S.M.; Rinklebe, J.; Feng, X. Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environ. Int. 2021, 153, 106527. [Google Scholar] [CrossRef]
- Meyer-Kohlstock, D.; Haupt, T.; Heldt, E.; Heldt, N.; Kraft, E. Biochar as additive in biogas-production from bio-waste. Energies 2016, 9, 247. [Google Scholar] [CrossRef]
- Sunyoto, N.M.S.; Zhu, M.; Zhang, Z.; Zhang, D. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresour. Technol. 2016, 219, 29–36. [Google Scholar] [CrossRef]
- Wang, D.; Ai, J.; Shen, F.; Yang, G.; Zhang, Y.; Deng, S.; Zhang, J.; Zeng, Y.; Song, C. Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost. Bioresour. Technol. 2017, 227, 286–296. [Google Scholar] [CrossRef]
- Lü, F.; Luo, C.; Shao, L.; He, P. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res. 2016, 90, 34–43. [Google Scholar] [CrossRef]
- Karri, S.; Sierra-Alvarez, R.; Field, J.A. Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge. Biotechnol. Bioeng. 2005, 92, 810–819. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Jing, Y.W.; Quan, X.; Liu, Y.W.; Onu, P. A built-in zero valent iron anaerobic reactor to enhance treatment of azo dyewastewater. Water Sci. Technol. 2011, 63, 741–746. [Google Scholar] [CrossRef]
- Liu, Y.W.; Zhang, Y.B.; Quan, X.; Chen, S.; Zhao, H.M. Applying an electric field in a built-in zero valent iron-anaerobic reactor for enhancement of sludge granulation. Water Res. 2011, 45, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Jing, Y.W.; Zhang, J.X.; Sun, L.F.; Quan, X. Performance of a ZVIUASB reactor for azo dye wastewater treatment. J. Chem. Technol. Biotechnol. 2011, 86, 199–204. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Quan, X.; Liu, Y.; An, X.; Chen, S.; Zhao, H. Bioaugmentation and functional partitioning in a zero valent ironanaerobic reactor for sulfate-containing wastewater treatment. Chem. Eng. J. 2011, 174, 159–165. [Google Scholar] [CrossRef]
- Farghali, M.; Andriamanohiarisoamanana, F.J.; Ahmed, M.M.; Kotb, S.; Yamashiro, T.; Iwasaki, M.; Umetsu, K. Impacts of iron oxide and titanium dioxide nanoparticles on biogas production: Hydrogen sulfide mitigation, process stability, and prospective challenges. J. Environ. Manag. 2019, 240, 160–167. [Google Scholar] [CrossRef]
- Hassanein, A.; Lansing, S.; Tikekar, R. Impact of metal nanoparticles on biogas production from poultry litter. Bioresour. Technol. 2019, 275, 200–206. [Google Scholar] [CrossRef]
- Yu, B.; Huang, X.; Zhang, D.; Lou, Z.; Yuan, H.; Zhu, N. Response of sludge fermentation liquid and microbial community to nano zero-valent iron exposure in a mesophilic anaerobic digestion system. RSC Adv. 2016, 6, 24236–24244. [Google Scholar] [CrossRef]
- Su, L.; Shi, X.; Guo, G.; Zhao, A.; Zhao, Y. Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): Abatement of odor and improvement of biogas production. J. Mater. Cycles Waste Manag. 2013, 15, 461–468. [Google Scholar] [CrossRef]
- Deng, Y.; Li, X.; Ni, F.; Liu, Q.; Yang, Y.; Wang, M.; Ao, T.; Chen, W. Synthesis of Magnesium Modified Biochar for Removing Copper, Lead and Cadmium in Single and Binary Systems from Aqueous Solutions: Adsorption Mechanism. Water 2021, 13, 599. [Google Scholar] [CrossRef]
