Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. HHO Generator
2.2. Experimental Methodology and Test Fuels
3. Experimental Results and Discussion
3.1. Brake Specific Fuel Consumption
3.2. Brake Thermal Efficiency
4. ANN Application
4.1. Data Preprocessing
4.2. ANN Model
4.3. ANN Prediction Comparison and Discussion
5. RSM-Based Optimization
5.1. Selection of an Empirical Model
5.2. Analysis of Variance and Predicting Equations
5.3. Optimization Results and Validation
6. Comparison of ANN and RSM Models
7. Conclusions
- 10 LPM HHO with diesel was found to be most fuel efficient among all test fuels.
- HHO addition to the diesel improved BTE for all flow rates. Pure diesel showed the least BTE among all combinations of fuels.
- The correlation coefficients of training, testing, and validation of the ANN model came out to be 0.99998, 0.99988, and 0.99978 respectively. Moreover, MRE values were in the range of 1–3%.
- RSM identified all the study factors as statistically significant owing to p values less than 0.005.
- Optimum operating conditions for engine were 1000 rpm, 10 LPM HHO, and 45% loading condition.
- Composite desirability of 0.971 for multi-response optimization indicated the appropriate optimization setting.
- The experimental BSFC and BTE differed by 5.64% and 6.15% from RSM-optimized values.
- The ANN model proved better than RSM due to low RMSE and MRE values.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Usman, M.; Jamil, M.K.; Riaz, F.; Hussain, H.; Hussain, G.; Shah, M.H.; Qyyum, M.A.; Salman, C.A.; Lee, M. Refining and Reuse of Waste Lube Oil in SI Engines: A Novel Approach for a Sustainable Environment. Energies 2021, 14, 2937. [Google Scholar] [CrossRef]
- Archer, D. Fate of fossil fuel CO2 in geologic time. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Hussain, F.; Soudagar, M.E.M.; Afzal, A.; Mujtaba, M.; Fattah, I.; Naik, B.; Mulla, M.H.; Badruddin, I.A.; Khan, T.; Raju, V.D. Enhancement in Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Ce-ZnO Nanoparticle Additive Added to Soybean Biodiesel Blends. Energies 2020, 13, 4578. [Google Scholar] [CrossRef]
- Mujtaba, M.; Kalam, M.; Masjuki, H.; Gul, M.; Soudagar, M.E.M.; Ong, H.C.; Ahmed, W.; Atabani, A.; Razzaq, L.; Yusoff, M. Comparative study of nanoparticles and alcoholic fuel additives-biodiesel-diesel blend for performance and emission improvements. Fuel 2020, 279, 118434. [Google Scholar] [CrossRef]
- Mujtaba, M.; Masjuki, H.; Kalam, M.; Noor, F.; Farooq, M.; Ong, H.C.; Gul, M.; Soudagar, M.E.M.; Bashir, S.; Rizwanul Fattah, I. Effect of Additivized Biodiesel Blends on Diesel Engine Performance, Emission, Tribological Characteristics, and Lubricant Tribology. Energies 2020, 13, 3375. [Google Scholar] [CrossRef]
- Soudagar, M.E.M.; Banapurmath, N.R.; Afzal, A.; Hossain, N.; Abbas, M.M.; Haniffa, M.A.C.M.; Naik, B.; Ahmed, W.; Nizamuddin, S.; Mubarak, N.M. Study of diesel engine characteristics by adding nanosized zinc oxide and diethyl ether additives in Mahua biodiesel–diesel fuel blend. Sci. Rep. 2020, 10, 15326. [Google Scholar] [CrossRef]
