
sustainability

Article

Green Scheduling of Identical Parallel Machines with Release
Date, Delivery Time and No-Idle Machine Constraints

Lotfi Hidri 1,*, Ali Alqahtani 1, Achraf Gazdar 2 and Belgacem Ben Youssef 3

����������
�������

Citation: Hidri, L.; Alqahtani, A.;

Gazdar, A.; Ben Youssef, B. Green

Scheduling of Identical Parallel

Machines with Release Date, Delivery

Time and No-Idle Machine Constraints.

Sustainability 2021, 13, 9277. https://

doi.org/10.3390/su13169277

Academic Editors: Lin Li, Karl

R. Haapala, Sophie I. Hallstedt and

Yiran (Emma) Yang

Received: 25 April 2021

Accepted: 5 August 2021

Published: 18 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Industrial Engineering Department, College of Engineering, King Saud University,
P.O. Box 800, Riyadh 11421, Saudi Arabia; 439106478@student.ksu.edu.sa

2 Software Engineering Department, College of Computer and Information Sciences, King Saud University,
P.O. Box 51178, Riyadh 11543, Saudi Arabia; agazdar@ksu.edu.sa

3 Computer Engineering Department, College of Computer and Information Sciences, King Saud University,
P.O. Box 51178, Riyadh 11543, Saudi Arabia; bbenyoussef@ksu.edu.sa

* Correspondence: lhidri@ksu.edu.sa

Abstract: Global warming and climate change are threatening life on earth. These changes are due to
human activities resulting in the emission of greenhouse gases. This is caused by intensive industrial
activities and excessive fuel energy consumption. Recently, the scheduling of production systems
has been judged to be an effective way to reduce energy consumption. This is the field of green
scheduling, which aims to allocate jobs to machines in order to minimize total costs, with a focus
on the sustainable use of energy. Several studies have investigated parallel-machine shops, with a
special focus on reducing and minimizing the total consumed energy. Few studies explicitly include
the idle energy of parallel machines, which is the energy consumed when the machines are idle. In
addition, very few studies have considered the elimination of idle machine times as an efficient way
to reduce the total consumed energy. This is the no-idle machine constraint, which is the green aspect
of the research. In this context, this paper addresses the green parallel-machine scheduling problem,
including release dates, delivery times, and no-idle machines, with the objective of minimizing the
maximum completion time. This problem is of practical interest since it is encountered in several
industry processes, such as the steel and automobile industries. A mixed-integer linear programming
(MILP) model is proposed for use in obtaining exact solutions for small-sized instances. Due to the NP-
hardness of the studied problem, and encouraged by the successful adaptation of metaheuristics for
green scheduling problems, three genetic algorithms (GAs) using three different crossover operators
and a simulated annealing algorithm (SA) were developed for large-sized problems. A new family of
lower bounds is proposed. This was intended for the evaluation of the performance of the proposed
algorithms over the average percent of relative deviation (ARPD). In addition, the green aspect
was evaluated over the percentage of saved energy, while eliminating the idle-machine times. An
extensive experimental study was carried out on a benchmark of test problems with up to 200 jobs
and eight machines. This experimental study showed that one GA variant dominated the other
proposed procedures. Furthermore, the obtained numerical results provide strong evidence that the
proposed GA variant outperformed the existing procedures from the literature. The experimental
study also showed that the adoption of the no-idle machine time constraints made it possible to
reduce the total consumed energy by 29.57%, while the makespan (cost) increased by only 0.12%.

Keywords: green scheduling; parallel machines; release time; delivery time; no-idle time constraint;
metaheuristic; mixed-integer linear program

1. Introduction

In recent decades, impressive climate change has been observed. This is due to green-
house gas emission. These greenhouse gas emissions are strongly related to excessive
industrial activities and fuel energy consumption. According to the US Energy Information

Sustainability 2021, 13, 9277. https://doi.org/10.3390/su13169277 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-6618-3845
https://doi.org/10.3390/su13169277
https://doi.org/10.3390/su13169277
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13169277
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13169277?type=check_update&version=3

Sustainability 2021, 13, 9277 2 of 29

Administration, the consumed energy in the industrial sector is approximately 54% of the to-
tal consumed energy [1]. Consequently, production planners should take into account these
environmental issues when preparing their plans. The common way to struggle against
these environmental concerns is the efficient use of energy in manufacturing industries [2].
Several recent studies have presented scheduling approaches as important tools to improve
energy efficiency and to reduce consumed energy in manufacturing industries [3,4].

It is noteworthy that scheduling is the allocation of resources (processors or machines)
to jobs (or tasks) within a given time window in order to optimize one or several ob-
jectives [5]. The scheduling strategies intended to reduce energy consumption and/or
improve energy efficiency are called “energy-efficient scheduling” or “green scheduling
problems” (GSPs) [2]. Therefore, GSPs involve the allocation of jobs to machines in order
to minimize the total cost (makespan, tardiness, etc.) and consumed energy and/or im-
prove the energy efficiency [1]. Thus, compared to classical scheduling, energy-efficient
scheduling takes into account the environmental issues over saving the consumed energy.

In GSPs, there are two ways to consider the minimization of consumed energy: (1) by
explicitly including the energy in the objective function [2], or (2) by including the energy
consumption as a constraint [6–8]. In this study, the second method is adopted through a
special focus on the machine idle times. Idle machine times are periods when a machine
is ready for processing jobs but there is no job to be treated. During these idle periods,
a machine consumes energy without providing any services. In addition, it has been
observed that machines in service stay in idle mode most of the time and, during this idle
phase, 80% of the total energy is consumed [9]. This energy is referred to as idle energy.
Therefore, energy could be saved by better controlling the idle machine periods [10].

In order to save idle energy, two approaches can be adopted. The first one consists of
shutting down the idle machines. This method is applicable for electric machines where
moving from an idle state to an active state is easy [11]. For other shop environments, such
as for furnaces [12], the first strategy is not applicable. Indeed, for such shops, turning off
the machines and then turning them on again is highly energy consuming. Alternatively,
no-idle machine time constraints can be adopted. These no-idle machine constraints consist
of forcing each machine to process all the assigned jobs continuously, in order to avoid idle
times. In this study, no-idle machine constraints were adopted: this is the energy-saving
solution that comprises the green aspect of the treated problem.

GSPs are important from a practical point of view because they model several real-life
and practical production processes pertaining to environmental issues. In this context, real-
life scheduling problems have been addressed for furnaces used in the steel [12–14] and
automobile industries [15]. These production processes are intended to produce different
steel products. The shop is composed of identical parallel furnaces to avoid a single-furnace
bottleneck. In addition, the pieces requiring processing in the furnaces arrive at the shop on
different dates; these are the release dates. After finishing processing, a produced piece is
still hot and requires a certain time for cooling; this is the delivery time. The objective is to
minimize the maximum completion time (cost) and reduce the furnaces’ high consumption
of energy by eliminating the idle machine times.

Motivated by the abovementioned real-life problems and their practical relevance in
the steel and car industries, this study addresses a green scheduling problem. This problem
is the parallel machine scheduling problem with release dates, delivery times, and no-idle
machines. With no-idle machines, no idle time is permitted between two consecutive
processed jobs in any machine. By preventing machines from having idle times, the total
consumed energy is reduced, and the green requirement is satisfied. This is the green
aspect for this scheduling problem. The objective of this is to determine a feasible schedule
without idle machine times that minimizes the maximum completion time (makespan).
This problem occurs frequently in plants using furnaces with high energy consumption [14].
The objective of this study was to develop methods that allow optimal or near optimal
solutions to be obtained for the studied green scheduling problem.

Sustainability 2021, 13, 9277 3 of 29

GSPs are a subclass of production scheduling problems, which are proven to be NP-
hard in the majority of cases; therefore, this hard complexity also holds for the GSPs. The
procedures solving the hard scheduling problems consist of three categories: the exact
methods, the heuristics, and the metaheuristics (evolutionary: genetic algorithm (GA)
and simulated annealing (SA) [5]. The heuristics and metaheuristics algorithms are called
approximate methods. The two main criteria for selecting the appropriate method to be
used are the computational time and the solution quality. The exact methods are known to
be time consuming whilst they solve the problems. Due to this drawback, these methods
are generally used to solve small-sized problems. The heuristics methods are characterized
by a low computational time and a moderate solution quality. The metaheuristics are
reputed to have an acceptable computational time and a near optimal solution [5,16,17].
According to a recent survey study [2], almost 59% of published research works for GSP
successfully utilize the evolutionary algorithms (metaheuristics) as a solving approach.
Encouraged by these successes, this study investigates the usage of metaheuristics, such as
the GA and SA, in solving the problem in question.

The main contributions of this work are presented as follows: (1) The studying of
the green parallel machine scheduling problem with release dates, delivery times, and
no-idle machines; (2) the development of new efficient lower bounds on the makespan
for the studied problem; (3) the successful adaptation of some metaheuristics, GA and
SA, to efficiently solve the problem in question. These methods outperform the existing
procedures in solving the problem, as shown in the experimental study section.

The remainder of this paper is organized as follows. In Section 2, an exhaustive
literature review is presented. In Section 3, the studied problem is defined, some of its
useful proprieties are proposed, and new lower bounds are developed. A mixed integer
linear formulation is proposed in Section 4. The proposed metaheuristics are the topic
of Section 5. An extensive experimental study, intended to assess the performance of the
proposed procedures, is presented in Section 6. Finally, a conclusion summarizing the main
findings and presenting future research directions is presented.

2. Literature Review

In this section, the classical parallel machine scheduling problem and some of its
important variants are briefly reviewed. Afterwards, the GSP-related literature focusing
on parallel machines is presented. This literature mainly discusses the consideration of
energy consumption, with a focus on idle energy consumption. Finally, the research gap
is deduced.

2.1. Classic Parallel Machine Scheduling Problem

In the classical deterministic identical parallel machine problem, there are a number of
independent jobs to be processed in a range of identical machines. Each job has to be carried
out on one of the machines during a fixed processing time, without preemption. Finding
the schedule that minimizes the maximum completion time (makespan) is considered
as the objective for this problem. For more than 50 years, the study of identical parallel
scheduling has been considered to be one of the most important types of scheduling. Many
parallel scheduling problems have been proved to be NP-hard [18]. Polynomial algorithms
are not, therefore, likely to be used to achieve optimal solutions; thus, several heuristics and
metaheuristics were investigated, such as in [19–21]. To determine near optimal solution
for these problems, many polynomial-time algorithms have been suggested. The longest
processing time (LPT) rule was proposed in [22] and has received significant attention. It
solves single-criterion makespan problems and is one of the earliest scheduling guidelines
for parallel machine scheduling problems. It is a priority rule, and the job is placed in a
non-increasing processing time order, and the next task on the list is scheduled.

In the literature, loading in the identical parallel machine was linked to different
programming criteria, even if the workload imbalance was considered a restriction or a
purpose. The authors in [23] proposed a dynamic neural network that uses time to solve

Sustainability 2021, 13, 9277 4 of 29

the scheduling problem with different penalty parameters. The simulation tests have
shown that all data sets are covered by the proposed network and are less effective than
LPT. The authors in [24] proposed a neural net algorithm (NNA) to minimize makespan
on parallel processing machines with identical job sizes with the introduction of a master
weight matrix (MWM) and new methods of coding. The result is remarkably effective
compared with other heuristics, especially in large-scale instances. In [25], the authors
proposed a genetic algorithm (GA) based on a heuristic procedure with SPT and LPT rules
to minimize the workload unbalance between the machines and reduce the makespan. Due
to the accuracy and speed of the solution, the authors found better results than those for
the strategies proposed in their first study [26].

The authors in [27] presented an SA approach solving the same parallel machinery
make-up problem. The findings show that the SA algorithm is very successful even for
large problems. This is because the execution time is less than one second for all generated
test problems. Thus, in the form of complicated scheduling problems, the SA approach is
worth considering. A mixed-integer linear programming method was developed by [28]
and solved using CPLEX for small to moderately large-scale problems, with various
availability limitations on all machines. The authors used lexicographic enumeration
algorithms to solve major problems. Dominance rules are proposed for reducing the search
space and increasing the efficiency of the algorithm. To formulate an identical parallel
machine scheduling problem, in [29], the authors used an integer linear programming
model (ILP), which aims to reduce the total relative imbalance, and the most extended
processing time algorithm is used to find an initial solution. The findings showed that
mathematical modeling and algorithms are essential tools and are more efficient than
conventional approaches for these problems.

2.2. Green Parallel Machine Scheduling Problem with Energy Consumption Consideration

Green parallel machine scheduling problems with energy consumption consideration
were addressed in the literature, and in the following, the most recent papers are presented.
In [30], a green parallel machine scheduling problem was studied, with the simultaneous
minimization of energy consumption and makespan. Greedy heuristic and local search
procedures were developed to solve the latter problem. Experimental results show the
efficiency of the proposed procedures. The green uniform parallel machine scheduling
problem was examined in [31], where the consumed energy and makespan were optimized
simultaneously as a bi-objective function. Several efficient heuristics were proposed and
tested on a benchmark of instances.

An unrelated parallel machine scheduling problem with an energy efficiency con-
sideration was addressed in [32]. A mixed integer linear program (MILP), dominance
rules, and a heuristic algorithm were developed to solve the latter problem. In [33], the
unrelated parallel machine scheduling problem, with the optimization of total tardiness
and energy consumption, was addressed. GA, Cat Swarm Optimization and Interactive
Artificial Bee Colony were proposed to solve the studied problem. A green identical paral-
lel machine scheduling problem, with simultaneous minimization of the total consumed
energy and makespan, was studied in [15]. A local strategy search was applied to obtain
satisfactory solutions.

