The Environmental-Economic Performance of a Poblano Family Milpa System: An Emergy Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Emergy Evaluation
- Calculate the flows used per hectare per year in raw units (J, g, or US$) (see Supplementary Materials, Tables S1–S3).
- Convert the flows into equivalents of one kind of energy (solar equivalent exergy (J)) by multiplying each exergy flow by its respective UEV (Unit Emergy Value in solar emjoules per Joule, sej J−1) to obtain the solar emergy of the exergy flow. Add the emergy inputs according to the resource classification of the flows (local renewable resources “R”, local non-renewable resources “N”, and purchased resources “F”, which are fed back from the larger economy), as well as the total emergy used “U” (U = R + N + F). A standard table was used to display the emergy calculations.
- Evaluate the production in your system and calculate the UEV (emergy required per unit of output) of the co-products and splits. The grain yield was calculated considering five subplots of 24 m2. The UEV of the co-products and splits of the FMS, in this case their transformity, was calculated by dividing the emergy used for production by the exergy of each product (see Supplementary Materials, Table S4).
- 5.
- Calculate and interpret emergy-based performance indices.
2.3. Emergy-Based Indices
- Emergy Yield Ratio (EYR) is a measure of the ability of the larger system to exploit local resources by investing purchased resources; when EYR = 1, the local resources are not being exploited effectively, and the system provides the same amount of emergy that was invested from the purchased resources [20,39].
- Environmental Loading Ratio (ELR) is an indicator of the environmental pressure caused by the production process [20,39]. The lower the ELR, the lower the environmental pressure. If some case studies are considered, an ELR value lower than two, between two and ten, or higher than ten indicates a low, moderate, or high environmental impact, respectively [20].
- Net Emergy (NE) is the potential contribution of a system or process to the next larger system. A system should provide an amount of emergy at least equal to the cost of the emergy required to obtain such contribution; a system has positive net emergy when it has an emergy cost less than its contribution to production [21].
- Emergy Investment Ratio (EIR). This ratio determines if an investment in the system is economical based on the matching of purchased resources with free local resources; a system is economical if its EIR is less than or equal to the EIR prevailing in the region [12]. EIR is higher as more purchased emergy is used and lower as more local emergy is used. When the EIR value is higher, production increases, but emergy is used less efficiently [12].
- Emergy Sustainability Index (ESI). Sustainability is a function of yield, renewability, and load on the environment; therefore, it is suggested that the ratio between the yield of processes and the load it generates on the environment can be used as an index of sustainability [41]. The higher the ESI, the greater the sustainability of the system.
2.4. Data Gathering and Sample Size
3. Results
3.1. Emergy Diagram Description of the FMS
3.2. Local Renewable Resources
3.3. Local Non-Renewable Resources
3.4. Purchased Resources
3.5. Production Efficiency
3.6. Emergy-Based Indices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Resolution Adopted by the General Assembly on 25 September 2015, Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations, 2015; p. 35. Available online: https://www.eea.europa.eu/policy-documents/resolution-adopted-by-the-general (accessed on 3 March 2021).
- World Bank. Poverty and Shared Prosperity 2020: Reversals of Fortune; World Bank: Washington, DC, USA, 2020; p. 178. [Google Scholar]
- Grubbström, A.; Sooväli-Sepping, H. Estonian family farms in transition: A study of intangible assets and gender issues in generational succession. J. Hist. Geogr. 2012, 38, 329–339. [Google Scholar] [CrossRef]
- Fan, S.; Brzeska, J.; Keyzer, M.; Halsema, A. From Subsistence to Profit: Transforming Smallholder Farms; International Food Policy Research Institute: Washington, DC, USA, 2013; p. 30. [Google Scholar]
- Wegren, S.K.; O’Brien, D.J. Introduction to symposium: Smallholders in communist and postcommunist societies. J. Agrar. Chang. 2018, 18, 869–881. [Google Scholar] [CrossRef]
- FAO. Año Internacional de la Agricultura Familiar. 2015. Available online: www.fao.org/family-farming-2014/es (accessed on 13 August 2017).