- Mujtaba, M.A.; Muk Cho, H.; Masjuki, H.H.; Kalam, M.A.; Farooq, M.; Soudagar, M.E.M.; Gul, M.; Afzal, A.; Ahmed, W.; Raza, A.; et al. Effect of primary and secondary alcohols as oxygenated additives on the performance and emission characteristics of diesel engine. Energy Rep. 2021, 7, 1116–1124. [Google Scholar] [CrossRef]
- Kumar, M.S.; Ramesh, A.; Nagalingam, B. Use of hydrogen to enhance the performance of a vegetable oil fuelled compression ignition engine. Int. J. Hydrog. Energy 2003, 28, 1143–1154. [Google Scholar]
- Soudagar, M.E.M.; Afzal, A.; Safaei, M.R.; Manokar, A.M.; El-Seesy, A.I.; Mujtaba, M.A.; Samuel, O.D.; Badruddin, I.A.; Ahmed, W.; Shahapurkar, K.; et al. Investigation on the effect of cottonseed oil blended with different percentages of octanol and suspended MWCNT nanoparticles on diesel engine characteristics. J. Therm. Anal. Calorim. 2020. [Google Scholar] [CrossRef]
- Khan, H.; Soudagar, M.E.M.; Kumar, R.H.; Safaei, M.R.; Farooq, M.; Khidmatgar, A.; Banapurmath, N.R.; Farade, R.A.; Abbas, M.M.; Afzal, A. Effect of nano-graphene oxide and n-butanol fuel additives blended with diesel—Nigella sativa biodiesel fuel emulsion on diesel engine characteristics. Symmetry 2020, 12, 961. [Google Scholar] [CrossRef]
- Takaishi, T.; Numata, A.; Nakano, R.; Sakaguchi, K. Approach to high efficiency diesel and gas engines. Mitsubishi Heavy Ind. Rev. 2008, 45, 21–24. [Google Scholar]
- Lanjewar, P.B.; Rao, R.; Kale, A. Assessment of alternative fuels for transportation using a hybrid graph theory and analytic hierarchy process method. Fuel 2015, 154, 9–16. [Google Scholar] [CrossRef]
- Mujtaba, M.; Cho, H.M.; Masjuki, H.; Kalam, M.; Ong, H.; Gul, M.; Harith, M.; Yusoff, M. Critical review on sesame seed oil and its methyl ester on cold flow and oxidation stability. Energy Rep. 2020, 6, 40–54. [Google Scholar] [CrossRef]
- S Gavhane, R.; M Kate, A.; Pawar, A.; Safaei, M.R.; M Soudagar, M.E.; Mujtaba Abbas, M.; Muhammad Ali, H.; R Banapurmath, N.; Goodarzi, M.; Badruddin, I.A. Effect of Zinc Oxide Nano-Additives and Soybean Biodiesel at Varying Loads and Compression Ratios on VCR Diesel Engine Characteristics. Symmetry 2020, 12, 1042. [Google Scholar] [CrossRef]
- Soudagar, M.E.M.; Mujtaba, M.A.; Safaei, M.R.; Afzal, A.; V, D.R.; Ahmed, W.; Banapurmath, N.R.; Hossain, N.; Bashir, S.; Badruddin, I.A.; et al. Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics. Energy 2021, 215, 119094. [Google Scholar] [CrossRef]
- Soudagar, M.E.M.; Khan, H.M.; Khan, T.M.Y.; Razzaq, L.; Asif, T.; Mujtaba, M.A.; Hussain, A.; Farooq, M.; Ahmed, W.; Shahapurkar, K.; et al. Experimental Analysis of Engine Performance and Exhaust Pollutant on a Single-Cylinder Diesel Engine Operated Using Moringa Oleifera Biodiesel. Appl. Sci. 2021, 11, 7071. [Google Scholar] [CrossRef]
- Momirlan, M.; Veziroglu, T.N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrog. Energy 2005, 30, 795–802. [Google Scholar] [CrossRef]