The authors in [34] studied an identical parallel machine scheduling problem with
energy consumption consideration. The energy consumption is introduced as a constraint.
Efficient heuristics were proposed to solve this problem. In [35], the parallel dedicated
machine problem with energy consumption limits was addressed. First, complexity results
were provided. Mixed-integer linear programming and a local search heuristic were
developed to solve the studied problem. The experimental study shows the efficiency
of the proposed heuristic. An identical parallel machine problem with simultaneous
minimization of the consumed energy and the makespan was addressed in [15]. In the
latter study, a local search-based constructive heuristic was proposed. The effectiveness of
the presented heuristic was proofed over an extensive experimental study. The authors

Sustainability 2021, 13, 9277 5 of 29

in [36] studied a parallel identical batch-processing machine scheduling problem with
dynamic arrival jobs. The makespan and electric consumed energy are simultaneously
minimized through a bi-objective function. An ant colony-based algorithm was proposed to
identify the optimal Pareto. In addition, a local optimization-based heuristic was presented.
The experimental study provided proof of the efficiency of the proposed procedures.

An unrelated parallel machine scheduling problem, with the maximum energy con-
sumption constraint, was considered in [37]. A three-stage heuristic was proposed to
provide a near optimal solution. In the first and second stages, the consumed energy was
minimized. The third stage focused on makespan minimization. The experimental study
shows that the developed methods outperform the existing procedures.

The authors in [32] were interested in an unrelated parallel machine scheduling prob-
lem with energy consumption consideration. The objective is the energy cost minimization.
A mixed integer linear program was proposed. Several inequalities and dominance rules
were presented to enhance the performance of the proposed program. In addition, a
heuristic algorithm was proposed for large-sized instances. The experimental study shows
that the proposed methods outperform the existing ones.

An unrelated parallel machine problem, with simultaneous minimization of the con-
sumed energy and makespan, was considered in [38]. In order to provide a near optimal
solution, a mimetic differential evolution algorithm was proposed. This algorithm was
enhanced by embedding a local search-based heuristic. Experimental results show that the
proposed algorithm outperforms the existing procedures.

The authors in [39] studied a parallel machine scheduling problem with an energy
consumption budget. In other terms, the energy consumption is considered as a constraint.
The net revenue is the objective function to be maximized. A modified variable neighbor-
hood search algorithm was presented. The computational results show that the presented
algorithm outperforms existing methods.

An unrelated parallel machine scheduling problem was considered in [33]. The
objective function to be minimized is a linear combination of the consumed energy and
the mean weighted tardiness. Three metaheuristics were presented to solve the studied
problem. The obtained solutions were compared with exact solutions for small-sized
instances, and the results are satisfactory.

In [40], a parallel machine scheduling problem, with a reduction in the total elec-
tricity demand, was addressed. A mathematical optimization program was proposed to
obtain schedules minimizing the total consumed energy. Computational results show the
efficiency of the proposed algorithm.

A scheduling parallel batch processing machines problem with minimization of
makespan and consumed energy was studied in [41]. In order to solve the latter problem,
a metaheuristic with new features was proposed. The intensive experimental study shows
that the presented metaheuristic outperforms the existing algorithms.

2.3. Green Parallel Machine Scheduling Problem with Idle Energy Consideration

In the previous references, the consumed energy in GSP is totally taken into account
either in the objective function or as a constraint. In other references, the focus is placed
on idle machine energy. This kind of energy is consumed while the machine is idle.
Eliminating or reducing this kind of energy is seen as an effective way to reduce the total
consumed energy [2]. In the following, a literature review focused on idle machine energy
is presented.

In [42], an unrelated parallel machine problem with energy consumption consideration
was addressed. The consumed energy and the total tardiness are minimized simultaneously.
The total consumed energy is explicitly expressed as the sum of setup energy and idle
energy. A mathematical program and an enhanced ant colony algorithm were proposed.
The experimental study shows that the proposed methods are efficient and outperform the
existing ones.

Sustainability 2021, 13, 9277 6 of 29

The authors in [7] studied an unrelated parallel machine scheduling problem with
energy consumption consideration. The idle energy is incorporated explicitly within the
total consumed energy. An iterated local search algorithm was proposed to solve the
studied problem. The latter problem was encountered in a textile plant.

The research work in [13] was inspired by a steel industry real-life case. The obtained
scheduling problem is a parallel machine problem considering release date, deadlines, and
energy consumption. In this study, the idle energy was considered explicitly in order to
reduce the consumed energy. A mathematical model was presented in order to tackle the
latter problem, and the numerical results show that the proposed method outperforms the
existing procedure.

The authors in [43] addressed an identical parallel machine scheduling problem consid-
ering release dates, deadlines, and energy consumption. The objective is the minimization
of the total consumed energy. A machine can switch from a sleep mode to an active mode.
In the sleep mode, there is no energy consumption. Moving from the sleep mode to the
active mode requires energy consumption. An efficient heuristic based on a linear program
relaxation was presented.

2.4. Green Parallel Machine Scheduling Problem with Idle Machine Times Elimination

Reducing the consumed energy can be performed by eliminating the idle machine
times [2]. In this context, the no-idling constraint is taken into account. The authors in [44]
studied the identical parallel machine scheduling problem with unit processing times,
release dates, deadlines, and no-idle machines constraints. In the latter study, several
theoretical proprieties and an efficient heuristic were presented. Some particular cases for
release dates and/or deadlines were addressed, and polynomial algorithms were provided.
Lower and upper bounds were developed in addition to an integer linear program. The
experimental study shows the efficiency of the proposed methods.

In [45], the parallel machine scheduling problem with release dates, delivery times,
and no-idle machine constraints was addressed. Several proprieties of the studied problem
were established, and a family of new lower bounds was proposed. A family of efficient
heuristics were presented, where some of them are based on an exact procedure, designated
for the parallel machine scheduling problem with release dates and delivery times. The
intensive experimental study shows the efficiency of the presented procedures.

The parallel machine scheduling problem with release dates, delivery times, and
no-idle machine constraints was examined in [46]. In the latter study, authors proposed
several dominance rules and heuristics to solve the studied problem. These heuristics are
extensions of well-known rules developed originally for the parallel machine scheduling
problem with only release date and delivery times. Among these rules are Jackson’s rule
and Pott’s algorithm.

2.5. Summary of Literature Review

From the literature review, one can observe that the literature presented for the green
parallel machine scheduling problem with energy consumption consideration is satisfactory.
However, few research works considered idle energy reduction. In addition, there are very
few papers dealing with the no-idle machine times constraint as a means of energy saving,
for parallel machine scheduling problems. This is the main motivation behind the study of
the identical parallel machine scheduling problem with release dates, delivery times, and
no-idle machine times.

3. Problem Definition and Proprieties

In this section, the studied problem is defined, some of its useful proprieties are
presented, and a set of lower bounds is proposed.

Sustainability 2021, 13, 9277 7 of 29

3.1. Problem Definition

The deterministic parallel machine scheduling problem with release dates, delivery
times, and no-idle machines is stated as follows. A set J = {J1, J2, . . . , Jn} of n jobs
(components) has to be processed on m identical parallel machines (furnaces), with n > m.
The idle time between two consecutive processed jobs in a machine is not permitted.
Indeed, during an idle machine time, a machine is consuming energy without performing
any task; this is the idle energy. In a recent study, the idle energy derived from the idle
machine times represents 80% of the total consumed energy [9]. Therefore, eliminating
the idle machine times is seen as an efficient means to totally eliminate idle energy and
consequently to reduce the total consumed energy.

Each job, Ji, has a release date (head or arrival time), ri, from which the job, Ji, is
available for processing in any available machine. Each job, Ji (1 ≤ i ≤ n), is assigned to a
machine where it is processed during pi. After being processed, a job Ji (1 ≤ i ≤ n) exits
the machine where it is processed, and it remains in the system (shop) during qi. This is the
delivery time (qi) and it corresponds to a cooling period of the job Ji that leaves a furnace.

Each machine processes at most only one job at the same time. It is worth noting that
the completion time, Ci, of a job, Ji, is the date it exits the system (shop). In other terms,
Ci = fi + qi, where fi is the finishing processing date of job Ji in a machine. Its objective is
to find a feasible schedule that minimizes the maximum completion time, Cmax (makespan),
of all jobs, which is expressed as follows:

Cmax = max
1≤i≤n

(Ci).

The scheduling is performed under the following assumptions:

• All machines are available for the processing of the jobs at time zero and the entire
time horizon.

• A job is assigned to exactly one machine at the same time.
• Preemption during the processing of a job is not allowed.
• The processing times, pi; the release dates, ri; and the delivery times, qi, are assumed

to be deterministic and integral (1 ≤ i ≤ n).

According to the three-field notation [47], this problem is denoted as Pm, NI
∣∣rj, qj

∣∣Cmax,
where NI indicates the non-idle machine time constraint.

In the following, an illustrative example is given.

Example 1. Consider two furnaces that must heat different pieces (components) to a certain
temperature. The pieces arrive at the system on different dates (release dates). The pieces have a
delivery time that must elapse between completion processing in a furnace and exiting the system
(shop). This corresponds to a cooling period of the processed piece. Maintaining a furnace’s required
temperature while it is idle is an energy-consuming period without performing any task. This is
a waste of energy and consequently an environmental issue. Furthermore, the idle period adds an
extra energy cost. This can be avoided by not allowing the idle machine times between consecutive
jobs. This could be seen as a green practice.

The data for the given example are presented in Table 1.

Table 1. Data for example 1.

i ri pi qi

1 2 6 3
2 8 7 2
3 5 3 4
4 3 3 16
5 7 9 6

Sustainability 2021, 13, 9277 8 of 29

The example consists of five jobs (n = 5) and two machines (m = 2), where the input
parameters are listed in Table 1. Figure 1 shows an optimal solution for Example 1.

Sustainability 2021, 13, x FOR PEER REVIEW 8 of 29

3 5 3 4
4 3 3 16
5 7 9 6

The example consists of five jobs (݊ = 5) and two machines (݉ = 2), where the in-
put parameters are listed in Table 1. Figure 1 shows an optimal solution for example 1.

Figure 1. Gant chart of an optimal schedule for the problem ܲ, ,ݎ/ܫܰ .௫ܥ/ݍ

The date of the finishing processing for job 1 is 8; this is the date when job 1 exits
machine 1. The delivery time (cooling duration) of job 1 is 3. Then, job 1 leaves the system
at 8 + 3 = 11; this is the completion time of job 1.

It is worth noting that in the previous solution (Figure 1), job 4 can start at its release
date, ݎସ = 3, but if so, the no-idle machine constraint is not satisfied, and an idle time ap-
pears from time 6 to 7. Thus, job 4 is constrained to start later at time 4.

3.2. Problem Properties
In this subsection, several useful and relevant proprieties of the studied problem are

presented.

3.2.1. Complexity

Proposition 1. The problem ܲ, ,ݎ|ܫܰ .௫ is NP-hard in the strong senseܥ|ݍ

Proof of Proposition 1. Indeed, the problem ܲ|ݎ, ௫ܥ|ݍ , which is a relaxation of ܲ, ,ݎ|ܫܰ □ .௫, is NP-hard in the strong sense [48]ܥ|ݍ

3.2.2. Symmetry

Remark 1. The ܲ, ,ݎ|ܫܰ ௫ܥ|ݍ is symmetric in the following sense. The problems ܲ, ,ݎ|ܫܰ ,௫ and ܲܥ|ݍ ,ݍ|ܫܰ ௫ have the same optimal solutions, which means that theܥ|ݎ
roles of the release dates and the delivery time are symmetric.

Proof of Remark 1. Indeed, if ܷܤ is an upper bound and ݐ is the timeline, then consid-
ering the new timeline ܷܤ − .allows us to retrieve the same schedules for both problems ݐ
In particular, this holds for the optimal schedules. □

An immediate consequence of the last remark (Remark 1) is to systematically inves-
tigate the original problem (ܲ, ,ݎ|ܫܰ) ௫) and its symmetricܥ|ݍ ܲ, ,ݍ|ܫܰ ௫), whileܥ|ݎ
running the algorithms, in order to improve the obtained solution. This is applicable for
the lower bounds and the metaheuristics that are proposed later in this work.

In the following, the original problem (ܲ, ,ݎ|ܫܰ ௫) is referred to as the Forwardܥ|ݍ
problem, and the symmetric problem (ܲ, ,ݍ|ܫܰ ௫) is referred to as the Backwardܥ|ݎ
problem.

Figure 1. Gant chart of an optimal schedule for the problem Pm, NI/ri, qi/Cmax.

The date of the finishing processing for job 1 is 8; this is the date when job 1 exits
machine 1. The delivery time (cooling duration) of job 1 is 3. Then, job 1 leaves the system
at 8 + 3 = 11; this is the completion time of job 1.

It is worth noting that in the previous solution (Figure 1), job 4 can start at its release
date, r4 = 3, but if so, the no-idle machine constraint is not satisfied, and an idle time
appears from time 6 to 7. Thus, job 4 is constrained to start later at time 4.

3.2. Problem Properties

In this subsection, several useful and relevant proprieties of the studied problem
are presented.

3.2.1. Complexity

Proposition 1. The problem Pm, NI
∣∣rj, qj

∣∣Cmax is NP-hard in the strong sense.

Proof of Proposition 1. Indeed, the problem Pm
∣∣rj, qj

∣∣Cmax, which is a relaxation of
Pm, NI

∣∣rj, qj
∣∣Cmax, is NP-hard in the strong sense [48]. 2

3.2.2. Symmetry

Remark 1. The Pm, NI
∣∣rj, qj

∣∣Cmax is symmetric in the following sense. The problems
Pm, NI

∣∣rj, qj
∣∣Cmax and Pm, NI

∣∣qj, rj
∣∣Cmax have the same optimal solutions, which means that

the roles of the release dates and the delivery time are symmetric.

Proof of Remark 1. Indeed, if UB is an upper bound and t is the timeline, then considering
the new timeline UB− t allows us to retrieve the same schedules for both problems. In
particular, this holds for the optimal schedules. 2

An immediate consequence of the last remark (Remark 1) is to systematically investi-
gate the original problem (Pm, NI

∣∣rj, qj
∣∣Cmax) and its symmetric (Pm, NI

∣∣qj, rj
∣∣Cmax), while

running the algorithms, in order to improve the obtained solution. This is applicable for
the lower bounds and the metaheuristics that are proposed later in this work.