- Watters, R.F. Shifting Cultivation in Latin America; FAO: Rome, Italy, 1971. [Google Scholar]
- Ebel, R.; Pozas-Cárdenas, J.G.; Soria-Miranda, F.; Cruz-González, J. Manejo orgánico de la milpa: Rendimiento de maíz, frijol y calabaza en monocultivo y policultivo. Terra Lat. 2017, 35, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Birol, E.; Villalba, E.R.; Smale, M. Farmer preferences for milpa diversity and genetically modified maize in Mexico: A latent class approach. Int. Food Policy Res. Inst. 2009, 14, 521–540. [Google Scholar] [CrossRef] [Green Version]
- Pérez-García, O.; del Castillo, R.F. The decline of the itinerant milpa and the maintenance of traditional agrobiodiversity: Crops and weeds coexistence in a tropical cloud forest area in Oaxaca, Mexico. Agric. Ecosyst. Environ. 2016, 228, 30–37. [Google Scholar] [CrossRef]
- Sánchez-Morales, P.; Hernández Ortiz, P. Sistema milpa. Elemento de identidad campesina e indígena; Programa de Intercambio, Diálogo y Asesoría en Agricultura Sostenible y Soberanía Alimentaria; PIDAASSA: Distrito Federal, Mexico, 2014; p. 25. [Google Scholar]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; Wiley: New York, NY, USA, 1996; p. 370. ISBN 0-471-11442-1. [Google Scholar]
- Diemont, S.A.W.; Martin, J.F.; Levy-Tacher, S.I. Emergy evaluation of Lacandon Maya indigenous swidden agroforestry in Chiapas, Mexico. Agrofor. Syst. 2006, 66, 23–42. [Google Scholar] [CrossRef]
- Houshyar, E.; Wu, X.F.; Chen, G.Q. Sustainability of wheat and maize production in the warm climate of southwestern Iran: An emergy analysis. J. Clean. Prod. 2018, 172, 2246–2255. [Google Scholar] [CrossRef]
- Ghaley, B.B.; Kehli, N.; Mentler, A. Emergy synthesis of conventional fodder maize (Zea mays L.) production in Denmark. Ecol. Indic. 2018, 87, 144–151. [Google Scholar] [CrossRef]
- Asgharipour, M.R.; Shahgholi, H.; Campbell, D.E.; Khamari, I.; Ghadiri, A. Comparison of the sustainability of bean production systems based on emergy and economic analyses. Environ. Monit. Assess. 2019, 191, 21. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska-czarnecka, A.; Selene, L.; Nienartowicz, A.; Piernik, A. Energy and emergy analysis for assessing changes in Polish agriculture since the accession to the European Union. Ecol. Modell. 2019, 412, 108819. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, Z.; Ma, Q.; Liu, M.; Yuan, X.; Mu, R.; Zuo, J.; Zhang, J.; Wang, S. Comprehensive evaluation and optimization of agricultural system: An emergy approach. Ecol. Indic. 2019, 107, 105650. [Google Scholar] [CrossRef]
- Brown, M.T.; Odum, H.T.; Jorgensen, S.E. Energy hierarchy and transformity in the universe. Ecol. Modell. 2004, 178, 17–28. [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Emergy Analysis and Environmental Accounting. Encycl. Energy 2004, 2, 329–354. [Google Scholar] [CrossRef]
- Ulgiati, S.; Brown, M.T.; Bastianoni, S.; Marchettini, N. Emergy-based indices and ratios to evaluate the sustainable use of resources. Ecol. Eng. 1995, 5, 519–531. [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Energy quality, emergy, and transformity: H.T. Odum’s contributions to quantifying and understanding systems. Ecol. Modell. 2004, 178, 201–213. [Google Scholar] [CrossRef]
- Campbell, D.E.; Wigand, C.; Schuetz, N.B. The Real Wealth Purchased in a Fish Dinner. In Emergy Synthesis 8: Theory and Applications of the Emergy Methodology, Proceedings of the 8th Biennial Emergy Research Conference, Center for Environmental Policy, Gainesville, FL, USA, 16–18 January 2014; Brown, M.T., Sweeney, S., Campbell, D.E., Huang, S., Rydberg, T., Ulgiati, S., Eds.; University of Florida: Gainesville, FL, USA, 2015; Abstract Number 9; pp. 61–82. [Google Scholar]
- Ulgiati, S.; Brown, M.T. Emergy and ecosystem complexity. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 310–321. [Google Scholar] [CrossRef]
- Campbell, D.E. Proposal for including what is valuable to ecosystems in environmental assessments. Environ. Sci. Technol. 2001, 35, 2867–2873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Avilés, R.; Huerta-Lara, M.; Barreiro-Zamorano, S.M.; Silva-Gómez, S.E.; Hernández-Zepeda, J.S. Traspatio Campesino Sustentable San Bernardino Tepenene, Tzicatlacoyan, Puebla; Benemérita Universidad Autónoma de Puebla: Puebla, Mexico, 2015; p. 163. ISBN 978-607-487-928-5. [Google Scholar]
- CONEVAL; Medición de la Pobreza. Pobreza a Nivel de Municipio 2010–2015, Mexico, 2017. Available online: www.coneval.org.mx/Medicion/Paginas/Pobreza-municipal.aspx (accessed on 3 December 2017).
- CONAPO; Datos abiertos del índice de marginación. Índice de marginación por municipio 1990-2015, Mexico, 2016. Available online: http://conapo.gob.mx/es/CONAPO/Datos_Abiertos_del_Indice_de_Marginacion (accessed on 8 October 2017).