- Litzinger, T.; Stoner, M.; Hess, H.; Boehman, A. Effects of oxygenated blending compounds on emissions from a turbocharged direct injection diesel engine. Int. J. Engine Res. 2000, 1, 57–70. [Google Scholar] [CrossRef]
- Abdel-Aal, H.; Sadik, M.; Bassyouni, M.; Shalabi, M. A new approach to utilize hydrogen as a safe fuel. Int. J. Hydrog. Energy 2005, 30, 1511–1514. [Google Scholar] [CrossRef]
- Gad, M.; El-Fakharany, M.; Elsharkawy, E. Effect of HHO gas enrichment on performance and emissions of a diesel engine fueled by biodiesel blend with kerosene additive. Fuel 2020, 280, 118632. [Google Scholar] [CrossRef]
- Fayaz, H.; Mujtaba, M.A.; Soudagar, M.E.M.; Razzaq, L.; Nawaz, S.; Nawaz, M.A.; Farooq, M.; Afzal, A.; Ahmed, W.; Khan, T.M.Y.; et al. Collective effect of ternary nano fuel blends on the diesel engine performance and emissions characteristics. Fuel 2021, 293, 120420. [Google Scholar] [CrossRef]
- Aydin, H.; Ilkılıc, C.J.A.T.E. Effect of ethanol blending with biodiesel on engine performance and exhaust emissions in a CI engine. Appl. Therm. Eng. 2010, 30, 1199–1204. [Google Scholar] [CrossRef]
- Rimkus, A.; Matijošius, J.; Bogdevičius, M.; Bereczky, Á.; Török, Á. An investigation of the efficiency of using O2 and H2 (hydrooxile gas-HHO) gas additives in a ci engine operating on diesel fuel and biodiesel. Energy 2018, 152, 640–651. [Google Scholar] [CrossRef]
- Yilmaz, A.C.; Uludamar, E.; Aydin, K. Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines. Int. J. Hydrog. Energy 2010, 35, 11366–11372. [Google Scholar] [CrossRef]
- Kenanoğlu, R.; Baltacıoğlu, M.K.; Demir, M.H.; Özdemir, M.E. Performance & emission analysis of HHO enriched dual-fuelled diesel engine with artificial neural network prediction approaches. Int. J. Hydrog. Energy 2020, 45, 26357–26369. [Google Scholar]
- Usman, M.; Farooq, M.; Naqvi, M.; Saleem, M.W.; Hussain, J.; Naqvi, S.R.; Jahangir, S.; Jazim Usama, H.M.; Idrees, S.; Anukam, A. Use of gasoline, LPG and LPG-HHO blend in SI engine: A comparative performance for emission control and sustainable environment. Processes 2020, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Dongare, A.; Kharde, R.; Kachare, A.D. Introduction to artificial neural network. Int. J. Eng. Innov. Technol. 2012, 2, 189–194. [Google Scholar]
- Gul, M.; Shah, A.N.; Aziz, U.; Husnain, N.; Mujtaba, M.; Kousar, T.; Ahmad, R.; Hanif, M.F. Grey-Taguchi and ANN based optimization of a better performing low-emission diesel engine fueled with biodiesel. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 1–14. [Google Scholar] [CrossRef]
- Yildizhan, Ş.; Uludamar, E.; Çalık, A.; Dede, G.; Özcanlı, M. Fuel properties, performance and emission characterization of waste cooking oil (WCO) in a variable compression ratio (VCR) diesel engine. Eur. Mech. Sci. 2017, 1, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Yıldırım, S.; Tosun, E.; Çalık, A.; Uluocak, İ.; Avşar, E. Artificial intelligence techniques for the vibration, noise, and emission characteristics of a hydrogen-enriched diesel engine. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 2194–2206. [Google Scholar] [CrossRef]