In the following, the original problem (Pm, NI
∣∣rj, qj

∣∣Cmax) is referred to as the For-
ward problem, and the symmetric problem (Pm, NI

∣∣qj, rj
∣∣Cmax) is referred to as the Back-

ward problem.

3.2.3. Relationship between the Problems Pm|rj,qj|Cmax and Pm,NI|rj,qj|Cmax

Proposition 2. If LB is a lower bound for the problem Pm
∣∣rj, qj

∣∣Cmax, then LB is also a lower
bound for the problem Pm, NI

∣∣rj, qj
∣∣Cmax.

Sustainability 2021, 13, 9277 9 of 29

Proof of Proposition 2. An optimal schedule, S∗NI , for Pm, NI
∣∣rj, qj

∣∣Cmax with an opti-
mal value, C∗NI , is a feasible schedule for Pm

∣∣rj, qj
∣∣Cmax. If C∗ is the optimal value of

Pm
∣∣rj, qj

∣∣Cmax, then C∗ ≤ C∗NI . Consequently, if LB is a lower bound for Pm
∣∣rj, qj

∣∣Cmax, then
LB ≤ C∗ ≤ C∗NI . 2

Corollary 1. If LB denotes the optimal solution of Pm
∣∣rj, qj

∣∣Cmax, then LB is a lower bound
of Pm, NI

∣∣rj, qj
∣∣Cmax.

Proof of Corollary 1. An optimal solution of Pm
∣∣rj, qj

∣∣Cmax is also a lower bound for
Pm
∣∣rj, qj

∣∣Cmax. Based on Proposition 2, this optimal solution is a lower bound for
Pm, NI

∣∣rj, qj
∣∣Cmax. 2

Remark 2. The lower bound LB (Corollary 1) is the optimal solution of the Pm
∣∣rj, qj

∣∣Cmax. In
this study, the Branch and Bound (B&B) algorithm developed in [48] was used to optimally solve
the problem Pm

∣∣rj, qj
∣∣Cmax due to its efficiency. In addition, Pm

∣∣rj, qj
∣∣Cmax is NP-hard, and the

(B&B) might fail to solve it optimally within a prefixed time limit (300 s). In this case, the best
obtained lower bound while running the (B&B) is considered as the lower bound for the current
studied problem.

In the following, the obtained lower bound from Corollary 1 and Remark 2 will be
adopted as a lower bound for the problem Pm, NI

∣∣rj, qj
∣∣Cmax, and will be denoted LB.

4. Mixed Integer Linear Formulation

In this section, a mixed integer linear program (MILP) is proposed. The MILP model
was developed to determine the optimal solution for this problem and was solved by using
the programming software IBM ILOG CPLEX (Academic).

The main issue while developing the mixed integer linear program is the integration
of the no-idle constraint. To this aim, a dummy job denoted by J0 was included within the
set of jobs. The processing time, release date, and delivery time of this job were set to 0,
respectively. This dummy job is useful to serve as the predecessor for all jobs.

The notations for the developed MILP are presented in Table 2.

Table 2. MIPL notations.

Indices:
i, index of job, where i, j = 1, 2, . . . , n.
k index of machine, where k = 1, 2, . . . , m.
Parameters:
pi Processing time of job i.
ri Release date of job i
qi Delivery time of job i
M A large number
Decision variables

xik
A binary decision variable equal to 1 if job i is processed in
machine k, otherwise 0.

yijk

A binary decision variable equal to 1 if job j is processed
immediately after job i and is being processed on
machine k; otherwise 0.

Cmax Maximum completion time
sj Starting time of the job j.
fj Completion time of the job j.

The MILP model can be formulated as follows.

min Cmax (1)

Sustainability 2021, 13, 9277 10 of 29

Subject to
fi + qi − Cmax ≤ 0, i = 1, 2, . . . , n (2)

m

∑
k=1

xik = 1, i = 1, 2, . . . , n (3)

n

∑
(i=0,i 6=j)

yijk = xjk, j = 1, 2, . . . , n; k = 1, 2, . . . , m (4)

n

∑
(j=1,i 6=j)

yijk ≤ xik, i = 1, 2, . . . , n; k = 1, 2, . . . , m (5)

n

∑
(j=1)

y0jk = 1, k = 1, 2, . . . , m (6)

fi = si +
m

∑
k=1

pi xik, i = 1, 2, . . . , n (7)

f0 = 0 (8)

fi − sj + M

(
m

∑
k=1

yijk − 1

)
≤ 0, i = 0, 1, . . . , n; and j = 1, 2, . . . , n (9)

ri − si ≤ 0, i = 1, 2, . . . , n (10)

f j − si − pi − pj + M
(

yijk − 1
)
≤ 0, i, j = 1, 2, . . . , n; and k = 1, 2, . . . , m (11)

xik ∈ {0, 1}, i = 1, 2, . . . , n; and k = 1, 2, . . . , m (12)

yijk ∈ {0, 1}, i = 1, 2, . . . , n; j = 0, 1, . . . , n; k = 1, 2, . . . , m (13)

si, fi, Cmax ≥ 0, i = 1, 2, . . . , n (14)

• Equation (1) is the objective function, which minimizes the maximum completion
time (makespan).

• Constraint (2) proposes that the completion time fi + qi of each job i ∈ J is less than
the maximum completion time Cmax.

• Constraint (3) proposes that each job should be assigned to exactly one machine.
• Constraint (4) proposes that each processed job, i ∈ J, in a machine has a unique

immediate predecessor. It is worth mentioning that the first processed job in each
machine has as immediate predecessor, the dummy job J0.

• Each processed job has at most one immediate successor job; this is the meaning of
constraint (5).

• Constraints (6) proposes that the first processed job in each machine has as immediate
predecessor, the dummy job J0.

• Equation (7) expresses the relationship between the starting time, si, and the comple-
tion processing time, fi, for each job i ∈ J.

• Equation (8) stipulates that the dummy job, J0, finishes processing at time 0. Therefore,
it precedes all other jobs.

• Constraint (9) expresses the precedence constraint between two consecutive jobs.
These constraints eliminate any overlap between the consecutive jobs.

• Constraint (10) causes each job i ∈ J to start processing after its release date, ri.
• Constraint (11) ensures that the difference between the start time of a job and the end

of its predecessor job is not larger than the total processing time (satisfaction of the no-
idle time constraint). Indeed, if job j is processed immediately after job i on machine k,
then yijk = 1. Consequently, constraint (11) proposes that f j ≤ (si + pi) + pj. Based
on (7), we have si + pi = fi, then f j ≤ fi + pj. Constraint (9) proposes that fi ≤ sj
and f j ≤ fi + pj ≤ sj + pj = f j. Thus, fi + pj = f j, and there is no idle time between

Sustainability 2021, 13, 9277 11 of 29

jobs i and j. These are the constraints expressing the green scheduling aspect, since
the idle machine times are eliminated, which allows the idle consumed energy to be
eliminated. This is the main difference with a classical scheduling problem (with idle
machine times).

• Constraint sets (12) and (13) enable integrality for binary decision variables. Finally,
constraint (14) imposes non-negativity for real decision variables.

5. Metaheuristics Procedures

The studied problem is NP-hard in the strong sense. In order to provide a near
optimal solution, several metaheuristics were investigated and adapted. More precisely,
two metaheuristics were developed in order to solve the studied scheduling problem. These
metaheuristics are the genetic algorithm (GA) and the simulated annealing algorithm (SA).
This choice is justified by a study of the most recent literature, for the green parallel machine
scheduling problems using metaheuristics. According to this literature [49–55], the genetic
algorithm and simulated annealing are successful methods for solving parallel machine
scheduling problems. In this context, three variants of GA were developed. These variants
use three different crossover operators. The algorithm parameter tuning is included in the
experimental section.

5.1. Genetic Algorithms

Genetic algorithms (GA) were developed first by John Holland in [56]. GAs attempt
to simulate the process of natural evolution through (genetic) selection by following the
principles of natural evolution in a given environment. Natural evolution does not act
directly on living beings, but it operates on the chromosomes’ DNA. However, the used
vocabulary in GAs is similar to that in natural genetics, but the natural genetics processes
are much more complicated than the processes of the GA models.

The terminology used in GAs depends on natural genetic processes: chromosomes
are the elements from which they are made (individuals). These chromosomes are grouped
into populations, and a combination of chromosomes is considered the reproductive stage.
This is performed utilizing a mutation operator and/or a crossing operator. Other concepts
are specific to the GA field, such as the quality index (fitness), also called the performance
index, which is a measure used to classify chromosomes. The same goes for the evaluation
function, representing the theoretical formula for calculating and finding the quality index
of a chromosome.

For a given optimization problem, an individual represents a feasible solution in the
solution space. Every individual associated with the value of the objective function is
optimized. The iterative search generates populations of individuals on which we apply
selection, crossing, and mutation processes. The selection aims to promote the best elements
of the population for the criterion considered (the best suited), mutation, and crossing,
which ensure an exploration of the solution space. Figure 2 shows the simplified iterative
operation of GAs.

To create GAs and solve problems effectively, it is important to identify how to repre-
sent the solutions (chromosome representation), define an evaluation function, develop the
different operators, and determine the parameters, such as the choice of stopping criteria
and the probability of an operator’s application. Representation, fitness, initial population,
genetic operators, and standard stopping rules are discussed in detail below.

To implement a GA for the problem under study, the first step is to form a good repre-
sentation of the problem’s information in the form of a chromosome. This chromosome’s
representation must be complete, considering all the possible solutions to the problem,
which can be codified using this representation. Additionally, all the adjustments on this
chromosome must correspond to feasible solutions (principle of validity).

Sustainability 2021, 13, 9277 12 of 29

Sustainability 2021, 13, x FOR PEER REVIEW 12 of 29

Figure 2. Simplified iterative operation of GAs.

5.1.1. Chromosome Representation
For the problem considered in this paper, the chromosome’s representation should

simultaneously reflect two main characteristics:
• The job assignments to machines;
• The sequence of assigned jobs in each machine.

In this study, a chromosome is represented by a permutation of jobs. The decoding
consists of assigning the first unscheduled job in the permutation to the most available
machine, with the elimination of the idle time by right shifting the jobs until no idle time
is detected.

Example 2. The chromosome when ݊ = 6 and ݉ = 2 is presented in Figure 3.

Figure 3. Sample of chromosome representation.

From the chromosome representation, the sequence on machine 1 is 3 − 2 − 6, and
the sequence on machine 2 is 5 − 4 − 1.

5.1.2. Initial Population
The GA’s initial population represents the algorithm’s starting population, which can

strongly condition the speed of an algorithm. If the optimum position in the solution space
is completely unknown, it is natural to randomly generate individuals by making uniform
draws of the solution space. On the other hand, if a priori information on the problem is
available, it seems to create individuals in a particular sub-domain to accelerate conver-
gence. The prior knowledge from our research literature could be utilized for some dis-
patching rules or simple heuristics, such as the earliest release date, Jackson’s algorithm,
or the shortest processing time. In this study, the initial population was randomly gener-
ated.

Jobs sequence 3 5 4 2 1 6
Job assignments to machines 1 2 2 1 2 1

Chromosome Representation

Figure 2. Simplified iterative operation of GAs.

5.1.1. Chromosome Representation

For the problem considered in this paper, the chromosome’s representation should
simultaneously reflect two main characteristics:

• The job assignments to machines;
• The sequence of assigned jobs in each machine.

In this study, a chromosome is represented by a permutation of jobs. The decoding
consists of assigning the first unscheduled job in the permutation to the most available
machine, with the elimination of the idle time by right shifting the jobs until no idle time
is detected.

Example 2. The chromosome when n = 6 and m = 2 is presented in Figure 3.

Sustainability 2021, 13, x FOR PEER REVIEW 12 of 29

Figure 2. Simplified iterative operation of GAs.

5.1.1. Chromosome Representation
For the problem considered in this paper, the chromosome’s representation should

simultaneously reflect two main characteristics:
• The job assignments to machines;
• The sequence of assigned jobs in each machine.

In this study, a chromosome is represented by a permutation of jobs. The decoding
consists of assigning the first unscheduled job in the permutation to the most available
machine, with the elimination of the idle time by right shifting the jobs until no idle time
is detected.

Example 2. The chromosome when ݊ = 6 and ݉ = 2 is presented in Figure 3.

Figure 3. Sample of chromosome representation.

From the chromosome representation, the sequence on machine 1 is 3 − 2 − 6, and
the sequence on machine 2 is 5 − 4 − 1.

5.1.2. Initial Population
The GA’s initial population represents the algorithm’s starting population, which can

strongly condition the speed of an algorithm. If the optimum position in the solution space
is completely unknown, it is natural to randomly generate individuals by making uniform
draws of the solution space. On the other hand, if a priori information on the problem is
available, it seems to create individuals in a particular sub-domain to accelerate conver-
gence. The prior knowledge from our research literature could be utilized for some dis-
patching rules or simple heuristics, such as the earliest release date, Jackson’s algorithm,
or the shortest processing time. In this study, the initial population was randomly gener-
ated.

Jobs sequence 3 5 4 2 1 6
Job assignments to machines 1 2 2 1 2 1

Chromosome Representation

Figure 3. Sample of chromosome representation.

From the chromosome representation, the sequence on machine 1 is 3− 2− 6, and the
sequence on machine 2 is 5− 4− 1.

5.1.2. Initial Population

The GA’s initial population represents the algorithm’s starting population, which
can strongly condition the speed of an algorithm. If the optimum position in the solution
space is completely unknown, it is natural to randomly generate individuals by making
uniform draws of the solution space. On the other hand, if a priori information on the
problem is available, it seems to create individuals in a particular sub-domain to accel-
erate convergence. The prior knowledge from our research literature could be utilized
for some dispatching rules or simple heuristics, such as the earliest release date, Jack-

Sustainability 2021, 13, 9277 13 of 29

son’s algorithm, or the shortest processing time. In this study, the initial population was
randomly generated.

5.1.3. Selection Operator

Unlike other optimization techniques, genetic algorithms do not require any particular
hypothesis on the objective function’s regularity. In particular, the genetic algorithm
does not use its successive derivatives, making its field of application very broad. No
continuity assumption is required either. The selection operator chooses the most suitable
individuals to enable the closest solution population to converge towards the global
optimum. However, in the literature, many selection techniques are more or less adapted
to problems they deal with. In this study, the roulette wheel selection rule was used [57].