- CONAPO. Índice De Marginación Por Localidad 2010; Consejo Nacional de Población: Distrito Federal, Mexico, 2012; p. 55. ISBN 978-607-427-128-7. [Google Scholar]
- Campbell, D.E. Emergy analysis of the Cobscook Bay ecosystem. In The Changing Bay of Fundy: Beyond 400 Years, Proceedings of the 6th Bay of Fundy Workshop, Cornwallis, NS, Canada, 29 September 2004; Percy, J.A., Evans, A.J., Wells, P.G., Rolston, S.J., Eds.; The Bay of Fundy Ecosystem Partnership: Dartmouth, NS, Canada, 2005; pp. 374–386. [Google Scholar]
- Buonocore, E.; Vanoli, L.; Carotenuto, A.; Ulgiati, S. Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy. Energy 2015, 86, 476–487. [Google Scholar] [CrossRef]
- Odum, H.T. An emergy circuit language for ecological and social systems: Its physical basis. In Systems Analysis and Simulation in Ecology; Academic Press: New York, NY, USA, 1971; Volume 2, pp. 139–211. [Google Scholar]
- Odum, H.T. Environmental, Power and Society; Wiley: New York, NY, USA, 1971; p. 432. [Google Scholar]
- Odum, H.T. Ecological and General Systems: An Introduction to Systems Ecology, Revised edition; University Press of Colorado: Niwot, CO, USA, 1994; p. 644. ISBN 0-87081-320-x. [Google Scholar]
- Brown, M.T.; Herendeen, R.A. Embodied energy analysis and emergy analysis: A comparative view. Ecol. Econ. 1996, 19, 219–235. [Google Scholar] [CrossRef]
- Campbell, D.E.; (University of Rhode Island, Kingston, RI, USA). Personal communication, 2021.
- Alfaro-Arguello, R.; Diemont, S.A.W.; Ferguson, B.G.; Martin, J.F.; Nahed-Toral, J.; Álvarez-Solís, J.D.; Pinto-Ruíz, R. Steps toward sustainable ranching: An emergy evaluation of conventional and holistic management in Chiapas, Mexico. Agric. Syst. 2010, 103, 639–646. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Long, P.; Yan, L.; Gao, W.; Chen, Y.; Sui, P. Sustainability evaluation of recycling in agricultural systems by emergy accounting. Resour. Conserv. Recycl. 2017, 117, 114–124. [Google Scholar] [CrossRef]
- Ulgiati, S.; Brown, M.T. Monitoring patterns of sustainability in natural and man-made ecosystems. Ecol. Modell. 1998, 108, 23–36. [Google Scholar] [CrossRef]
- Brown, M.T.; Brandt-Williams, S.; Tilley, D.; Ulgiati, S. Emergy synthesis: An Introduction. In Emergy Synthesis 1: Theory and Applications of the Emergy Methodology, Proceedings of the 1st Biennial Emergy Research Conference, Center for Environmental Policy, Gainesville, FL, USA, 2–4 September 1999; Brown, M.T., Ed.; University of Florida: Gainesville, FL, USA, 2000; Abstract Number 1; pp. 1–14. [Google Scholar]
- Brown, M.T.; Ulgiati, S. Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecol. Eng. 1997, 9, 51–69. [Google Scholar] [CrossRef]
- Lei, K.; Zhou, S.; Wang, Z. Ecological Emergy Accounting for a Limited System: General Principles and a Case Study of Macao; Science Press: Beijing, China; Springer: Berlin/Heidelberg, Germany, 2014; p. 196. ISSN 2194-3222. [Google Scholar]
- Wang, C.; Wang, Y.; Geng, Y.; Wang, R.; Zhang, J. Measuring regional sustainability with an integrated social-economic-natural approach: A case study of the Yellow River Delta region of China. J. Clean. Prod. 2016, 114, 189–198. [Google Scholar] [CrossRef]
- NASA Prediction Of Worldwide Energy Resources; Data Access Viewer. Available online: https://power.larc.nasa.gov/ (accessed on 4 January 2019).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Evapotranspiración del Cultivo, Guías Para la Determinación de los Requerimientos de Agua de los Cultivos; FAO: Rome, Italy, 2006; Volume 56, p. 298. [Google Scholar]
- SEMARNAT; Sistema Nacional de Información Ambiental y de Recursos Naturales, Espacio Digital Geográfico, Mapas Estatales. 2020. Available online: www.gob.mx/semarnat/acciones-y-programas/sistema-nacional-de-informacion-ambiental-y-de-recursos-naturales (accessed on 27 January 2020).
- FAO. A Provisional Methodology for Soil Degradation Assessment; FAO: Rome, Italy, 1979. [Google Scholar]
- Banco de México; Mercados, Portal del Mercado Cambiario. 2019. Available online: www.banxico.org.mx/ (accessed on 11 January 2019).