- Mujtaba, M.; Masjuki, H.; Kalam, M.; Ong, H.C.; Gul, M.; Farooq, M.; Soudagar, M.E.M.; Ahmed, W.; Harith, M.; Yusoff, M. Ultrasound-assisted process optimization and tribological characteristics of biodiesel from palm-sesame oil via response surface methodology and extreme learning machine-Cuckoo search. Renew. Energy 2020, 158, 202–214. [Google Scholar] [CrossRef]
- Gul, M.; Zulkifli, N.W.M.; Kalam, M.A.; Masjuki, H.H.; Mujtaba, M.A.; Yousuf, S.; Bashir, M.N.; Ahmed, W.; Yusoff, M.N.A.M.; Noor, S.; et al. RSM and Artificial Neural Networking based production optimization of sustainable Cotton bio-lubricant and evaluation of its lubricity & tribological properties. Energy Rep. 2021, 7, 830–839. [Google Scholar]
- Ghobadian, B.; Rahimi, H.; Nikbakht, A.; Najafi, G.; Yusaf, T. Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renew. Energy 2009, 34, 976–982. [Google Scholar] [CrossRef] [Green Version]
- Uslu, S.; Celik, M.B. Performance and exhaust emission prediction of a SI engine fueled with I-amyl alcohol-gasoline blends: An ANN coupled RSM based optimization. Fuel 2020, 265, 116922. [Google Scholar] [CrossRef]
- Dinjus, E.; Arnold, U.; Dahmen, N.; Höfer, R.; Wach, W. Green fuels–sustainable solutions for transportation. In Sustainable Solutions for Modern Economies; Royal Society of Chemistry: London, UK, 2009; Volume 4, pp. 125–129. [Google Scholar]
- Uludamar, E.; Tosun, E.; Tüccar, G.; Yıldızhan, Ş.; Çalık, A.; Yıldırım, S.; Serin, H.; Özcanlı, M. Evaluation of vibration characteristics of a hydroxyl (HHO) gas generator installed diesel engine fuelled with different diesel–biodiesel blends. Int. J. Hydrog. Energy 2017, 42, 23352–23360. [Google Scholar] [CrossRef]
- Masood, M.; Ishrat, M.; Reddy, A. Computational combustion and emission analysis of hydrogen–diesel blends with experimental verification. Int. J. Hydrog. Energy 2007, 32, 2539–2547. [Google Scholar] [CrossRef]
- Uludamar, E. Effect of hydroxy and hydrogen gas addition on diesel engine fuelled with microalgae biodiesel. Int. J. Hydrog. Energy 2018, 43, 18028–18036. [Google Scholar] [CrossRef]
- Dahake, M.; Patil, S.; Patil, S. Effect of hydroxy gas addition on performance and emissions of diesel engine. Int. Res. J. Eng. Technol. 2016, 3. [Google Scholar]
- Sun, Z.-Y.; Liu, F.-S.; Liu, X.-H.; Sun, B.-G.; Sun, D.-W. Research and development of hydrogen fuelled engines in China. Int. J. Hydrog. Energy 2012, 37, 664–681. [Google Scholar] [CrossRef]
- Premkartikkumar, S.; Annamalai, K.; Pradeepkumar, A. Using hydrogen as a fuel in automotive engines–an investigation. Int. J. Innov. Technol. Res. 2013, 1, 90–93. [Google Scholar]
- Ahmed, E.; Usman, M.; Anwar, S.; Ahmad, H.M.; Nasir, M.W.; Malik, M.A.I. Application of ANN to predict performance and emissions of SI engine using gasoline-methanol blends. Sci. Prog. 2021, 104, 00368504211002345. [Google Scholar] [CrossRef]