5.1.4. Reproduction

Reproduction means the cloning of an individual without modification, which will
pass to the next generation. In this way, reproduction is an alternative genetic operator to
crossing and mutation, since they modify the individuals that pass into the next generation.
The purpose of reproduction is to keep individuals with high fitness of the present age in
the next generation.

5.1.5. Crossover Operator

Crossover aims to enrich the diversity of the population by manipulating the struc-
ture of the chromosomes [58]. Conventionally, crosses are considered with two parents
and generate two children. The selection process chooses both parents. Crossbreeding
allows innovation (children are different from their parents) and is based on the idea that
two successful parents will produce better children. The crossover rate p_c (p_c ∈ [0, 1])
represents the proportion of parents on which a crossover operator will act. There are
several crossover operators in the literature regarding the creation of new child chromo-
somes with the best fitness value. In the following, the most used crossover operators
are as follows: (1) the block order crossover operator (BOX) [2], (2) linear order crossover
operator (LOX) [3], and (3) position-based crossover operator (POX) [4]. In this study, three
variants of GA are proposed. These variants use crossover operators (BOX), (LOX), and
(POX), respectively. These metaheuristics are denoted as GABOX, GALOX, and GAPOX,
respectively. All three variants of GA share the same operators, except the crossover ones.

5.1.6. Mutation

The mutation is considered a primary operator, providing a small randomness element
in individuals in the population [59]. Although it is recognized that the crossing operator
is responsible for searching for the space of possible solutions, the mutation operator is
responsible for increasing or reducing the search space within the genetic algorithm as well
as for promoting the genetic variability of the individuals in the population. The probability
(or ratio) p_m defines the probability of mutating each element (gene) of representation.
There are several techniques for applying the mutation to individuals in a population, but
the most commonly used is to mutate the percentage of total genes in the population.

5.1.7. Replacement Strategies

The replacement phase concerns the survivor selection of both the parent and off-
spring populations. When the population’s size is constant, it allows individuals to be
withdrawn according to a given selection strategy. Elitism always consists of selecting the
best individuals from the parents and the offspring. This method leads to rapid conver-
gence, and a premature convergence could occur. Sometimes, selecting bad (in terms of
fitness) individuals is necessary to avoid the sampling error problem. These replacement
strategies may be stochastic or deterministic.

Sustainability 2021, 13, 9277 14 of 29

5.2. Simulated Annealing

The simulated annealing (SA) algorithm was firstly proposed in [60] to deal with
highly non-linear problems, and afterward, the authors suggested it for solving combina-
torial optimization problems. Since then, SA has had a significant impact on the field of
metaheuristic research for its simplicity and efficiency in solving combinatorial optimiza-
tion problems by escaping local optima. It has also been extensively studied to deal with
continuous optimization problems also applied to numerous other areas. It originates from
the fields of material science and physics [5], where the SA algorithm simulates the energy
changes in a system subjected to a cooling process until it converges to an equilibrium state
(steady frozen state).

The SA is one of the popular metaheuristics successfully applied to various combina-
torial optimization problems. SA is a memoryless algorithm because the algorithm does
not use any information gathered during the search. From an initial solution, SA proceeds
in several iterations.

The SA improves a solution by iteratively moving the current solution s to a neighbor-
hood solution ś, generated randomly. If ś is better than s, then the movement from s to ś
is accepted, i.e., s is replaced by ś. If ś is worse than s, it is accepted with a probability of
e−∆E/T , called an uphill move, where ∆E represents the difference between the objective
function values of s and ś, and T is a parameter called the temperature. As the algorithm
progresses, the probability that such moves are accepted decreases. The distribution of the
probability equation is as follows:

P(∆E, T) = e−∆E/T

When the temperature increases, the probability of accepting the worst move also
increases. At a given temperature, the lower the objective function’s increase is, the more
significant the likelihood of accepting the move is. T is initially set to T0 = Tmax, and is
decreased after every iteration. The algorithm (Algorithm 1) is terminated if temperature T
reaches Tf = Tmin. It is worth noting that Tmax and Tmin are the maximum and minimum
temperatures, respectively. The best solution found at the beginning of the search is stored
in addition to the current solution.

Algorithm 1 SA algorithm

Input: Cooling schedule.
s = s0; %Generation of the initial solution
T = Tmax; % Starting temperature
Repeat

Repeat % At a fixed temperature
% Generate a random neighbor s′

∆E = f (s′)− f (s);
If ∆E ≤ 0 then s = s′ % Accept the neighbor solution
Else accept s′ with a probability e−∆E/T

Until Equilibrium condition
%, e.g., a given number of iterations executed at each temperature T
T = g(T); %Temperature update

Until Stopping criteria satisfied %, e.g., T < Tmin
Output: Best solution found

A few parameters control the search’s progress, which is the temperature and the
number of iterations performed at each temperature. The main elements of SA can be
summarized as follows:

• The acceptance probability function: the main element of SA that enables non-
improving neighbors to be selected.

• The cooling schedule: tis defines the temperature at each step of the algorithm. It
plays an essential role in the efficiency and effectiveness of the algorithm.

Sustainability 2021, 13, 9277 15 of 29

Regarding the stopping condition, the theory suggests a final temperature equal to 0.
In practice, one can stop the search when the probability of accepting a move is negligible.
The following stopping criteria may be utilized:

• Reaching a final temperature TF.
• Achieving a predetermined number of iterations without improvement.
• The objective function reaches a pre-specified threshold value (e.g., lower bound).
• A predetermined number of evaluations.

6. Experimental Study and Results

This section evaluates the performance of the proposed MILP, GAs, and SA, and
compares the proposed procedures to the existing ones. Computational experiments were
carried out with 4000 instances for the proposed algorithms. The proposed algorithms were
coded using C++ and the MILP using CPLEX software. The computational experiments
were undertaken on an MSI computer with the following specifications: processor: Intel
(R) Core™ i7-7700 HQ CPU at 2.8 GHz; RAM: 8 GB.

6.1. Data Set Generation

The test problems were generated as in previous studies [45]. Two classes of instances
were generated (Class A and Class B) with different problem sizes of jobs (n = 10, 20, 40, 50,
and 200) (m = 2,3,5,8). Parameters for Class A and Class B are presented as follows.

6.1.1. Class A

• The processing times pi were randomly and uniformly generated in [1, 10].
• The release dates, ri, and delivery times, qi, were randomly and uniformly generated

in
[
1,
(

n∗k
m

)]
, where (k = 1, 3, 5, 7, 10, 13, 17, 22, 27, 33).

6.1.2. Class B

• The processing times, pi, were randomly and uniformly generated in [1, n].
• The release dates, ri, were randomly and uniformly generated in [1, n].

• The delivery times, qi, were randomly and uniformly generated in
[
1,
(

n∗k
m

)]
, where

(k = 1, 3, 5, 7, 10, 13, 17, 22, 27, 33).

Combinations of different parameters resulted in a total of 4000 test problems.

6.2. Parameters Tuning

In this section, the parameter design of GAs and SA is investigated and tuned. Differ-
ent combinations of parameters returned different results for the metaheuristic algorithms,
which means the parameter values used in each algorithm affect their performance.

To identify each design parameter’s proper settings, a pilot run was conducted based
on screening and the literature. The Taguchi design of L9 [32] was used to study the effect
of the parameters of the proposed algorithm on the makespan, Cmax, and the best settings
for each proposed metaheuristic parameters were determined. The detailed results for the
tuned variables are given in Table 3 and Figures A1–A6 (Appendix A).

More precisely, the GA parameters that should be determined are as follows:

• Population size;
• Crossover rate;
• Mutation rate;
• Stopping condition.

The SA parameters that should be determined before the experimental study are
as follows:

• Temperature;
• Maximum number of iterations: MAX_ITER;
• Temperature reduction factor: ALPHA;

Sustainability 2021, 13, 9277 16 of 29

• Number of function evaluations before temperature reduction: NT factor.

Table 3. Summary of the main parameters and levels for GAs.

Population
Size

Crossover
Rate

Mutation
Rate

Stopping
Condition n = 10 20 40 50 200

40 0.4 0.2 100 1.06 8.21 18.69 21.42 11.28
40 0.75 0.5 1000 0.56 5.38 12.51 16.84 8.85
40 0.95 0.9 10,000 0.19 3.67 9.37 13.99 8.03
80 0.4 0.5 10,000 0.28 2.33 7.14 10.96 6.71
80 0.75 0.9 100 0.46 6.63 13.96 17.45 9.73
80 0.95 0.2 1000 0.19 4.06 9.97 18.06 8.45

120 0.4 0.9 1000 0.10 2.86 8.72 11.19 7.33
120 0.75 0.2 10,000 0.31 2.31 6.52 9.32 6.19
120 0.95 0.5 100 0.46 6.33 14.02 16.10 9.99

The determination of these parameters requires a preliminary experimental phase,
performed in a reduced number of instances, and on a given set of values for each parameter
(Table 4). For example, the population size parameter belongs to the set {40, 80, 120}, and
one of these values has to be selected. The design of this experimentation is performed
following the Taguchi design of L9 [32].

Table 4. Summary of the main parameters and levels for GAs and SA.

Parameter Considered Values Selected Values

GA

Population Size 40, 80, 120 120
Crossover Rate (Pc) 0.4, 0.75, 0.95 0.95
Mutation Rate (Pm) 0.2, 0.5, 0.9 0.9

Stopping Condition Number of Evaluations
(100, 1000, 10K) or LB 10K or LB

SA

Temperature 5, 5 Thousand, 5 Million 5
MAX_ITER (maximum number of iterations) 100, 1000, 10,000 10,000

ALPHA (temperature reduction factor) 0.5, 0.75, 0.95 0.5
NT factor (number of function evaluations before

temperature reduction) 10, 75, 150 10

Figures A1–A5 present the average relative percent deviation (ARPD) for each param-
eter and for each number of jobs (n). Each figure contains four curves, where each one
represents a specific parameter. If, for example, we focus on the population size parameter
selection, we observe that for all numbers of jobs, the minimum ARPD is reached for
Population Size = 120. Therefore, the adopted value of the population size parameter is
120. This reasoning is valid for the rest of the parameters. Figure A6 is reserved for the SA
parameter selection, and the same reasoning as for GA holds.

The summary of the main parameters and their levels regarding GAs and SA are
shown in Table 4.

6.3. Results and Discussions

In this subsection, the proposed procedures (GAs, SA, MILP and LB) are assessed.
First, a pairwise comparison between the metaheuristics was performed using the average
relative percent deviation (ARPD) and the average computation time (Time). Then, the
best metaheuristic was selected, and its absolute efficiency was evaluated throughout
the average relative gap using the lower bound (LB). In addition, the best obtained
metaheuristic was compared to the MILP formulation. Finally, a comparison of the best
metaheuristic with existing algorithms was carried out.

Sustainability 2021, 13, 9277 17 of 29

6.3.1. Metaheuristics Pairwise Comparison

First, the following should be noted:

• GABOX denotes the genetic algorithm based on the block order crossover operator.
• GALOX denotes the genetic algorithm based on a linear order crossover operator.
• GAPOX denotes the genetic algorithm based on a position-based crossover operator.
• SA denotes the simulated annealing algorithm.

For instance, we adopted the following notations and definitions:

• CBOX denotes the makespan obtained via GABOX .
• CLOX denotes the makespan obtained via GALOX .
• CPOX denotes the makespan obtained via GAPOX .
• CSA denotes the makespan obtained via SA.
• Cbest = min(CBOX , CLOX , CPOX , CSA).
• For a given algorithm, H ∈ {GABOX , GALOX , GAPOX , SA}, the relative percent devia-

tion (with reference to Cbest) is defined as follows:

RPD =
CH − Cbest

Cbest
× 100

• For a subset of instances, ARPD is the average RPD.

The three variants of GA and the SA algorithm were compared using the ARPD
and the average consumed time, Time(s), running the algorithm. The detailed results are
presented in Tables 5 and 6 and Figures 4 and 5.