- SEMARNAT, INECC, SENER, CONUEE, Secretaría de Economía, PROFECO; Portal de Indicadores de Eficiencia Energética y Emisiones Vehiculares. Available online: www.ecovehiculos.inecc.gob.mx (accessed on 7 June 2019).
- Brown, M.T.; Campbell, D.E.; De Vilbiss, C.; Ulgiati, S. The geobiosphere emergy baseline: A synthesis. Ecol. Modell. 2016, 339, 92–95. [Google Scholar] [CrossRef]
- Brandt -Williams, S.L. Emergy of Florida Agriculture; Handbook of Emergy Evaluation: A Compendium of Data for Emergy Computation Issued in a Series of Folios, Folio 4 (2nd Printing); The Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2002; Volume 40. [Google Scholar]
- Brown, M.T.; Ulgiati, S. Emergy assessment of global renewable sources. Ecol. Modell. 2016, 339, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Ulgiati, S.; Brown, M.T. Labor and services as information carriers in emergy-LCA accounting. J. Environ. Account. Manag. 2014, 2, 163–170. [Google Scholar] [CrossRef]
- Campbell, D.E.; Lu, H. Emergy Evaluation of Formal Education in the United States: 1870 to 2011. Systems 2014, 2, 328–365. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Sampieri, R.; Fernández-Collado, C.; Baptista-Lucio, P. Metodología de la Investigación, 4th ed.; Mc Graw Hill Interamericana: Distrito Federal, Mexico, 2006; p. 850. ISBN 970-10-5753-8. [Google Scholar]
- SEDESOL; Catálogo de Localidades. Available online: www.microrregiones.gob.mx/catloc/contenido.aspx?refnac=211930008 (accessed on 8 September 2017).
- Campbell, D.E.; Erban, L.E. A Reexamination of the Emergy Input to a System from the Wind. In Emergy Synthesis 9: Theory and Applications of the Emergy Methodology, Proceedings of the 9th Biennial Emergy Research Conference, Center for Environmental Policy, Gainesville, FL, USA, 7–9 January 2016; Brown, M.T., Sweeney, S., Campbell, D.E., Huang, S., Rydberg, T., Ulgiati, S., Eds.; University of Florida: Gainesville, FL, USA, 2017; Abstract Number 7; pp. 13–20. [Google Scholar]
- Santagata, R.; Viglia, S.; Fiorentino, G.; Liu, G.; Ripa, M. Power generation from slaughterhouse waste materials. An emergy accounting assessment J. Clean. Prod. 2019, 223, 536–552. [Google Scholar] [CrossRef]
- Brandt-Williams, S.L. Evaluation of Watershed Control of Two Central Florida Lakes: Newnans Lake and Lake Weir. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1999. [Google Scholar]
- NEAD. Data for Mexico, 2014. Data Modified (Update, 2021). Available online: www.emergy-nead.com/country/data (accessed on 15 March 2021).
- Wang, X.; Chen, Y.; Sui, P.; Gao, W.; Qin, F.; Zhang, J.; Wu, X. Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA. Agric. Syst. 2014, 128, 66–78. [Google Scholar] [CrossRef]
- Singh, R.J.; Ghosh, B.N.; Sharma, N.K.; Patra, S.; Dadhwal, K.S.; Mishra, P.K. Energy budgeting and emergy synthesis of rainfed maize-wheat rotation system with different soil amendment applications. Ecol. Indic. 2016, 61, 753–765. [Google Scholar] [CrossRef]
- Zhao, H.; Zhai, X.; Guo, L.; Liu, K.; Huang, D.; Yang, Y.; Li, J.; Xie, S.; Zhang, C.; Tang, S.; et al. Assessing the efficiency and sustainability of wheat production systems in different climate zones in China using emergy analysis. J. Clean. Prod. 2019, 235, 724–732. [Google Scholar] [CrossRef]
- Zhao, H.; Zhai, X.; Guo, L.; Yang, Y.; Li, J.; Ren, C.; Wang, K.; Liu, X.; Zhan, R.; Wang, K. Comparing protected cucumber and field cucumber production systems in China based on emergy analysis. J. Clean. Prod. 2019, 236, 117648. [Google Scholar] [CrossRef]
- Lefroy, E.; Rydberg, T. Emergy evaluation of three cropping systems in southwestern Australia. Ecol. Modell. 2003, 161, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Funes-Monzote, F.R. Eficiencia Energética en Sistemas Agropecuarios: Elementos Teóricos y Prácticos Para el Cálculo y Análisis Integrado, 1st ed.; Asoc. Cuba. Técnicos Agrícolas y For: Matanzas, Cuba, 2009; p. 37. [Google Scholar]
- de Salazar-Barrientos, L.L.; Magaña-Magaña, M.Á. Aportación de la milpa y traspatio a la autosuficiencia alimentaria en comunidades mayas de Yucatán. Estud. Soc. 2016, 24, 23. [Google Scholar]
- El Chami, D.; Daccache, A.; El Moujabber, M. How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review. Sustainability 2020, 12, 3119. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report; Writing Team, T.C., Pachauri, R.K., Meyer, L.A., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Brown, M.T.; Green, P.; Gonzalez, A.; Venegas, J. Emergy Anlysis Perspectives, Public Policy Options, and Development Guidelines for the Coastal Zone of Nayarit, Mexico; University of Florida, Center for Wetlands and Water Resources: Gainesville, FL, USA, 1992; Volume 2, pp. 4–5. [Google Scholar]
- Garratt, J.R. Review of drag coefficients over oceans and continents. Mon. Weather Rev. 1977, 105, 915–929. [Google Scholar] [CrossRef] [Green Version]
- Reiter, E.R. Atmospheric Transport processes, Part I: Energy Transfers and Transformations, 1st ed.; U.S. Atomic Energy Commission, Division of Technical Information: Oak Ridge, TN, USA, 1969; p. 253.