- Mandal, S.; Pu, S.; Shangguan, L.; Liu, S.; Ma, H.; Adhikari, S.; Hou, D. Synergistic construction of green tea biochar supported nZVI for immobilization of lead in soil: A mechanistic investigation. Environ. Int. 2020, 135, 105374. [Google Scholar] [CrossRef]
- Saitİzgi, M.; Saka, C.; Baytar, O.; Saraçoğlu, G.; Şahin, Ö. Preparation and characterization of activated carbon from microwave and conventional heated almond shells using phosphoric acid activation. Anal. Lett. 2018, 52, 772–789. [Google Scholar] [CrossRef]
- Guo, J.; Song, Y.; Ji, X.; Ji, L.; Cai, L.; Wang, Y.; Zhang, H.; Song, W. Preparation and characterization of nanoporous activated carbon derived from prawn shell and its application for removal of heavy metal ions. Materials 2019, 12, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Nemr, M.A.; Abdelmonem, N.M.; Ismail, I.M.A.; Ragab, S.; El Nemr, A. The efficient removal of the hazardous Azo Dye Acid Orange 7 from water using modified biochar from Pea peels. Desalin. Water Treat. 2020, 203, 327–355. [Google Scholar] [CrossRef]
- El-Nemr, M.A.; Abdelmonem, N.M.; Ismail, I.M.A.; Ragab, S.; El Nemr, A. Removal of Acid Yellow 11 Dye using novel modified biochar derived from Watermelon Peels. Desalin. Water Treat. 2020, 203, 403–431. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Pantaleo, A.; Tedone, L.; Elkatory, M.R.; Ali, R.M.; El Nemr, A.; Mastro, G.D. Enhancement of biogas produc-tion via green ZnO nanoparticles: Experimental results of selected herbaceous crops. Chem. Eng. Commun. 2019, 208, 1–14. [Google Scholar]
- Amirante, R.; Demastro, G.; Distaso, E.; Hassaan, M.A.; Mormando, A.; Pantaleo, A.M.; Tamburrano, P.; Tedone, L.; Clodo-veo, M.L. Effects of ultrasound and green synthesis ZnO nanoparticles on biogas production from Olive Pomace. Energy Procedia 2018, 148, 940–947. [Google Scholar]
- Hassaan, M.A.; Pantaleo, A.; Santoro, F.; Elkatory, M.R.; De Mastro, G.; El Sikaily, A.; Ragab, S.; El Nemr, A. Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw. Energies 2020, 13, 5001. [Google Scholar] [CrossRef]
- Remigi, E.U.; Buckley, C.A. Co-Digestion of High Strength/Toxic Organic Effluents in Anaerobic Digesters at Wastewater Treatment Works; Water Research Commission: Pretoria, South Africa, 2016. [Google Scholar]
- Salah, H.; Elkatory, M.R.; Fattah, M.A. Novel zinc-polymer complex with antioxidant activity for industrial lubricating oil. Fuel 2021, 305, 121536. [Google Scholar] [CrossRef]
- Ahmmad, B.; Leonard, K.; Islam, M.S.; Kurawaki, J.; Muruganandham, M.; Ohkubo, T.; Kuroda, Y. Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Adv. Powder Technol. 2013, 24, 160–167. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Jeon, B.-H.; Jeung, J.H.; Rene, E.R.; Banu, J.R.; Ravindran, B.; Vu, C.M.; Ngo, H.H.; Guo, W.; Chang, S.W. Thermophilic anaerobic digestion of model organic wastes: Evaluation of biomethane production and multiple kinetic models analysis. Bioresour. Technol. 2019, 280, 269–276. [Google Scholar] [CrossRef]