- Kesgin, U. Genetic algorithm and artificial neural network for engine optimisation of efficiency and NOx emission. Fuel 2004, 83, 885–895. [Google Scholar] [CrossRef]
- Çay, Y.; Korkmaz, I.; Çiçek, A.; Kara, F. Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network. Energy 2013, 50, 177–186. [Google Scholar] [CrossRef]
- Cay, Y. Prediction of a gasoline engine performance with artificial neural network. Fuel 2013, 111, 324–331. [Google Scholar] [CrossRef]
- Yusaf, T.; Yousif, B.; Elawad, M. Crude palm oil fuel for diesel-engines: Experimental and ANN simulation approaches. Energy 2011, 36, 4871–4878. [Google Scholar] [CrossRef]
- Sayin, C.; Ertunc, H.M.; Hosoz, M.; Kilicaslan, I.; Canakci, M. Performance and exhaust emissions of a gasoline engine using artificial neural network. Appl. Therm. Eng. 2007, 27, 46–54. [Google Scholar] [CrossRef]
- Abdalla, A.N.; Tao, H.; Bagaber, S.A.; Ali, O.M.; Kamil, M.; Ma, X.; Awad, O.I. Prediction of emissions and performance of a gasoline engine running with fusel oil–gasoline blends using response surface methodology. Fuel 2019, 253, 1–14. [Google Scholar] [CrossRef]
- Dey, S.; Reang, N.M.; Das, P.K.; Deb, M. Comparative study using RSM and ANN modelling for performance-emission prediction of CI engine fuelled with bio-diesohol blends: A fuzzy optimization approach. Fuel 2021, 292, 120356. [Google Scholar] [CrossRef]
Feature | Description |
---|---|
Material of Plate | Stainless steel (316-l) |
Dimensions of Plate | 16.5 cm by 16.5 cm by 0.1 cm |
Electrode configuration | Center anodes, end cathodes |
Plate spacing | 2 mm |
HHO flow rate | up to 10 LPM |
Maximum Voltage | 35 V |
Maximum Current | 40 A |
Relation between current and LPM | Direct relation up to 10 LPM |
Features | Description |
---|---|
Engine type | Perkin/AD 3.152 |
Bore | 91.4 mm |
Stroke | 127.0 mm |
Number of holes of nozzles | 4 |
Brake mean effective pressure | 7.1570 bars |
Injection timing | 17 ⁰ BTDC |
Displacement | 2.5 Liters |
Compression ratio | 18.5 |
Maximum speed | 2200 rpm |
Maximum power | 36.8 kW at 1500 rpm |
Maximum torque | 243 N.m at 1400 rpm |
Properties | Diesel | Hydrogen |
---|---|---|
Research octane number | 30 | >130 |
Density at 20 °C | 833.1 kg/m3 | 0.0827 kg/m3 |
Net heating value | 42.5 MJ/kg | 119.93 MJ/kg |
Flame velocity | 30 cm/s | 265–325 cm/s |
Autoignition temperature | 530 K | 858 K |
Chemical composition | C12H23 | H2 |
Attributes | Description |
---|---|
Parameters | Three Inputs, Two Outputs, One hidden layer |
Network Type | Feedforward backpropagation |
Total number of data sets | 210 |
Number of data sets for ANN training | 147 |
Neuron in hidden layer | 10 |
Data Division | 15% for validation, 15% for testing and 70% for training |
Factors | Units | Levels | L [1] | L [2] | L [3] | L [4] | L [5] | L [6] | L [7] |
---|---|---|---|---|---|---|---|---|---|
Speed | Rpm | 7 | 1000 | 1200 | 1400 | 1600 | 1800 | 2000 | 2200 |
Flow rate | LPM | 6 | 0 | 2 | 4 | 6 | 8 | 10 | --- |
Load | % | 5 | 9 | 18 | 27 | 36 | 45 | --- | --- |
Source | p-Value | Adjusted R² | Predicted R² |
---|---|---|---|
Linear | <0.05 | 0.7224 | 0.7135 |