- Campbell, D.E. A Note on the Uncertainty in Estimates of Transformities Based on Global Water Budgets. In Emergy Synthesis 2: Theory and Applications of the Emergy Methodology, Proceedings of the 2nd Biennial Emergy Research Conference, Center for Environmental Policy, Gainesville, FL, USA, 20–22 September 2001; Brown, M.T., Odum, H.T., Tilley, D., Ulgiati, S., Eds.; University of Florida: Gainesville, FL, USA, 2003; Abstract Number 25; pp. 349–353. [Google Scholar]
- INCAP/OPS. Tabla de Composición de Alimentos de Centroamérica, 2nd ed.; Serviprensa: Guatemala, Guatemala, 2012; p. 126. [Google Scholar]
- Guillen-Trujillo, H.A. Sustainability of Ecotourism and Traditional Agricultural Practices in Chiapas, Mexico. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1998. [Google Scholar]
- Nerson, H.; Paris, H.S.; Paris, E.P. Fruit shape, size and seed yield in Cucurbita pepo. Acta Hortic. 2000, 510, 227–230. [Google Scholar] [CrossRef]
- Valdés-Restrepo, M.P.; Ortiz-Grisales, S.; Vallejo-Cabrera, F.A.; Baena-García, D. Variabilidad en frutos y semillas de Cucurbita moschata Duch. y Cucurbita argyrosperma subsp. sororia L.H. Bailey Merrick & D.M. Bates. Acta. Agron. 2014, 63, 282–293. [Google Scholar]
- Chí-Sánchez, F.A.; Alvarado-López, C.J.; Cristóbal-Alejo, J.; Reyes-Ramírez, A. Características morfológicas y determinación de minerales por μ-XRF en fruto de calabaza (Cucurbita moschata Duch). Agrociencia 2020, 54, 683–690. [Google Scholar] [CrossRef]
- Fandika, I.R.; Kemp, P.D.; Millner, J.P.; Horne, D.J. Yield and water use efficiency in buttercup squash (Cucurbita maxima Duchesne) and heritage pumpkin (Cucurbita pepo Linn). Aust. J. Crop. Sci. 2011, 5, 742–747. [Google Scholar]
- Muñoz-Tlahuiz, F.; de Guerrero-Rodríguez, J.D.; López, P.A.; Gil-Muñoz, A.; López-Sánchez, H.; Ortiz-Torres, E.; Hernández-Guzmán, J.A.; Taboada-Gaytán, O.; Vargas-López, S.; Valadez-Ramírez, M. Producción de rastrojo y grano de variedades locales de maíz en condiciones de temporal en los valles altos de Libres-Serdán, Puebla, México. Rev. Mex. Cienc. Pecu. 2013, 4, 515–530. [Google Scholar]
- Escalante-Estrada, J.A.; Rodríguez-González, M.T.; Escalante-Estrada, Y.I. Nitrógeno, distancia entre surcos, rendimiento y productividad del agua en dos cultivares de frijol. Bioagro 2015, 27, 75–82. [Google Scholar]
- Escalante-Estrada, J.A.S.; Rodríguez-gonzález, M.T. Biomass and yield of common bean (Phaseolus vulgaris L.) as a function of the nitrogen source. USDA 2017, 60, 77–78. [Google Scholar]
- Campbell, D.E. A Revised Solar Transformity for Tidal Energy Received by the Earth and Dissipated Globally: Implications for Emergy Analysis. In Emergy Synthesis 1: Theory and Applications of the Emergy Methodology, Proceedings of the 1st Biennial Emergy Research Conference, Center for Environmental Policy, Gainesville, FL, USA, 2–4 September 1999; Brown, M.T., Ed.; University of Florida: Gainesville, FL, USA, 2000; Abstract Number 21; pp. 255–263. [Google Scholar]