Table 5. Proposed metaheuristics results for Class A.

m n
ARPD Time(s)

GABOX GALOX GAPOX SA GALOX GAPOX GAPOX SA

2

10 0.1% 0.0% 0.0% 0.4% 1.37 1.24 1.49 0.11
20 0.2% 0.0% 0.0% 2.2% 2.23 1.80 2.25 0.11
40 1.4% 0.2% 0.0% 4.7% 5.13 2.92 3.74 0.11
50 3.1% 0.6% 0.0% 6.1% 6.75 3.55 4.43 0.12

200 14.9% 5.3% 0.0% 11.7% 32.18 20.94 18.72 0.15

3

10 0.0% 0.0% 0.0% 0.3% 1.39 1.28 1.52 0.11
20 0.3% 0.0% 0.0% 2.2% 2.39 1.87 2.31 0.11
40 2.8% 0.3% 0.0% 4.9% 4.98 3.09 3.89 0.11
50 3.7% 0.7% 0.0% 5.4% 6.62 3.76 4.63 0.12

200 13.8% 4.8% 0.0% 10.4% 64.61 21.76 19.52 0.15

5

10 0.2% 0.0% 0.0% 0.3% 1.31 1.25 1.49 0.11
20 1.4% 0.1% 0.0% 2.4% 2.37 1.85 2.30 0.11
40 4.5% 0.5% 0.0% 4.4% 5.30 3.15 3.91 0.11
50 5.8% 0.5% 0.0% 5.1% 7.08 3.85 4.65 0.12

200 13.3% 4.1% 0.0% 9.4% 61.61 22.17 19.93 0.15

8

10 0.1% 0.0% 0.0% 0.0% 1.23 1.21 1.44 0.11
20 2.5% 0.2% 0.0% 2.3% 2.34 1.81 2.28 0.11
40 3.7% 0.3% 0.0% 3.0% 5.26 3.11 3.86 0.12
50 5.1% 0.5% 0.0% 4.0% 6.97 3.85 4.66 0.12

200 12.2% 3.3% 0.0% 8.7% 60.35 22.78 20.46 0.16

Average 4.5% 1.1% 0.0% 4.4% 14.07 6.36 6.37 0.12

Sustainability 2021, 13, 9277 18 of 29

Table 6. Proposed metaheuristics results of Class B.

m n
ARPD Time(s)

GABOX GALOX GAPOX SA GABOX GALOX GAPOX SA

2

10 5.8% 1.0% 0.0% 0.7% 1.11 1.27 1.36 0.37
20 16.0% 1.4% 0.0% 4.3% 1.86 1.62 2.01 0.37
40 26.1% 6.9% 0.0% 11.5% 5.48 2.74 3.77 0.60
50 26.3% 10.6% 0.0% 13.3% 7.09 3.42 4.26 0.83

200 7.9% 2.5% 0.1% 3.9% 54.82 21.89 19.43 0.93

3

10 5.2% 0.7% 0.0% 0.8% 1.11 1.39 1.45 0.21
20 18.0% 2.2% 0.0% 6.4% 1.89 1.70 2.28 0.32
40 25.8% 7.1% 0.0% 12.6% 5.53 2.82 3.85 0.56
50 26.3% 9.0% 0.0% 14.5% 7.23 3.50 4.33 0.82

200 10.0% 2.9% 1.1% 5.9% 50.59 22.02 20.93 0.91

5

10 1.6% 0.0% 0.0% 0.1% 1.13 1.33 1.47 0.59
20 17.3% 2.3% 0.0% 5.9% 1.85 1.72 2.36 0.53
40 28.8% 8.8% 0.0% 13.4% 5.49 2.84 3.59 0.71
50 27.9% 9.4% 0.0% 14.0% 7.43 3.48 4.29 0.87

200 12.9% 2.7% 2.5% 7.0% 50.95 21.53 19.20 0.68

8

10 0.3% 0.0% 0.0% 0.0% 1.12 1.21 1.50 0.78
20 14.1% 1.3% 0.0% 3.5% 1.86 1.72 2.23 0.74
40 28.2% 6.5% 0.0% 11.0% 5.42 2.82 3.58 0.79
50 29.1% 8.5% 0.0% 12.9% 7.45 3.44 4.26 0.78

200 13.1% 2.2% 0.8% 4.2% 52.32 21.14 18.79 0.96

Average 17.0% 4.3% 0.2% 7.3% 13.59 6.18 6.25 0.67

Based on Table 5 and Figure 4, the GAPOX metaheuristic largely outperforms the other
metaheuristics for Class A, with an average of ARPD = 0%. In addition, the average
consumed computation time is satisfactory and Time = 6.37 s. The SA presents the best
average time with Time = 0.12 s. According to Table 6 and Figure 5, the same behavior
is detected for Class B. Indeed, the GAPOX algorithm is the leading metaheuristic with
ARPD = 0.2%. More precisely, ARPD = 0%, except for n = 200, where ARPD ≤ 2.5%.

Sustainability 2021, 13, x FOR PEER REVIEW 19 of 29

200 13.1% 2.2% 0.8% 4.2% 52.32 21.14 18.79 0.96
Average 17.0% 4.3% 0.2% 7.3% 13.59 6.18 6.25 0.67

Figure 4. ܦܴܲܣ of different proposed algorithms with a random initial population.

Figure 5. Average consumed time of different proposed algorithms with a random initial popula-
tion.

6.3.2. Performance of the Metaheuristic GAଡ଼
Based on the previous subsection, ܣܩை presents the best performance compared

to the others. In this subsection, and based on the proposed lower bound (ܤܮ) (in Section
3.2.3; Remark 2), a relative percent deviation (RPD) between ܤܮ and the obtained ܥ௫
was used to assess the performance of the proposed algorithm. The relative percent devi-
ation is expressed as follows: ܴܲܦ = ುೀீܥ − ܤܮܤܮ × 100

The ܴܲܦ provides an upper bound on the relative absolute distance between the
makespan of the metaheuristic ܣܩை and the optimal solution (which is unknown). In-
deed, if ܥ௫∗ denotes the optimal value of the makespan, then ܤܮ ≤ ∗௫ܥ ≤ ುೀீܥ .
Therefore, ܴܲܦ = ಸಲುೀି × 100 ≥ ಸಲುೀିೌೣ∗ೌೣ∗ × 100.

Therefore, the ܴܲܦ allows the solution quality to be evaluated. The related results
are detailed in Table 7. In the latter table, the used key performance measures are the

Figure 4. ARPD of different proposed algorithms with a random initial population.

Sustainability 2021, 13, 9277 19 of 29

Sustainability 2021, 13, x FOR PEER REVIEW 19 of 29

200 13.1% 2.2% 0.8% 4.2% 52.32 21.14 18.79 0.96
Average 17.0% 4.3% 0.2% 7.3% 13.59 6.18 6.25 0.67

Figure 4. ܦܴܲܣ of different proposed algorithms with a random initial population.

Figure 5. Average consumed time of different proposed algorithms with a random initial popula-
tion.

6.3.2. Performance of the Metaheuristic GAଡ଼
Based on the previous subsection, ܣܩை presents the best performance compared

to the others. In this subsection, and based on the proposed lower bound (ܤܮ) (in Section
3.2.3; Remark 2), a relative percent deviation (RPD) between ܤܮ and the obtained ܥ௫
was used to assess the performance of the proposed algorithm. The relative percent devi-
ation is expressed as follows: ܴܲܦ = ುೀீܥ − ܤܮܤܮ × 100

The ܴܲܦ provides an upper bound on the relative absolute distance between the
makespan of the metaheuristic ܣܩை and the optimal solution (which is unknown). In-
deed, if ܥ௫∗ denotes the optimal value of the makespan, then ܤܮ ≤ ∗௫ܥ ≤ ುೀீܥ .
Therefore, ܴܲܦ = ಸಲುೀି × 100 ≥ ಸಲುೀିೌೣ∗ೌೣ∗ × 100.

Therefore, the ܴܲܦ allows the solution quality to be evaluated. The related results
are detailed in Table 7. In the latter table, the used key performance measures are the

Figure 5. Average consumed time of different proposed algorithms with a random initial population.

For the two classes (A and B), the worst performance is detected for the GABOX meta-
heuristic in terms of ARPD and Time. Indeed, for this metaheuristic, the ARPD = 4.5% and
Time = 14.07 s for Class A, and ARPD = 17.0% and Time = 13.59 s for Class B. The two
remaining metaheuristics (GALOX,SA) behave almost in the same way.

Except the GAPOX, the other metaheuristics are very sensitive to n and m. Indeed,
for these metaheuristics, the ARPD and Time increase dramatically as n and m increase.
Therefore, the metaheuristic GAPOX is selected as the best metaheuristic among the four
proposed ones.

6.3.2. Performance of the Metaheuristic GAPOX

Based on the previous subsection, GAPOX presents the best performance compared to
the others. In this subsection, and based on the proposed lower bound (LB) (in Section 3.2.3;
Remark 2), a relative percent deviation (RPD) between LB and the obtained Cmax was used
to assess the performance of the proposed algorithm. The relative percent deviation is
expressed as follows:

RPD =
CGAPOX − LB

LB
× 100

The RPD provides an upper bound on the relative absolute distance between the
makespan of the metaheuristic GAPOX and the optimal solution (which is unknown).
Indeed, if C∗max denotes the optimal value of the makespan, then LB ≤ C∗max ≤ CGAPOX .
Therefore,

RPD =
CGAPOX − LB

LB
× 100 ≥

CGAPOX − C∗max

C∗max
× 100.

Therefore, the RPD allows the solution quality to be evaluated. The related results are
detailed in Table 7. In the latter table, the used key performance measures are the average,
the minimum, and the maximum RPD, which are denoted, respectively, as Average, Min,
and Max.

Based on Table 7, the average relative deviation is ARPD = 0.06% for Class A and
ARPD = 0.11% for Class B. This is strong evidence that the proposed metaheuristic
performs well, since the ARPD is very low. This means that the provided solution is too
close to the optimal solution. In addition, the maximum ARPD for Classes A and B are,
respectively ARPD = 14.71% and ARPD = 15.60%. The maximum ARPD is obtained for
both n = 40 and m = 8.

Sustainability 2021, 13, 9277 20 of 29

Table 7. ARPD computational results for GA based on POX.

m n
ARPD (Class A) ARPD (Class B)

Average Min Max Average Min Max

2

10 0.04% 0.00% 4.35% 0.00% 0.00% 0.00%
20 0.03% 0.00% 1.61% 0.00% 0.00% 0.00%
40 0.00% 0.00% 0.00% 0.00% 0.00% 0.19%
50 0.10% 0.00% 8.16% 0.09% 0.00% 3.53%
200 0.00% 0.00% 0.00% 0.00% 0.00% 0.01%

3

10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
20 0.02% 0.00% 2.17% 0.01% 0.00% 1.18%
40 0.02% 0.00% 1.28% 0.06% 0.00% 1.40%
50 0.00% 0.00% 0.33% 0.06% 0.00% 3.92%
200 0.00% 0.00% 0.00% 0.00% 0.00% 0.03%

5

10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
20 0.17% 0.00% 6.25% 0.12% 0.00% 4.92%
40 0.29% 0.00% 10.42% 0.22% 0.00% 3.47%
50 0.12% 0.00% 6.25% 0.19% 0.00% 3.94%
200 0.00% 0.00% 0.43% 0.03% 0.00% 0.20%

8

10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
20 0.20% 0.00% 10.00% 0.00% 0.00% 0.00%
40 0.15% 0.00% 14.71% 0.63% 0.00% 15.60%
50 0.02% 0.00% 2.38% 0.56% 0.00% 3.75%
200 0.00% 0.00% 0.00% 0.17% 0.00% 0.67%

Average 0.06% 0.00% 3.42% 0.11% 0.00% 2.14%

The minimum ARPD for each m is observed for n = 10 and n = 200. For each number
of machines, m, the ARPD presents a maximum for a certain number of jobs n; for example,
for m = 8, the maximum is reached for n = 20 (Class A). This maximum depends on m.

6.3.3. Comparison of MILP with GAPOX

Since the problem is NP-hard in the strong sense, developing an exact method (MILP)
to solve small instances for the studied problem could be useful. Indeed, the solution
for MILP can provide a good basis for the experimental assessment of the developed
approximation approach GAPOX . In this study, the MILP (as expected) is able to optimally
solve only small-sized instances within an acceptable computational time. In order to test
the efficiency of the proposed GAPOX , the optimal solution CMILP provided by MILP (for
n = 10, m = 2 and 3) was compared to the results obtained by GAPOX, throughout the
computational time (Time) and the relative percent deviation, as follows:

RPD =
CGAPOX − CMILP

CMILP
× 100

The results are reported in Table 8. Based on this table, we observe that the optimal
solution is reached by the GAPOX for all the instances within an average time of 0.01 s.
Consequently, this represents a preliminary satisfactory result for GAPOX . In addition, we
observe that the MILP procedure is a time-consuming procedure, since for some small-sized
instances, the average computation time exceeds 1000 s.

6.3.4. GAPOX Metaheuristic Comparison with Existing Methods

To evaluate the performance of GAPOX, a comparison with existing methods [45]
was performed. The comparison was carried out on the same test problems. The existing
methods are a set of four heuristics, namely, HEP−EP, HMS−MS, HEP−MS, and HMS−EP. These
heuristics are two-phase procedures. In the first phase, a feasible solution is produced,
while in the second phase, an improvement procedure is carried out. These heuristics
are based on the Modified Schrage algorithm (MS) and/or Exact Procedure (EP) (see [45]

Sustainability 2021, 13, 9277 21 of 29

for more details). The comparison between the GAPOX and the four existing heuristics
was performed over ARPD relatively to the lower bound, LB. In addition, the average
computation time (TIME) was used to complete the comparison. The global results are
provided in Table 9.

Table 8. Comparison between MILP and GAPOX for n = 10, m = 2, and 3.

Class m k
ARPD (GAPOX: MILP) Time(s) for MILP Time(s) for GAPOX

Average Max Min Average Max Min Average Max Min

A

2

1 0.0% 0.0% 0.0% 796.91 1338.23 403.72 0.01 0.02 0.00
3 0.0% 0.0% 0.0% 70.80 251.40 2.13 0.08 0.38 0.00
5 0.0% 0.0% 0.0% 2.78 4.61 2.11 0.00 0.02 0.00
7 0.0% 0.0% 0.0% 2.16 2.24 2.11 0.00 0.00 0.00
10 0.0% 0.0% 0.0% 2.04 2.18 1.94 0.00 0.02 0.00

3

1 0.0% 0.0% 0.0% 646.37 1004.51 400.51 0.03 0.11 0.00
3 0.0% 0.0% 0.0% 13.22 41.31 2.13 0.00 0.02 0.00
7 0.0% 0.0% 0.0% 2.30 2.99 2.11 0.00 0.02 0.00
5 0.0% 0.0% 0.0% 2.44 2.89 2.21 0.00 0.02 0.00
10 0.0% 0.0% 0.0% 2.14 2.23 2.01 0.00 0.00 0.00

B

2

1 0.0% 0.0% 0.0% 542.67 948.22 136.01 0.00 0.02 0.00
3 0.0% 0.0% 0.0% 141.56 296.54 13.27 0.00 0.02 0.00
5 0.0% 0.0% 0.0% 73.25 178.50 2.35 0.01 0.02 0.00
7 0.0% 0.0% 0.0% 43.11 204.29 2.38 0.00 0.02 0.00
10 0.0% 0.0% 0.0% 2.22 2.33 2.11 0.00 0.00 0.00

3

1 0.0% 0.0% 0.0% 208.90 449.43 2.53 0.01 0.03 0.00
3 0.0% 0.0% 0.0% 64.19 269.87 2.24 0.01 0.02 0.00
5 0.0% 0.0% 0.0% 12.81 34.73 2.48 0.00 0.00 0.00
7 0.0% 0.0% 0.0% 2.89 5.10 2.17 0.00 0.02 0.00
10 0.0% 0.0% 0.0% 2.30 2.46 2.20 0.00 0.02 0.00

Average 0.0% 0.0% 0.0% 131.75 252.20 49.44 0.01 0.04 0.00

Table 9. Comparison of proposed GAPOX performance with literature results all instances.