2FI | <0.05 | 0.7482 | 0.7316 |
Quadratic | <0.05 | 0.9939 | 0.9922 |
Source | p-Value | Adjusted R² | Predicted R² |
---|---|---|---|
Linear | <0.05 | 0.9187 | 0.9161 |
2FI | <0.05 | 0.9368 | 0.9335 |
Quadratic | <0.0001 | 0.9940 | 0.9958 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 11.51 | 9 | 1.28 | 383.56 | <0.0001 |
A-Speed | 1.06 | 1 | 1.06 | 317.29 | <0.0001 |
B-Flow rate | 0.0357 | 1 | 0.0357 | 10.71 | <0.0001 |
C-Load | 7.75 | 1 | 7.75 | 2324.75 | <0.0001 |
AB | 0.0000 | 1 | 0.0000 | 0.0032 | 0.9551 |
AC | 0.3384 | 1 | 0.3384 | 101.49 | <0.0001 |
BC | 0.0156 | 1 | 0.0156 | 4.68 | 0.0317 |
A² | 0.0606 | 1 | 0.0606 | 18.18 | <0.0001 |
B² | 0.0001 | 1 | 0.0001 | 0.0240 | 0.8771 |
C² | 2.25 | 1 | 2.25 | 674.88 | <0.0001 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 15229.95 | 9 | 1692.22 | 1298.30 | <0.0001 |
A-Speed | 2724.04 | 1 | 2724.04 | 2089.93 | <0.0001 |
B-Flow rate | 110.22 | 1 | 110.22 | 84.56 | <0.0001 |
C-Load | 11414.41 | 1 | 11414.41 | 8757.34 | <0.0001 |
AB | 19.49 | 1 | 19.49 | 14.95 | 0.0001 |
AC | 262.83 | 1 | 262.83 | 201.65 | <0.0001 |
BC | 9.03 | 1 | 9.03 | 6.93 | 0.0091 |
A² | 31.18 | 1 | 31.18 | 23.92 | <0.0001 |
B² | 0.3481 | 1 | 0.3481 | 0.2671 | 0.6059 |
C² | 658.42 | 1 | 658.42 | 505.15 | <0.0001 |
Factors | Desired Goal | Lower Value | Upper Value | Lower Weight | Upper Weight | Importance |
---|---|---|---|---|---|---|
A: Speed (rpm) | Is in range | 1000 | 2200 | 1 | 1 | 3 |
B: HHO Flow rate (LPM) | Is in range | 0 | 10 | 1 | 1 | 3 |
C: Load (%) | Is in range | 0 | 45 | 1 | 1 | 3 |
BSFC (kg/kWh) | Minimum | 0.196822 | 1.27606 | 1 | 1 | 3 |
BTE (%) | Maximum | 6.22221 | 41.9617 | 1 | 1 | 3 |
Models | Parameters | MRE% | RMSE | |
---|---|---|---|---|
ANN | BTE (%) | 1.91 | 0.27 | |
BSFC (kg/kWh) | 2.64 | 0.012 | ||
RSM | BTE (%) | 2.26 | 0.41 | |
BSFC (kg/kWh) | 2.94 | 0.088 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usman, M.; Hussain, H.; Riaz, F.; Irshad, M.; Bashir, R.; Haris Shah, M.; Ahmad Zafar, A.; Bashir, U.; Kalam, M.A.; Mujtaba, M.A.; et al. Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine. Sustainability 2021, 13, 9373. https://doi.org/10.3390/su13169373
Usman M, Hussain H, Riaz F, Irshad M, Bashir R, Haris Shah M, Ahmad Zafar A, Bashir U, Kalam MA, Mujtaba MA, et al. Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine. Sustainability. 2021; 13(16):9373. https://doi.org/10.3390/su13169373
Chicago/Turabian StyleUsman, Muhammad, Haris Hussain, Fahid Riaz, Muneeb Irshad, Rehmat Bashir, Muhammad Haris Shah, Adeel Ahmad Zafar, Usman Bashir, M. A. Kalam, M. A. Mujtaba, and et al. 2021. "Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine" Sustainability 13, no. 16: 9373. https://doi.org/10.3390/su13169373
APA StyleUsman, M., Hussain, H., Riaz, F., Irshad, M., Bashir, R., Haris Shah, M., Ahmad Zafar, A., Bashir, U., Kalam, M. A., Mujtaba, M. A., & M. Soudagar, M. E. (2021). Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine. Sustainability, 13(16), 9373. https://doi.org/10.3390/su13169373