- Odum, H.T.; Brown, M.T.; Brandt-Williams, S. Introduction and Global Budget; Handbook of Emergy Evaluation: A Compendium of Data for Emergy Computation Issued in a Series of Folios, Folio 1; The Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2000; p. 16. [Google Scholar]
- Campbell, D.E.; Brandt-Williams, S.L.; Cai, T. Current Technical Problems in Emergy Analysis. In Emergy Synthesis 3: Theory and Applications of the Emergy Methodology, Proceedings of the 3rd Biennial Emergy Research Conference, Center for Environmental Policy, Gainesville, FL, USA, 29–31 January 2004; Brown, M.T., Bardi, E., Campbell, D.E., Comar, V., Huang, S., Rydberg, T., Tilley, D., Ulgiati, S., Eds.; University of Florida: Gainesville, FL, USA, 2005; Abstract Number 10; pp. 143–157. [Google Scholar]
- Campbell, D.E.; Bastianoni, S.; Lu, H. The emergy baseline for the earth: Is it arbitrary? In Proceedings of the 6th Biennial Emergy Research Conference, Gainesville, FL, USA, 14–16 January 2010; Center for Environmental Policy, University of Florida: Gainesville, FL, USA. [Google Scholar]
- Brown, M.T.; Ulgiati, S. Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline. Ecol. Modell. 2010, 221, 2501–2508. [Google Scholar] [CrossRef]
Amount | Baseline 12.00 × 1024 (seJ y−1) | Solar Emergy (sej ha−1 y−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Item number | Item | Unit | Maize | Bean | Squash | UEV 1 (sej Unit−1) | Ref. for UEV | Maize | Bean | Squash | Total | % |
Local renewable resources (R) | ||||||||||||
1 | Sunlight | J | 3.38 × 1013 | 9.15 × 1010 | 1.16 × 1011 | 1.00 × 100 | [12] | 3.38 × 1013 | 9.15 × 1010 | 1.16 × 1011 | 3.40 × 1013 | 0.18 |
2 | Kinetic energy of wind 2 | J | 3.31 × 1010 | 8.97 × 107 | 1.13 × 108 | 1.24 × 103 | [57] | 4.11 × 1013 | 1.11 × 1011 | 1.41 × 1011 | 4.13 × 1013 | 0.23 |
3 | Chemical potential energy in rain 2 | J | 2.20 × 1010 | 5.95 × 107 | 7.52 × 107 | 2.25 × 104 | [36] | 4.94 × 1014 | 1.34 × 1012 | 1.69 × 1012 | 4.97 × 1014 | 2.70 |
4 | Evapotranspiration energy | J | 1.42 × 1010 | 3.83 × 107 | 4.83 × 107 | 2.27 × 104 | [36] | 3.23 × 1014 | 8.68 × 1011 | 1.10 × 1012 | 3.25 × 1014 | 1.77 |
Reinforcing feedbacks: | ||||||||||||
5 | Squash plant residues | J | 0.00 × 100 | 0.00 × 100 | 3.25 × 109 | 2.15 × 105 | Ts | 0.00 × 100 | 0.00 × 100 | 6.98 × 1014 | 6.98 × 1014 | 3.80 |
6 | Maize forage for animal power | J | 2.29 × 107 | 0.00 × 100 | 0.00 × 100 | 2.21 × 105 | Ts | 5.06 × 1012 | 0.00 × 100 | 0.00 × 100 | 5.06 × 1012 | 0.03 |
7 | Bean plant residues | J | 0.00 × 100 | 3.74 × 107 | 0.00 × 100 | 3.49 × 105 | Ts | 0.00 × 100 | 1.30 × 1013 | 0.00 × 100 | 1.30 × 1013 | 0.07 |
8 | Maize seed | J | 9.04 × 107 | 0.00 × 100 | 0.00 × 100 | 3.56 × 105 | Ts | 3.22 × 1013 | 0.00 × 100 | 0.00 × 100 | 3.22 × 1013 | 0.18 |
9 | Bean seed | J | 0.00 × 100 | 2.79 × 106 | 0.00 × 100 | 8.12 × 105 | Ts | 0.00 × 100 | 2.26 × 1012 | 0.00 × 100 | 2.26 × 1012 | 0.01 |