GPOX HEP−EP HMS−MS HEP−MS HMS−EP

Instances ARPD TIME ARPD TIME ARPD TIME ARPD TIME ARPD TIME

Class A 0.06% 0.28 0.97% 0.30 4.99% 0.08 0.19% 0.36 1.38% 0.32

Class B 0.11% 13.08 0.08% 27.22 9.90% 0.26 0.09% 22.59 2.15% 13.26

All 0.085% 6.310 0.525% 13.760 7.445% 0.170 0.140% 11.475 1.765% 6.790

Based on Table 9, the GPOX outperforms the existing heuristics since it reaches the
minimum ARPD, which is ARPD = 0.085%, for all test problems. In addition, the average
computational time is satisfactory with Time = 6.310 s, which is ranked second after the
HMS−MS algorithm. Indeed, HMS−MS is a polynomial heuristic. This heuristic should
be discarded due to its high ARPD7.445%. In addition, the reduction in the ARPD is
100 × {(0.140− 0.085)/0.140} = 39.29% compared to the best previous heuristic, HEP−MS.
This provides strong evidence of the efficiency and the performance of the GPOX meta-
heuristic. More detailed results are presented in Tables 10 and 11.

Based on Table 10, the GPOX outperforms the existing heuristics since it reaches the
minimum average relative gap, which is ARPD = 0.06%. In addition, for all combinations
(n, m), GPOX presents the minimum ARPD compared to the other heuristics. For Class
B, and based on Table 10, the GPOX almost presents the best ARPD with GAP = 0.11%
versus GAP = 0.08% for the HEP−EP heuristic. However, in terms of the average time,
Time = 13.08 s for GPOX and Time = 27.22 s for HEP−MS. Therefore, globally, the GPOX
outperforms the existing heuristics. Remarkably, the average consumed time for GAPOX is

Sustainability 2021, 13, 9277 22 of 29

almost linear compared to the number of jobs n. This remark could be further investigated
in future research works.

Table 10. Comparison of GAPOX performance with existing heuristics for Class A.

m n
GPOX HEP−EP HMS−MS HEP−MS HMS−EP

ARPD TIME ARPD TIME ARPD TIME ARPD TIME ARPD TIME

2

10 0.04% 1.49 0.63% 0.01 5.82% 0.01 0.07% 0.01 0.60% 0.02
20 0.03% 2.25 0.92% 0.01 7.45% 0.02 0.42% 0.01 1.44% 0.02
40 0.00% 3.74 0.20% 0.03 8.88% 0.02 0.04% 0.02 0.89% 0.03
50 0.10% 4.43 0.49% 0.04 9.07% 0.02 0.08% 0.04 0.76% 0.06

200 0.00% 18.72 0.34% 1.60 11.06% 0.17 0.13% 2.26 1.51% 3.28

3

10 0.00% 1.52 2.22% 0.02 4.14% 0.02 0.29% 0.01 1.02% 0.01
20 0.02% 2.31 0.89% 0.02 5.94% 0.03 0.22% 0.02 2.13% 0.03
40 0.02% 3.89 0.41% 0.04 5.89% 0.04 0.07% 0.03 1.93% 0.05
50 0.00% 4.63 0.57% 0.06 6.80% 0.04 0.06% 0.05 1.85% 0.06

200 0.00% 19.52 0.93% 1.51 8.59% 0.22 0.28% 1.76 3.69% 1.23

5

10 0.00% 1.49 2.07% 0.02 1.69% 0.01 0.00% 0.01 0.82% 0.02
20 0.17% 2.30 1.92% 0.04 2.84% 0.03 0.00% 0.03 0.80% 0.04
40 0.29% 3.91 0.55% 0.05 3.60% 0.06 0.17% 0.02 1.24% 0.07
50 0.12% 4.65 0.87% 0.07 4.37% 0.05 0.20% 0.05 2.21% 0.06

200 0.00% 19.93 1.09% 1.15 5.43% 0.29 0.43% 1.26 2.95% 0.54

8

10 0.00% 1.44 0.00% 0.01 0.30% 0.02 0.00% 0.01 0.00% 0.02
20 0.20% 2.28 1.83% 0.06 1.73% 0.05 0.01% 0.04 0.69% 0.05
40 0.15% 3.86 0.67% 0.17 1.90% 0.07 0.02% 0.19 0.81% 0.09
50 0.02% 4.66 1.20% 0.09 1.74% 0.09 0.08% 0.08 0.67% 0.11

200 0.00% 20.46 1.52% 0.98 2.61% 0.43 1.20% 1.20 1.68% 0.57

Average 0.06% 6.37 0.97% 0.30 4.99% 0.08 0.19% 0.36 1.38% 0.32

Table 11. Comparison of GAPOX performance with existing heuristics for Class B.

m n
GPOX HEP−EP HMS−MS HEP−MS HMS−EP

ARPD TIME ARPD TIME ARPD TIME ARPD TIME ARPD TIME

2

10 0.00% 1.36 0.00% 0.0.1 16.69% 0.02 0.00% 0.01 2.40% 0.02
20 0.00% 2.01 0.00% 0.05 12.26% 0.03 0.00% 0.05 0.83% 0.03
40 0.00% 3.77 0.00% 0.05 7.23% 0.02 0.00% 0.05 0.00% 0.11
50 0.09% 4.26 0.00% 0.17 5.84% 0.03 0.00% 0.17 0.90% 0.09

200 0.00% 19.43 0.00% 16.78 1.13% 0.35 0.00% 20.13 0.00% 19.43

3

10 0.00% 1.45 0.00% 0.01 9.39% 0.02 0.00% 0.01 2.99% 0.02
20 0.01% 2.28 0.00% 0.01 17.70% 0.05 0.00% 0.01 5.83% 0.05
40 0.06% 3.85 0.00% 0.13 10.99% 0.05 0.00% 0.13 0.67% 0.19
50 0.06% 4.33 0.00% 0.13 8.82% 0.08 0.00% 0.13 1.13% 0.59

200 0.00% 20.93 0.01% 99.53 1.94% 0.75 0.01% 76.37 0.46% 49.31

5

10 0.00% 1.47 0.00% 0.01 0.82% 0.02 0.00% 0.01 0.00% 0.02
20 0.12% 2.36 0.00% 0.02 18.82% 0.09 0.00% 0.02 7.54% 0.08
40 0.22% 3.59 0.08% 25.44 15.63% 0.21 0.14% 25.42 3.16% 0.76
50 0.19% 4.29 0.00% 12.42 13.77% 0.22 0.05% 12.43 1.68% 0.41

200 0.03% 19.20 0.01% 91.85 3.90% 0.90 0.04% 87.51 0.45% 67.88

8

10 0.00% 1.50 0.00% 0.01 0.00% 0.01 0.00% 0.01 0.00% 0.01
20 0.00% 2.23 0.00% 0.01 0.71% 0.05 0.00% 0.01 0.00% 0.05
40 0.63% 3.58 1.08% 72.51 24.99% 0.43 1.16% 72.77 6.96% 0.47
50 0.56% 4.26 0.28% 55.41 20.89% 0.36 0.28% 55.47 7.46% 0.37

200 0.17% 18.79 0.06% 142.64 6.40% 1.41 0.19% 101.17 0.58% 125.34

Average 0.11% 6.25 0.08% 27.22 9.90% 0.26 0.09% 22.59 2.15% 13.26

Sustainability 2021, 13, 9277 23 of 29

6.4. Green Aspect Analysis

The objective of this study was to reduce the total consumed energy by the elimination
of idle energy. This section aims to numerically evaluate the efficiency of the proposed
methods to achieve this goal. In this context, for each test problem, the GPOX algorithm
was applied first with the no-idle constraint and then without the no-idle constraint. The
two obtained respective schedules are denoted as SNI (schedule with no idle) and SI
(schedule with idle). The respective makespans are denoted as CSNI and CSI . In addition,
the consumed energy is assumed to be proportional to the duration [2]. In other terms, if
T is a period of time and E is the corresponding consumed energy, then a positive real k
exists, such that:

E = k× T.

Therefore, the percent of saved idle energy, PSIE, is expressed as follows:

PSIE =
ISI

∑n
i=1 pi + ISI

× 100

where ISI is the total idle time for the schedule, SI, which is proportional to the idle energy. The
expression ∑n

i=1 pi + ISI is proportional to the total consumed energy for the schedule SI.
In addition, PMA denotes the percent of makespan augmentation from SI to SNI.

PMA is expressed as follows:

PMA =
CSNI −CSI

CSI
× 100

In the following table (Table 12), the average PSIE (APSIE) and PMA (APMA) after
running the GPOX algorithm on all the test problems are presented.

Table 12. The green performance of GAPOX algorithm.

APSIE APMA

All 29.57% 0.12%

According to Table 12, an important reduction in the total consumed energy (29.57%)
was achieved by the elimination of idle machine times. In addition, only an augmentation
of 0.12% in the total cost is observed. This is strong evidence of the efficiency of the
proposed procedure in saving energy and enforcing the green scheduling benefits. More
detailed results are presented in Table 13.

Based on Table 12, the maximum APSIE and APMA were reached for (n = 200,
m = 2) and (n = 10, m = 2), respectively. In addition, APSIE and APMA decreased when
m increased. The same behavior was exhibited by APSIE and APMA when n increased.

Table 13. The detailed green performance of GAPOX algorithm.

m n APSIE % APMA %

2

10 24.40% 0.91%
20 32.14% 0.01%
40 34.94% 0.02%
50 34.38% 0.00%
200 43.20% 0.00%

3

10 20.98% 0.40%
20 28.90% 0.21%
40 33.20% 0.00%
50 34.51% 0.00%
200 40.81% 0.00%

Sustainability 2021, 13, 9277 24 of 29

Table 13. Cont.

m n APSIE % APMA %

5

10 11.89% 0.04%
20 26.14% 0.27%
40 31.58% 0.09%
50 32.10% 0.00%
200 40.62% 0.00%

8

10 5.47% 0.04%
20 19.01% 0.30%
40 28.40% 0.03%
50 30.54% 0.01%
200 38.24% 0.00%

All 29.57% 0.12%

7. Conclusions and Future Works

This study investigated a scheduling problem for m identical parallel machines under
release dates, delivery times, and no-idle time constraints. The objective was makespan
minimization. This problem is among the green scheduling problems since idle time is not
permitted. Indeed, during the idle time, the machine is available without processing jobs.
This is a waste of energy. By eliminating the idle time, the consumed energy is saved and
minimized; this is the green aspect of this problem. In order to solve the studied problem,
we propose a mixed-integer programming model (MILP) and a family of metaheuristics.
This is due to the NP-hardness of the studied problem. The family of metaheuristics is
composed of three variants of the GA and SA algorithm. The three variants of the GA are
based on three different crossover operators. In addition, a lower bound (LB) is proposed.
This lower bound was used to evaluate the produced solution. This was performed using
the relative percent deviation. Extensive computational experiments were carried out to
evaluate the performance and efficiency of the proposed procedures (metaheuristic MILP
and LB). The relative percent deviation and computation time were used as performance
measures. The MILP reached the optimal solution for small-sized instances. For large-sized
instances, the MILP was unable to reach the optimal solution. In addition, the numerical
results indicate the superiority of the proposed GAPOX in comparison to the MILP and the
remaining proposed metaheuristics. Furthermore, it was shown that GAPOX outperforms
the existing heuristics.

Future research works have to explore other metaheuristics and provide an efficient exact
algorithm for the studied problem. The proposed procedures in this work could be useful as
initial point for building such exact algorithms. In addition, more realistic constraints could
be included to study problems such as the setup times, the maintenance intervention dates,
or the machine unavailability constraints. Additionally, the investigation of other objective
functions, such as the total tardiness minimization, could be considered.

Author Contributions: The contributions of authors are as follows: modeling, resolution, and
writing, L.H.; modeling and software, A.A.; modeling and software, A.G.; software, B.B.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research at King Saud University
through research group no. RG-1439-001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at
King Saud University for funding this work through research group no. RG-1439-001.

Conflicts of Interest: The authors declare no conflict of interest.

Sustainability 2021, 13, 9277 25 of 29

Appendix A. Tuning Plots for the Metaheuristics

Sustainability 2021, 13, x FOR PEER REVIEW 25 of 29

and the remaining proposed metaheuristics. Furthermore, it was shown that ܣܩை out-
performs the existing heuristics.

Future research works have to explore other metaheuristics and provide an efficient
exact algorithm for the studied problem. The proposed procedures in this work could be
useful as initial point for building such exact algorithms. In addition, more realistic con-
straints could be included to study problems such as the setup times, the maintenance
intervention dates, or the machine unavailability constraints. Additionally, the investiga-
tion of other objective functions, such as the total tardiness minimization, could be con-
sidered.

Author Contributions: The contributions of authors are as follows: modeling, resolution, and writ-
ing, L.H.; modeling and software, A.A.; modeling and software, A.G.; software, B.B.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research at King Saud University
through research group no. RG-1439-001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at
King Saud University for funding this work through research group no. RG-1439-001.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Tuning Plots for the Metaheuristics

1208040

0.7

0.6

0.5

0.4

0.3

0.950.750.40

0.90.50.2

0.7

0.6

0.5

0.4

0.3

100001000100

Population Size

M
ea

n
of

 M
ea

ns

Crossover Rate

Mutation Rate Stopping Condit ion

Main Effects Plot for Means
Data Means

Figure A1. Parameter effect on the ܦܴܲܣ with ݊ = 10. Figure A1. Parameter effect on the ARPD with n = 10.

Sustainability 2021, 13, x FOR PEER REVIEW 26 of 29

1208040

7

6

5

4

3

0.950.750.40

0.90.50.2

7

6

5

4

3

100001000100

Population Size

M
ea

n
of

 M
ea

ns

Crossover Rate

Mutation Rate Stopping Condit ion

Main Effects Plot for Means
Data Means

Figure A2. Parameter effect on the ܦܴܲܣ with ݊ = 20.