- Kafle, G.K.; Chen, L. Comparison on Batch Anaerobic Digestion of Five Different Livestock Manures and Prediction of Bio-chemical Methane Potential (BMP) Using Different Statistical Models. Waste Manag. 2016, 48, 492–502. [Google Scholar] [CrossRef] [Green Version]
- Donoso-Bravo, A.; Pérez-Elvira, S.; Fdz-Polanco, F. Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chem. Eng. J. 2010, 160, 607–614. [Google Scholar] [CrossRef]
- Pang, Y.Z.; Liu, Y.P.; Li, X.J.; Wang, K.S.; Yuan, H.R. Improving Biodegradability and Biogas Production of Corn Stover through Sodium Hydroxide Solid State Pretreatment. Energy Fuels 2008, 22, 2761–2766. [Google Scholar] [CrossRef]
- Lassoued, A.; Dkhil, B.; Gadri, A.; Ammar, S. Control of the shape and size of iron oxide (a-Fe2O3) nanoparticles synthesizedthrough the chemical precipitation method. Results Phys. 2017, 7, 3007–3015. [Google Scholar] [CrossRef]
- de Jesús Ruíz-Baltazar, Á.; Reyes-López, S.Y.; de Lourdes Mondragón-Sánchez, M.; Robles-Cortés, A.I.; Pérez, R. Eco-friendly synthesis of Fe3O4nanoparticles: Evaluation of their catalytic activity in methylene blue degradation by kinetic adsorption models. Results Phys. 2019, 12, 989–995. [Google Scholar] [CrossRef]
- Morel, M.; Martínez, F.; Mosquera, E. Synthesis and Characterization of magnetite nanoparticles from mineral magnetite. J. Magn. Magn. Mater. 2013, 343, 76–81. [Google Scholar] [CrossRef]
- Tadic, M.; Panjan, M.; Damnjanovic, V.; Milosevic, I. Magnetic properties of hematite (a-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Appl. Surf. Sci. 2014, 320, 183–187. [Google Scholar] [CrossRef]
- Soliman, E.A.; Elkatory, M.R.; Hashem, A.I.; Ibrahim, H.S. Synthesis and performance of maleic anhydride copolymers with alkyl linoleate or tetra-esters as pour point depressants for waxy crude oil. Fuel 2018, 211, 535–547. [Google Scholar] [CrossRef]
- Ali, R.M.; Elkatory, M.R.; Hamad, H.A. Highly active and stable magnetically recyclable CuFe2O4 as a heterogenous catalyst for efficient conversion of waste frying oil to biodiesel. Fuel 2020, 268, 117297. [Google Scholar] [CrossRef]
- Ramesh, R.; Ashok, K.; Bhalero, G.M.; Ponnusamy, S.; Muthamizhchelvan, C. Synthesis and properties of a-Fe2O3 nanorods. Cryst. Res. Technol. 2010, 45, 965–968. [Google Scholar] [CrossRef]
- Chamritski, I.; Burns, G. Infrared-and Raman-active phonons of magnetite, maghemite, and hematite: A computer simulation and spectroscopic study. J. Phys. Chem. B 2005, 109, 4965–4968. [Google Scholar] [CrossRef]
- Jiang, X.C.; Yu, A.B.; Yang, W.R.; Ding, Y.; Xu, C.X.; Lam, S. Synthesis and growth of hematite nanodiscs through a facile hydrothermal approach. J. Nanopart. Res. 2010, 12, 877–893. [Google Scholar] [CrossRef]
- Slaný, M.; Jankovič, Ľ.; Madejová, J. Structural characterization of organo-montmorillonites prepared from a series of primary alkylamines salts: Mid-IR and near-IR study. Appl. Clay Sci. 2019, 176, 11–20. [Google Scholar] [CrossRef]
- Sheng, K.; Chen, X.; Pan, J.; Kloss, R.; Wei, Y.; Ying, Y. Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion. Biosyst. Eng. 2013, 116, 205–212. [Google Scholar] [CrossRef]