10 | Squash seed | J | 0.00 × 100 | 0.00 × 100 | 3.62 × 106 | 6.69 × 106 | Ts | 0.00 × 100 | 0.00 × 100 | 2.42 × 1013 | 2.42 × 1013 | 0.13 |
11 | Renewable field labor | J | 2.69 × 108 | 3.61 × 105 | 3.80 × 105 | 2.26 × 107 | Ts | 6.06 × 1015 | 8.15 × 1012 | 8.59 × 1012 | 6.08 × 1015 | 33.07 |
12 | Renewable post-harvest labor | J | 2.59 × 108 | 5.79 × 105 | 5.79 × 105 | 2.26 × 107 | Ts | 5.85 × 1015 | 1.31 × 1013 | 1.31 × 1013 | 5.88 × 1015 | 31.98 |
Total of R | 1.25 × 1016 | 3.79 × 1013 | 7.45 × 1014 | 1.33 × 1016 | 72.16 | |||||||
Local non-renewable resources (N) | ||||||||||||
13 | Net loss of topsoil | J | 2.72 × 109 | 8.83 × 106 | 9.30 × 106 | 9.41 × 104 | [12] | 2.56 × 1014 | 8.31 × 1011 | 8.75 × 1011 | 2.57 × 1014 | 1.40 |
Total of N | 2.56 × 1014 | 8.31 × 1011 | 8.75 × 1011 | 2.57 × 1014 | 1.40 | |||||||
Purchased resources (F) | ||||||||||||
14 | Liquid motor fuel | J | 2.95 × 107 | 7.37 × 106 | 7.37 × 106 | 8.39 × 104 | [12] | 2.47 × 1012 | 6.18 × 1011 | 6.18 × 1011 | 3.71 × 1012 | 0.02 |
15 | Nitrogen (urea) | g | 7.46 × 104 3 | 0.00 × 100 | 0.00 × 100 | 4.80 × 109 | [58] | 3.58 × 1014 | 0.00 × 100 | 0.00 × 100 | 3.58 × 1014 | 1.95 |
16 | Phosphorus (DAP) | g | 9.39 × 103 4 | 0.00 × 100 | 0.00 × 100 | 2.80 × 1010 | [59] | 2.62 × 1014 | 0.00 × 100 | 0.00 × 100 | 2.62 × 1014 | 1.43 |
17 | Nitrogen (DAP) | g | 1.09 × 104 5 | 0.00 × 100 | 0.00 × 100 | 3.06 × 1010 | [59] | 3.35 × 1014 | 0.00 × 100 | 0.00 × 100 | 3.35 × 1014 | 1.82 |
18 | Non-renewable field labor | J | 7.14 × 107 | 9.61 × 104 | 1.01 × 105 | 2.26 × 107 | Ts | 1.61 × 1015 | 2.17 × 1012 | 2.28 × 1012 | 1.62 × 1015 | 8.79 |
19 | Non-renewable post-harvest labor | J | 6.89 × 107 | 1.54 × 105 | 1.54 × 105 | 2.26 × 107 | Ts | 1.56 × 1015 | 3.47 × 1012 | 3.47 × 1012 | 1.56 × 1015 | 8.50 |
20 | Tractor service | US$ | 1.04 × 102 | 0.00 × 100 | 0.00 × 100 | 6.94 × 1012 | [60] | 7.21 × 1014 | 0.00 × 100 | 0.00 × 100 | 7.21 × 1014 | 3.93 |
Total of F | 4.85 × 1015 | 6.26 × 1012 | 6.37 × 1012 | 4.86 × 1015 | 26.44 | |||||||
Total emergy used (U) | 1.76 × 1016 | 4.50 × 1013 | 7.53 × 1014 | 1.84 × 1016 | 100.00 |
Item Code | Co-products and Splits | Amount (J ha−1 y−1) | Emergy (sej ha−1 y−1) | Transformity (sej J−1) |
---|---|---|---|---|
a | Squash plant residues | 3.25 × 109 | 6.98 × 1014 | 2.15 × 105 |
b | Maize forage | 2.06 × 1010 | 4.55 × 1015 | 2.21 × 105 |
b1 | Maize forage for animal power | 2.29 × 107 | 5.06 × 1012 | 2.21 × 105 |
b2 | Maize forage (animal feed) | 2.06 × 1010 | 4.55 × 1015 | 2.21 × 105 |
c | Bean plant residues | 3.74 × 107 | 1.30 × 1013 | 3.49 × 105 |
d | Maize grain | 1.84 × 1010 | 6.54 × 1015 | 3.56 × 105 |
d1 | Maize seed for planting | 9.04 × 107 | 3.22 × 1013 | 3.56 × 105 |
d2 | Maize grain for family consumption | 1.83 × 1010 | 6.51 × 1015 | 3.56 × 105 |
e | Bean | 2.23 × 107 | 1.81 × 1013 | 8.12 × 105 |
e1 | Bean seed for planting | 2.79 × 106 | 2.26 × 1012 | 8.12 × 105 |
e2 | Bean for family consumption | 1.95 × 107 | 1.58 × 1013 | 8.12 × 105 |