1208040

16

14

12

10

8

0.950.750.40

0.90.50.2

16

14

12

10

8

100001000100

Populat ion Size

M
ea

n
of

 M
ea

ns

Crossover Rate

Mutat ion Rate Stopping Condit ion

Main Effects Plot for Means
Data Means

Figure A3. Parameter effect on the ܦܴܲܣ with ݊ = 40.

1208040

2.5

2.0

1.5

1.0

0.5

0.950.750.40

0.90.50.2

2.5

2.0

1.5

1.0

0.5

100001000100

Population Size

M
ea

n
of

 M
ea

ns

Crossover Rate

Mutation Rate Stopping Condition

Main Effects Plot for Means
Data Means

Figure A4. Parameter effect on the ܦܴܲܣ with ݊ = 50.

Figure A2. Parameter effect on the ARPD with n = 20.

Sustainability 2021, 13, x FOR PEER REVIEW 26 of 29

1208040

7

6

5

4

3

0.950.750.40

0.90.50.2

7

6

5

4

3

100001000100

Population Size

M
ea

n
of

 M
ea

ns

Crossover Rate

Mutation Rate Stopping Condit ion

Main Effects Plot for Means
Data Means

Figure A2. Parameter effect on the ܦܴܲܣ with ݊ = 20.

1208040

16

14

12

10

8

0.950.750.40

0.90.50.2

16

14

12

10

8

100001000100

Populat ion Size

M
ea

n
of

 M
ea

ns

Crossover Rate

Mutat ion Rate Stopping Condit ion

Main Effects Plot for Means
Data Means

Figure A3. Parameter effect on the ܦܴܲܣ with ݊ = 40.

1208040

2.5

2.0

1.5

1.0

0.5

0.950.750.40

0.90.50.2

2.5

2.0

1.5

1.0

0.5

100001000100

Population Size

M
ea

n
of

 M
ea

ns

Crossover Rate

Mutation Rate Stopping Condition

Main Effects Plot for Means
Data Means

Figure A4. Parameter effect on the ܦܴܲܣ with ݊ = 50.

Figure A3. Parameter effect on the ARPD with n = 40.

Sustainability 2021, 13, 9277 26 of 29

Sustainability 2021, 13, x FOR PEER REVIEW 26 of 29

1208040

7

6

5

4

3

0.950.750.40

0.90.50.2

7

6

5

4

3

100001000100

Population Size

M
ea

n
of

 M
ea

ns

Crossover Rate

Mutation Rate Stopping Condit ion

Main Effects Plot for Means
Data Means

Figure A2. Parameter effect on the ܦܴܲܣ with ݊ = 20.

1208040

16

14

12

10

8

0.950.750.40

0.90.50.2

16

14

12

10

8

100001000100

Populat ion Size

M
ea

n
of

 M
ea

ns

Crossover Rate

Mutat ion Rate Stopping Condit ion

Main Effects Plot for Means
Data Means

Figure A3. Parameter effect on the ܦܴܲܣ with ݊ = 40.

1208040

2.5

2.0

1.5

1.0

0.5

0.950.750.40

0.90.50.2

2.5

2.0

1.5

1.0

0.5

100001000100

Population Size

M
ea

n
of

 M
ea

ns

Crossover Rate

Mutation Rate Stopping Condition

Main Effects Plot for Means
Data Means

Figure A4. Parameter effect on the ܦܴܲܣ with ݊ = 50. Figure A4. Parameter effect on the ARPD with n = 50.

Sustainability 2021, 13, x FOR PEER REVIEW 27 of 29

1208040

10

9

8

7
0.950.750.40

0.90.50.2

10

9

8

7
100001000100

Populat ion Size

M
ea

n
of

 M
ea

ns

Crossover Rate

Mutat ion Rate Stopping Condit ion

Main Effects Plot for Means
Data Means

Figure A5. Parameter effect on the ܦܴܲܣ with ݊ = 200.

500000050005

20

15

10

100001000100

0.950.750.50

20

15

10

1507510

Temperture

M
ea

n
of

 M
ea

ns

MAX_ITER

ALPHA NT_Factor

Main Effects Plot for Means
Data Means

Figure A6. Parameter effect on SA results.

References
1. Cota, L.P.; Guimarães, F.G.; Ribeiro, R.G.; Meneghini, I.R.; de Oliveira, F.B.; Souza, M.J.; Siarry, P. An adaptive multi-objective

algorithm based on decomposition and large neighborhood search for a green machine scheduling problem. Swarm Evol. Com-
put. 2019, 51, 100601, doi:10.1016/j.swevo.2019.100601.

2. Gao, K.; Huang, Y.; Sadollah, A.; Wang, L. A review of energy-efficient scheduling in intelligent production systems. Complex
Intell. Syst. 2019, 6, 1–13.

3. Lora, A.T.; Riquelme, J.C.; Ramos, J.L.M.; Santos, J.M.R.; Expósito, A.G. Application of Evolutionary Computation Techniques
to the Optimal Short-Term Scheduling of the Electrical Energy Production. In Conference on Technology Transfer; Springer: Ber-
lin/Heidelberg, Germany, 2003; pp. 656–665.

4. He, Y.; Liu, F.; Cao, H.-J.; Li, C.-B. A bi-objective model for job-shop scheduling problem to minimize both energy consumption
and makespan. J. Central South Univ. Technol. 2005, 12, 167–171, doi:10.1007/s11771-005-0033-x.

5. Pinedo, M.J.L. Scheduling: Theory, Algorithms, and Systems; Springer Science & Business Media: New York, NY, USA, 2012.
6. Módos, I.; Šůcha, P.; Hanzálek, Z. Algorithms for robust production scheduling with energy consumption limits. Comput. Ind.

Eng. 2017, 112, 391–408.
7. Plitsos, S.; Repoussis, P.P.; Mourtos, I.; Tarantilis, C.D. Energy-aware decision support for production scheduling. Decis. Support

Syst. 2017, 93, 88–97.
8. Lei, D.; Zheng, Y.; Guo, X. A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy

consumption. Int. J. Prod. Res. 2016, 55, 3126–3140, doi:10.1080/00207543.2016.1262082.
9. Mouzon, G.; Yildirim, M.B.; Twomey, J. Operational methods for minimization of energy consumption of manu-facturing

equipment. Int. J. Prod. Res. 2007, 45, 4247–4271.
10. Li, L.; Sun, Z.; Yao, X.; Wang, D. Optimal production scheduling for energy efficiency improvement in biofuel feedstock pre-

processing considering work-in-process particle separation. Energy 2016, 96, 474–481, doi:10.1016/j.energy.2015.12.063.
11. Mouzon, G.C.; Yildirim, M.B. A framework to minimise total energy consumption and total tardiness on a single machine. Int.

J. Sustain. Eng. 2008, 1, 105–116, doi:10.1080/19397030802257236.

Figure A5. Parameter effect on the ARPD with n = 200.

Sustainability 2021, 13, x FOR PEER REVIEW 27 of 29

1208040

10

9

8

7
0.950.750.40

0.90.50.2

10

9

8

7
100001000100

Populat ion Size

M
ea

n
of

 M
ea

ns

Crossover Rate

Mutat ion Rate Stopping Condit ion

Main Effects Plot for Means
Data Means

Figure A5. Parameter effect on the ܦܴܲܣ with ݊ = 200.

500000050005

20

15

10

100001000100

0.950.750.50

20

15

10

1507510

Temperture

M
ea

n
of

 M
ea

ns

MAX_ITER

ALPHA NT_Factor

Main Effects Plot for Means
Data Means

Figure A6. Parameter effect on SA results.

References
1. Cota, L.P.; Guimarães, F.G.; Ribeiro, R.G.; Meneghini, I.R.; de Oliveira, F.B.; Souza, M.J.; Siarry, P. An adaptive multi-objective

algorithm based on decomposition and large neighborhood search for a green machine scheduling problem. Swarm Evol. Com-
put. 2019, 51, 100601, doi:10.1016/j.swevo.2019.100601.

2. Gao, K.; Huang, Y.; Sadollah, A.; Wang, L. A review of energy-efficient scheduling in intelligent production systems. Complex
Intell. Syst. 2019, 6, 1–13.

3. Lora, A.T.; Riquelme, J.C.; Ramos, J.L.M.; Santos, J.M.R.; Expósito, A.G. Application of Evolutionary Computation Techniques
to the Optimal Short-Term Scheduling of the Electrical Energy Production. In Conference on Technology Transfer; Springer: Ber-
lin/Heidelberg, Germany, 2003; pp. 656–665.

4. He, Y.; Liu, F.; Cao, H.-J.; Li, C.-B. A bi-objective model for job-shop scheduling problem to minimize both energy consumption
and makespan. J. Central South Univ. Technol. 2005, 12, 167–171, doi:10.1007/s11771-005-0033-x.

5. Pinedo, M.J.L. Scheduling: Theory, Algorithms, and Systems; Springer Science & Business Media: New York, NY, USA, 2012.
6. Módos, I.; Šůcha, P.; Hanzálek, Z. Algorithms for robust production scheduling with energy consumption limits. Comput. Ind.

Eng. 2017, 112, 391–408.
7. Plitsos, S.; Repoussis, P.P.; Mourtos, I.; Tarantilis, C.D. Energy-aware decision support for production scheduling. Decis. Support

Syst. 2017, 93, 88–97.
8. Lei, D.; Zheng, Y.; Guo, X. A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy

consumption. Int. J. Prod. Res. 2016, 55, 3126–3140, doi:10.1080/00207543.2016.1262082.
9. Mouzon, G.; Yildirim, M.B.; Twomey, J. Operational methods for minimization of energy consumption of manu-facturing

equipment. Int. J. Prod. Res. 2007, 45, 4247–4271.
10. Li, L.; Sun, Z.; Yao, X.; Wang, D. Optimal production scheduling for energy efficiency improvement in biofuel feedstock pre-

processing considering work-in-process particle separation. Energy 2016, 96, 474–481, doi:10.1016/j.energy.2015.12.063.
11. Mouzon, G.C.; Yildirim, M.B. A framework to minimise total energy consumption and total tardiness on a single machine. Int.

J. Sustain. Eng. 2008, 1, 105–116, doi:10.1080/19397030802257236.

Figure A6. Parameter effect on SA results.

Sustainability 2021, 13, 9277 27 of 29

References
1. Cota, L.P.; Guimarães, F.G.; Ribeiro, R.G.; Meneghini, I.R.; de Oliveira, F.B.; Souza, M.J.; Siarry, P. An adaptive multi-objective

algorithm based on decomposition and large neighborhood search for a green machine scheduling problem. Swarm Evol. Comput.
2019, 51, 100601. [CrossRef]

2. Gao, K.; Huang, Y.; Sadollah, A.; Wang, L. A review of energy-efficient scheduling in intelligent production systems. Complex
Intell. Syst. 2019, 6, 1–13. [CrossRef]

3. Lora, A.T.; Riquelme, J.C.; Ramos, J.L.M.; Santos, J.M.R.; Expósito, A.G. Application of Evolutionary Computation Techniques
to the Optimal Short-Term Scheduling of the Electrical Energy Production. In Conference on Technology Transfer; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 656–665.

4. He, Y.; Liu, F.; Cao, H.-J.; Li, C.-B. A bi-objective model for job-shop scheduling problem to minimize both energy consumption
and makespan. J. Central South Univ. Technol. 2005, 12, 167–171. [CrossRef]

5. Pinedo, M.J.L. Scheduling: Theory, Algorithms, and Systems; Springer Science & Business Media: New York, NY, USA, 2012.
6. Módos, I.; Šůcha, P.; Hanzálek, Z. Algorithms for robust production scheduling with energy consumption limits. Comput. Ind.

Eng. 2017, 112, 391–408. [CrossRef]
7. Plitsos, S.; Repoussis, P.P.; Mourtos, I.; Tarantilis, C.D. Energy-aware decision support for production scheduling. Decis. Support

Syst. 2017, 93, 88–97. [CrossRef]
8. Lei, D.; Zheng, Y.; Guo, X. A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy

consumption. Int. J. Prod. Res. 2016, 55, 3126–3140. [CrossRef]
9. Mouzon, G.; Yildirim, M.B.; Twomey, J. Operational methods for minimization of energy consumption of manu-facturing

equipment. Int. J. Prod. Res. 2007, 45, 4247–4271. [CrossRef]
10. Li, L.; Sun, Z.; Yao, X.; Wang, D. Optimal production scheduling for energy efficiency improvement in biofuel feedstock

preprocessing considering work-in-process particle separation. Energy 2016, 96, 474–481. [CrossRef]
11. Mouzon, G.C.; Yildirim, M.B. A framework to minimise total energy consumption and total tardiness on a single machine. Int. J.

Sustain. Eng. 2008, 1, 105–116. [CrossRef]
12. Benedikt, O.; Alikoç, B.; Šůcha, P.; Čelikovský, S.; Hanzálek, Z. A polynomial-time scheduling approach to minimise idle energy

consumption: An application to an industrial furnace. Comput. Oper. Res. 2021, 128, 105167. [CrossRef]
13. Benedikt, O.; Šůcha, P.; Hanzalek, Z. On Idle Energy Consumption Minimization in Production: Industrial Example and

Mathematical Model. arXiv 2005, arXiv:2005.06270.
14. Baykasoğlu, A.; Ozsoydan, F.B. Dynamic scheduling of parallel heat treatment furnaces: A case study at a manufacturing system.

J. Manuf. Syst. 2018, 46, 152–162. [CrossRef]
15. Wang, S.; Wang, X.; Yu, J.; Ma, S.; Liu, M. Bi-objective identical parallel machine scheduling to minimize total energy consumption

and makespan. J. Clean. Prod. 2018, 193, 424–440. [CrossRef]
16. Moon, I.; Jeong, Y.; Saha, S. Fuzzy Bi-Objective Production-Distribution Planning Problem under the Carbon Emission Constraint.