- Dioha, I.J.; Ikeme, C.H.; Nafi’u, T.; Soba, N.I.; Yusuf, M.B.S. Effect of carbon to nitrogen ratio on biogas production. Int. Res. J. Nat. Sci. 2013, 1, 1–10. [Google Scholar]
- Abdelwahab, T.A.M.; Mohanty, M.K.; Sahoo, P.K.; Behera, D. Impact of iron nanoparticles on biogas production and effluent chemical composition from anaerobic digestion of cattle manure. Biomass Convers. Biorefin. 2020, 1–13. [Google Scholar] [CrossRef]
- Abdelsalam, E.; Samer, M.; Attia, Y.A.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y. Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy 2017, 120, 842–853. [Google Scholar] [CrossRef]
- Deepanraj, B.; Sivasubramanian, V.; Jayaraj, S. Experimental and Kinetic Study on Anaerobic Digestion of Food Waste: The Effect of Total Solids and PH. J. Renew. Sustain. Energy 2015, 7, 063104. [Google Scholar] [CrossRef]
- Mao, C.; Wang, X.; Xi, J.; Feng, Y.; Ren, G. Linkage of Kinetic Parameters with Process Parameters and Operational Conditions during Anaerobic Digestion. Energy 2017, 135, 352–360. [Google Scholar] [CrossRef]
Experiment | Pretreatment | Incubation Temp. (°C) | I/S Ratio |
---|---|---|---|
Batch 1 | Manure + algae untreated | 37 ± 1 | 20:1.5 |
Batch 2 | Manure + Algae (Fe 10 mg/L) | 37 ± 1 | 20:1.5 |
Batch 3 | Manure + Algae (SD 50 mg/L) | 37 ± 1 | 20:1.5 |
Batch 4 | Manure + Algae (SD 100 mg/L) | 37 ± 1 | 20:1.5 |
Batch 5 | Manure + Algae (SD 150 mg/L) | 37 ± 1 | 20:1.5 |
Batch 6 | Manure + Algae (SD 50 mg/L + Fe 10 mg/L) | 37 ± 1 | 20:1.5 |
Batch 7 | Manure + Algae (SD 100 mg/L + Fe 10 mg/L) | 37 ± 1 | 20:1.5 |
Batch 8 | Manure + Algae (SD 150 mg/L + Fe 10 mg/L) | 37 ± 1 | 20:1.5 |
Batch 9 | Manure + Algae (SD +NH2 50 mg/L) | 37 ± 1 | 20:1.5 |
Batch 10 | Manure + Algae (SD + NH2 100 mg/L) | 37 ± 1 | 20:1.5 |
Batch 11 | Manure + Algae (SD + NH2 150 mg/L) | 37 ± 1 | 20:1.5 |
Batch 12 | Manure + Algae (SD + NH2 50 mg/L + Fe 10 mg/L) | 37 ± 1 | 20:1.5 |
Batch 13 | Manure + Algae (SD + NH2 100 mg/L + Fe 10 mg/L) | 37 ± 1 | 20:1.5 |
Batch 14 | Manure + Algae (SD + NH2 150 mg/L + Fe 10 mg/L) | 37 ± 1 | 20:1.5 |
Proximate Tests | P. capillacea | Manure |
---|---|---|
DM% | 83.97 | 80.67 |
Ash% | 16.01 | 15.33 |
VS% | 83.99 | 84.66 |
C% | 40.02 | 48.95 |
N% | 6.79 | 4.16 |
C/N | 5.89 | 11.76 |
Sample | BET Surface Area (m2/g) | Mean Pore Diameter (nm) | Total Pore Volume (cm3/g) |
---|---|---|---|
Green α-Fe2O3 NPs | 29.29 | 11.92 | 0.087 |
Sample | BET Surface Area (m2/g) | Mean Pore Diameter (nm) | Total Pore Volume (cm3/g) |
---|---|---|---|
SD | 2.913 | 16.874 | 0.01220 |
SD-NH2 | 3.190 | 8.370 | 0.00668 |
SD | |||||
---|---|---|---|---|---|
R2 | Predicted P (ml/g VS) | Differences (%) | Rmax mL/g VS.day | λ (Day) | |
untreated | 0.991 | 142.31 | 2.69 | 10.94 | 0.19 |
50 SD | 0.993 | 180.94 | 0.879 | 13.32 | 0.10 |
100 SD | 0.996 | 203.95 | 1.86 | 12.16 | 0.16 |
150 SD | 0.989 | 168.92 | 0.822 | 11.60 | 0.19 |
Modified SD-NH2 | |||||
untreated | 0.991 | 142.31 | 2.69 | 10.94 | 0.19 |
50 SD-NH2 | 0.975 | 220.78 | 1.62 | 27.34 | 0.11 |
100 SD-NH2 | 0.691 | 52.12 | 29.16 | 8.40 | 0.058 |