f | Squash seed | 1.05 × 108 | 7.03 × 1014 | 6.69 × 106 |
f1 | Squash seed for planting | 3.62 × 106 | 2.42 × 1013 | 6.69 × 106 |
f2 | Squash seed for family consumption | 1.01 × 108 | 6.79 × 1014 | 6.69 × 106 |
g | Squash pulp | 3.99 × 107 | 7.03 × 1014 | 1.76 × 107 |
Indices | FMS | Grain, Legume, and Cucurbit Production Systems | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agroforestry | Bean | Maize | Maize-Wheat | Wheat | Cuc | Tag | Lupin/wheat | OA | ||||||||||||
Af | Af-M | B | EB | H/M-IB | M1 | M2 | FM | M-W1 | M-W2 | M/W | W1 | W2 | W3 | L/W | L/W-T | |||||
%Ren | 72.2 | 72–97 | 72, 74 | 3.4–53.7 | 53.7 | 3.4, 4.8 | 0.2 | N/D | 16 | N/D | 13 | 22.4–64.5 | 0.9 | 12–17 | N/D | 30 | 60 | 20 | 30 | 35.2 |
ESR | 0.7 | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | 0.1–0.2 | N/D | 0.1 | N/D | N/D | N/D | 0.5 |
EYR | 3.8 | 4.5–50.7 | 4.5, 4.6 | 1.2–1.3 | 1.3 | 1.2, 1.2 | N/D | 2.4 | 1.2 | 1–1.9 | 1.2 | 1.5–5.7 | N/D | N/D | 1.2 | 1.1 | N/D | N/D | N/D | 3.3 |
ELR | 0.4 | 0.0–0.4 | 0.4, 0.4 | 16.8–39.7 | 16.8 | 39.7, 28.4 | 374–570 | 0.5 | 5.2 | 1.3–1.9 | 6.7 | 3.7–10 | 78–115.2 | 10.7–68.6 | 10.6 | 18.4 | 0.7 | 5.5 | 2.3 | 1.8 |
EIR | 0.4 | N/D | N/D | 3.6–6 | 3.6 | 6, 5.1 | 1–3.3 | N/D | N/D | N/D | N/D | 0.2–2 | 1.4–3.6 | 4.2–7.2 | N/D | 8.6 | 0.6 | 0.5 | 0.8 | N/D |
ESI | 9.8 | 11.9–1740 | 11.9, 12.6 | 0.0–0.1 | 0.1 | 0.0, 0.0 | N/D | 5 | 0.2 | 0.6–1.4 | 0.2 | 0.2–1.2 | N/D | 0.0–0.1 | 0.1 | 0.1 | N/D | N/D | N/D | 1.8 |
EP-D | 18.4 | 2.3–6.3 | 3.7, 6.3 | 6.5–15.4 | 6.5 | 15.4, 11 | 42.3 | 1.6 | 0.0 | 35.5–62.7 | 21.5 | 9.4–22.3 | 34.6 | 3.1–6.8 | 20 | 9.3–15.1 | 1.2 | 1.9 | 1.3 | N/D |
Ref. | Ts | [13] | [13] | [16] | [16] | [16] | [14] | [61] | [15] | [38] | [61] | [62] | [14] | [63] | [61] | [64] | [65] | [65] | [65] | [18] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avalos-Rangel, M.A.; Campbell, D.E.; Reyes-López, D.; Rueda-Luna, R.; Munguía-Pérez, R.; Huerta-Lara, M. The Environmental-Economic Performance of a Poblano Family Milpa System: An Emergy Evaluation. Sustainability 2021, 13, 9425. https://doi.org/10.3390/su13169425
Avalos-Rangel MA, Campbell DE, Reyes-López D, Rueda-Luna R, Munguía-Pérez R, Huerta-Lara M. The Environmental-Economic Performance of a Poblano Family Milpa System: An Emergy Evaluation. Sustainability. 2021; 13(16):9425. https://doi.org/10.3390/su13169425
Chicago/Turabian StyleAvalos-Rangel, Miguel Angel, Daniel E. Campbell, Delfino Reyes-López, Rolando Rueda-Luna, Ricardo Munguía-Pérez, and Manuel Huerta-Lara. 2021. "The Environmental-Economic Performance of a Poblano Family Milpa System: An Emergy Evaluation" Sustainability 13, no. 16: 9425. https://doi.org/10.3390/su13169425
APA StyleAvalos-Rangel, M. A., Campbell, D. E., Reyes-López, D., Rueda-Luna, R., Munguía-Pérez, R., & Huerta-Lara, M. (2021). The Environmental-Economic Performance of a Poblano Family Milpa System: An Emergy Evaluation. Sustainability, 13(16), 9425. https://doi.org/10.3390/su13169425