Sustainability 2016, 8, 798. [CrossRef]
17. Jeong, Y.; Saha, S.; Chatterjee, D.; Moon, I. Direct shipping service routes with an empty container management strategy. Transp.

Res. Part E Logist. Transp. Rev. 2018, 118, 123–142. [CrossRef]
18. Mokotoff, E.J.A.-P. Parallel machine scheduling problems: A survey. Asia-Pac. J. Oper. Res. 2001, 18, 193.
19. Chang, P.; Chen, S.; Lin, K. Two-phase sub population genetic algorithm for parallel machine-scheduling problem. Expert Syst.

Appl. 2005, 29, 705–712. [CrossRef]
20. Chen, Z.-L.; Powell, W.B. Solving Parallel Machine Scheduling Problems by Column Generation. Inf. J. Comput. 1999, 11, 78–94.

[CrossRef]
21. Cheng, R.; Gen, M. Parallel machine scheduling problems using memetic algorithms. In Proceedings of the 1996 IEEE International

Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No. 96CH35929), Beijing, China,
14–17 October 1996; pp. 2665–2670.

22. Della Croce, F.; Grosso, A.; Salassa, F. Minimizing total completion time in the two-machine no-idle no-wait flow shop problem. J.
Heuristics 2021, 27, 159–173. [CrossRef]

23. Akyol, D.E.; Bayhan, G.M. Minimizing makespan on identical parallel machines using neural networks. In Proceedings of the
International Conference on Neural Information Processing, Hong Kong, China, 3–6 October 2006; pp. 553–562.

24. Shao, H.; Chen, H.-P.; Huang, G.Q.; Xu, R.; Cheng, B.-Y.; Wang, S.-S.; Liu, B.-W. Minimizing makespan for parallel batch
processing machines with non-identical job sizes using neural nets approach. In Proceedings of the 2008 3rd IEEE Conference on
Industrial Electronics and Applications, Singapore, 3–5 June 2008; pp. 1921–1924.

25. Raghavendra, B.; Murthy, A.; Rao, N. Some solution approaches to reduce the imbalance of workload in parallel machines while
planning in flexible manufacturing system. Int. J. Eng. Sci. Technol. 2010, 2, 724–730.

26. Rajakumar, S.; Arunachalam, V.P.; Selladurai, V. Workflow balancing in parallel machines through genetic algorithm. Int. J. Adv.
Manuf. Technol. 2007, 33, 1212–1221. [CrossRef]

27. Lee, W.-C.; Wu, C.-C.; Chen, P. A simulated annealing approach to makespan minimization on identical parallel machines. Int. J.
Adv. Manuf. Technol. 2006, 31, 328–334. [CrossRef]

28. Hashemian, N.; Diallo, C.; Vizvári, B. Makespan minimization for parallel machines scheduling with multiple availability
constraints. Ann. Oper. Res. 2012, 213, 173–186. [CrossRef]

http://doi.org/10.1016/j.swevo.2019.100601
http://doi.org/10.1007/s40747-019-00122-6
http://doi.org/10.1007/s11771-005-0033-x
http://doi.org/10.1016/j.cie.2017.08.011
http://doi.org/10.1016/j.dss.2016.09.017
http://doi.org/10.1080/00207543.2016.1262082
http://doi.org/10.1080/00207540701450013
http://doi.org/10.1016/j.energy.2015.12.063
http://doi.org/10.1080/19397030802257236
http://doi.org/10.1016/j.cor.2020.105167
http://doi.org/10.1016/j.jmsy.2017.12.005
http://doi.org/10.1016/j.jclepro.2018.05.056
http://doi.org/10.3390/su8080798
http://doi.org/10.1016/j.tre.2018.07.009
http://doi.org/10.1016/j.eswa.2005.04.033
http://doi.org/10.1287/ijoc.11.1.78
http://doi.org/10.1007/s10732-019-09430-z
http://doi.org/10.1007/s00170-006-0553-z
http://doi.org/10.1007/s00170-005-0188-5
http://doi.org/10.1007/s10479-012-1059-8

Sustainability 2021, 13, 9277 28 of 29

29. Ouazene, Y.; Yalaoui, F.; Yalaoui, A.; Chehade, H. Theoretical Analysis of Workload Imbalance Minimization Problem on Identical
Parallel Machines. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Da Nang, Vietnam,
14–16 March 2016; pp. 296–303.

30. Anghinolfi, D.; Paolucci, M.; Ronco, R. A bi-objective heuristic approach for green identical parallel machine scheduling. Eur. J.
Oper. Res. 2021, 289, 416–434. [CrossRef]

31. Safarzadeh, H.; Niaki, S.T.A. Bi-objective green scheduling in uniform parallel machine environments. J. Clean. Prod.
2019, 217, 559–572. [CrossRef]

32. Saberi-Aliabad, H.; Reisi-Nafchi, M.; Moslehi, G. Energy-efficient scheduling in an unrelated parallel-machine environment
under time-of-use electricity tariffs. J. Clean. Prod. 2020, 249, 119393. [CrossRef]

33. Soleimani, H.; Ghaderi, H.; Tsai, P.-W.; Zarbakhshnia, N.; Maleki, M. Scheduling of unrelated parallel machines consider-
ing sequence-related setup time, start time-dependent deterioration, position-dependent learning and power consumption
minimization. J. Clean. Prod. 2020, 249, 119428. [CrossRef]

34. Li, K.; Zhang, X.; Leung, J.Y.T.; Yang, S.L. Parallel machine scheduling problems in green manufacturing industry. J. Manuf. Syst.
2016, 38, 98–106. [CrossRef]

35. Módos, I.; Šucha, P.; Hanzálek, Z. On parallel dedicated machines scheduling under energy consumption limit. Comput. Ind. Eng.
2021, 159, 107209. [CrossRef]

36. Jia, Z.-H.; Zhang, Y.-L.; Leung, J.Y.-T.; Li, K. Bi-criteria ant colony optimization algorithm for minimizing makespan and energy
consumption on parallel batch machines. Appl. Soft Comput. 2017, 55, 226–237. [CrossRef]

37. Chou, Y.-L.; Yang, J.-M.; Wu, C.-H. An energy-aware scheduling algorithm under maximum power consumption constraints. J.
Manuf. Syst. 2020, 57, 182–197. [CrossRef]

38. Wu, X.; Che, A. A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega
2019, 82, 155–165. [CrossRef]

39. Kong, M.; Pei, J.; Liu, X.; Lai, P.-C.; Pardalos, P.M. Green manufacturing: Order acceptance and scheduling subject to the budgets
of energy consumption and machine launch. J. Clean. Prod. 2020, 248, 119300. [CrossRef]

40. Abikarram, J.B.; McConky, K.; Proano, R. Energy cost minimization for unrelated parallel machine scheduling under real time
and demand charge pricing. J. Clean. Prod. 2019, 208, 232–242. [CrossRef]

41. Wang, Y.; Jia, Z.-H.; Li, K. A multi-objective co-evolutionary algorithm of scheduling on parallel non-identical batch machines.
Expert Syst. Appl. 2021, 167, 114145. [CrossRef]

42. Liang, P.; Yang, H.-D.; Liu, G.-S.; Guo, J.-H. An Ant Optimization Model for Unrelated Parallel Machine Scheduling with Energy
Consumption and Total Tardiness. Math. Probl. Eng. 2015, 2015, 1–8. [CrossRef]

43. Antoniadis, A.; Garg, N.; Kumar, G.; Kumar, N. Parallel Machine Scheduling to Minimize Energy Consumption. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms; Society for Industrial & Applied Mathematics (SIAM):
Philadelphia, PA, USA, 2020; pp. 2758–2769.

44. Brauner, N.; Kovalyov, M.Y.; Quilliot, A.; Toussaint, H. No-idle parallel-machine scheduling of unit-time jobs with a small number
of distinct release dates and deadlines. Comput. Oper. Res. 2021, 132, 105315. [CrossRef]

45. Hidri, L.; Al-Samhan, A.M.; Mabkhot, M.M. Bounding Strategies for the Parallel Processors Scheduling Problem With No-Idle
Time Constraint, Release Date, and Delivery Time. IEEE Access 2019, 7, 170392–170405. [CrossRef]

46. Hermès, F.; Ghédira, K. Scheduling Jobs with Releases Dates and Delivery Times on M Identical Non-idling Machines. In
Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics, Madrid, Spain, 26–28 July
2017; Volume 1, pp. 82–91. [CrossRef]

47. Graham, R.; Lawler, E.; Lenstra, J.; Kan, A. Optimization and approximation in deterministic sequencing and scheduling: A
survey. Ann. Discret. Math. 1979, 5, 287–326.

48. Gharbi, A.; Haouari, M. Minimizing makespan on parallel machines subject to release dates and delivery times. J. Sched.
2002, 5, 329–355. [CrossRef]

49. Soares, L.C.R.; Carvalho, M.A.M. Biased random-key genetic algorithm for scheduling identical parallel machines with tooling
constraints. Eur. J. Oper. Res. 2020, 285, 955–964. [CrossRef]

50. Zhou, S.; Xie, J.; Du, N.; Pang, Y. A random-keys genetic algorithm for scheduling unrelated parallel batch processing machines
with different capacities and arbitrary job sizes. Appl. Math. Comput. 2018, 334, 254–268. [CrossRef]

51. Sheremetov, L.; Martínez-Muñoz, J.; Chi-Chim, M. Two-stage genetic algorithm for parallel machines scheduling problem: Cyclic
steam stimulation of high viscosity oil reservoirs. Appl. Soft Comput. 2018, 64, 317–330. [CrossRef]

52. Xiao, J.; Yang, H.; Zhang, C.; Zheng, L.; Gupta, J.N. A hybrid Lagrangian-simulated annealing-based heuristic for the parallel-
machine capacitated lot-sizing and scheduling problem with sequence-dependent setup times. Comput. Oper. Res. 2015, 63, 72–82.
[CrossRef]

53. Liao, T.W.; Su, P. Parallel machine scheduling in fuzzy environment with hybrid ant colony optimization including a comparison
of fuzzy number ranking methods in consideration of spread of fuzziness. Appl. Soft Comput. 2017, 56, 65–81. [CrossRef]

54. Lei, D.; Liu, M. An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive
maintenance. Comput. Ind. Eng. 2020, 141, 106320. [CrossRef]

55. Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M.; Chakrabortty, R.; Ryan, M. A Simple and Effective Approach for Tackling
the Permutation Flow Shop Scheduling Problem. Mathematics 2021, 9, 270. [CrossRef]

http://doi.org/10.1016/j.ejor.2020.07.020
http://doi.org/10.1016/j.jclepro.2019.01.166
http://doi.org/10.1016/j.jclepro.2019.119393
http://doi.org/10.1016/j.jclepro.2019.119428
http://doi.org/10.1016/j.jmsy.2015.11.006
http://doi.org/10.1016/j.cie.2021.107209
http://doi.org/10.1016/j.asoc.2017.01.044
http://doi.org/10.1016/j.jmsy.2020.09.004
http://doi.org/10.1016/j.omega.2018.01.001
http://doi.org/10.1016/j.jclepro.2019.119300
http://doi.org/10.1016/j.jclepro.2018.10.048
http://doi.org/10.1016/j.eswa.2020.114145
http://doi.org/10.1155/2015/907034
http://doi.org/10.1016/j.cor.2021.105315
http://doi.org/10.1109/ACCESS.2019.2954905
http://doi.org/10.5220/0006428100820091
http://doi.org/10.1002/jos.103
http://doi.org/10.1016/j.ejor.2020.02.047
http://doi.org/10.1016/j.amc.2018.04.024
http://doi.org/10.1016/j.asoc.2017.12.021
http://doi.org/10.1016/j.cor.2015.04.010
http://doi.org/10.1016/j.asoc.2017.03.004
http://doi.org/10.1016/j.cie.2020.106320
http://doi.org/10.3390/math9030270

Sustainability 2021, 13, 9277 29 of 29

56. Holland, J.H. Genetic Algorithms and Adaptation. In Adaptive Control of Ill-Defined Systems; Springer: Boston, MA, USA, 1984;
pp. 317–333.

57. Hameed, M.A.; Jamsheela, O.; Robert, B.S. Relative performance of Roulette wheel GA and Rank GA is dependent on chromosome
parity. Mater. Today Proc. 2021, in press. [CrossRef]

58. Koohestani, B. A crossover operator for improving the efficiency of permutation-based genetic algorithms. Expert Syst. Appl.
2020, 151, 113381. [CrossRef]

59. Nitisiri, K.; Gen, M.; Ohwada, H. A parallel multi-objective genetic algorithm with learning based mutation for railway scheduling.
Comput. Ind. Eng. 2019, 130, 381–394. [CrossRef]

60. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef]

http://doi.org/10.1016/j.matpr.2021.03.311
http://doi.org/10.1016/j.eswa.2020.113381
http://doi.org/10.1016/j.cie.2019.02.035
http://doi.org/10.1126/science.220.4598.671

	Introduction
	Literature Review
	Classic Parallel Machine Scheduling Problem
	Green Parallel Machine Scheduling Problem with Energy Consumption Consideration
	Green Parallel Machine Scheduling Problem with Idle Energy Consideration
	Green Parallel Machine Scheduling Problem with Idle Machine Times Elimination
	Summary of Literature Review

	Problem Definition and Proprieties
	Problem Definition
	Problem Properties
	Complexity
	Symmetry
	Relationship between the Problems Pm|rj,qj|Cmax and Pm,NI|rj,qj|Cmax

	Mixed Integer Linear Formulation
	Metaheuristics Procedures
	Genetic Algorithms
	Chromosome Representation
	Initial Population
	Selection Operator
	Reproduction
	Crossover Operator
	Mutation
	Replacement Strategies

	Simulated Annealing

	Experimental Study and Results
	Data Set Generation
	Class A
	Class B

	Parameters Tuning
	Results and Discussions
	Metaheuristics Pairwise Comparison
	Performance of the Metaheuristic GAPOX
	Comparison of MILP with GAPOX
	GAPOX Metaheuristic Comparison with Existing Methods

	Green Aspect Analysis

	Conclusions and Future Works
	Tuning Plots for the Metaheuristics
	References