150 SD-NH2 * | 0.91 | 51.41 | 0.804 | 891 | 0.0036 |
α-Fe2O3 (10 mg/L) | |||||
untreated | 0.991 | 142.31 | 2.69 | 10.94 | 0.19 |
Fe 10 mg/L | 0.989 | 162.73 | 3.06 | 12.76 | 0.16 |
CombinedSD-α-Fe2O3(10 mg/L) | |||||
untreated | 0.991 | 142.31 | 2.69 | 10.94 | 0.19 |
50 SD + 10 mg/L | 0.995 | 86.91 | 0.025 | 11.11 | 0.14 |
100 SD + 10 mg/L | 0.995 | 213.07 | 3.32 | 9.81 | 0.17 |
150 SD + 10 mg/L | 0.997 | 113.92 | 0.763 | 12.06 | 0.14 |
Combined Modified SD-NH2—α-Fe2O3(10 mg/L) | |||||
untreated | 0.991 | 142.31 | 2.69 | 10.94 | 0.19 |
50 SD-NH2 + 10 mg/L * | 0.92 | 133.31 | 4.55 | 753 | 0.0044 |
100 SD-NH2 + 10 mg/L | 0.955 | 24.50 | 2.05 | 4.92 | 0.17 |
150 SD-NH2 + 10 mg/L * | −10 | 3.3 | 63 | 8.85 | 0 |
SD | |||||
---|---|---|---|---|---|
R2 | Predicted P (ml/g VS) | Differences (%) | Rmax mL/g VS.day | λ (Day) | |
untreated | 0.997 | 139.50 | 1.03 | 13.22 | 0.28 |
50 SD | 0.984 | 169.02 | 3.07 | 16.49 | 0.17 |
100 SD | 0.991 | 196.99 | 4.30 | 14.53 | 0.25 |
150 SD | 0.983 | 164.34 | 3.10 | 13.68 | 0.29 |
Modified SD-NH2 | |||||
untreated | 0.997 | 139.50 | 1.03 | 13.22 | 0.28 |
50 SD-NH2 | 0.983 | 183.28 | 0.78 | 28.75 | 0.21 |
100 SD-NH2 | 0.677 | 300.46 | 19.09 | 86.68 | 0.03 |
150 SD-NH2 * | 0.916 | 51.97 | 1.55 | 136.01 | 0.08 |
α-Fe2O3 (10 mg/L) | |||||
untreated | 0.997 | 139.50 | 1.03 | 13.22 | 0.28 |
Fe 10 mg/L | 0.995 | 157.82 | 0.983 | 15.26 | 0.25 |
CombinedSD-α-Fe2O3(10 mg/L) | |||||
untreated | 0.997 | 139.50 | 1.03 | 13.22 | 0.28 |
50 SD + 10 mg/L | 0.995 | 84.00 | 2.05 | 13.88 | 0.22 |
100 SD + 10 mg/L | 0.986 | 207.57 | 5.30 | 12.22 | 0.25 |
150 SD + 10 mg/L | 0.988 | 109.36 | 3.16 | 14.77 | 0.22 |
Combined Modified SD-NH2—α-Fe2O3(10 mg/L) | |||||
untreated | 0.997 | 139.50 | 1.03 | 13.22 | 0.28 |
50 SD-NH2 + 10 mg/L * | 0.925 | 134.30 | 5.33 | 121.29 | 0.10 |
100 SD-NH2 + 10 mg/L | 0.959 | 24.25 | 1.00 | 7.48 | 0.24 |
150 SD-NH2 + 10 mg/L * | −0.07 | 4.5 | 50 | - | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassaan, M.A.; El Nemr, A.; Elkatory, M.R.; Ragab, S.; El-Nemr, M.A.; Pantaleo, A. Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe2O3 NPs on Biogas Production from Red Algae Pterocladia capillacea. Sustainability 2021, 13, 9275. https://doi.org/10.3390/su13169275
Hassaan MA, El Nemr A, Elkatory MR, Ragab S, El-Nemr MA, Pantaleo A. Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe2O3 NPs on Biogas Production from Red Algae Pterocladia capillacea. Sustainability. 2021; 13(16):9275. https://doi.org/10.3390/su13169275
Chicago/Turabian StyleHassaan, Mohamed A., Ahmed El Nemr, Marwa R. Elkatory, Safaa Ragab, Mohamed A. El-Nemr, and Antonio Pantaleo. 2021. "Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe2O3 NPs on Biogas Production from Red Algae Pterocladia capillacea" Sustainability 13, no. 16: 9275. https://doi.org/10.3390/su13169275
APA StyleHassaan, M. A., El Nemr, A., Elkatory, M. R., Ragab, S., El-Nemr, M. A., & Pantaleo, A. (2021). Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe2O3 NPs on Biogas Production from Red Algae Pterocladia capillacea. Sustainability, 13(16), 9275. https://doi.org/10.3390/su13169275