Research on the Anti-Reflective Cracking Performance of a Full-Depth Asphalt Pavement
Abstract
:1. Introduction
2. Reflection Crack Analysis Model of a Full-Depth Asphalt Pavement
2.1. Full-Depth Asphalt Pavement Structure
2.2. Numerical Analysis Model
3. Analysis and Discussion
3.1. Reflection Crack Propagation Process
3.2. Load-Displacement Curve
3.3. Contrastive Analysis of Fracture Parameters
3.4. Influence Analysis of Material Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Z.-H.; Ma, J.; Su, X.-M.; Yang, G.-F.; Hou, Z.-Q. Grey Relational Analysis of Fatigue Performance of Semi-Rigid Pavement Structure. Appl. Mech. Mater. 2014, 651–653, 1164–1167. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Tan, Y.-Q.; Guo, M.; Liu, Z.-Y.; Wang, X.-L. Study on the dynamic compressive resilient modulus and frost resistance of semi-rigid base materials. Road Mater. Pavement Des. 2017, 18, 259–269. [Google Scholar] [CrossRef]
- Dong, Q.; Zhao, X.-K.; Chen, X.-Q.; Ma, X.; Cui, X.-Q. Long-term mechanical properties of in situ semi-rigid base materials. Road Mater. Pavement Des. 2021, 22, 1692–1707. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Q.-F.; Liu, C.-H. Prediction of shrinkage cracking and corresponding cracking prevention measure of the semi-rigid base layer. Int. J. Pavement Eng. 2009, 10, 383–388. [Google Scholar]
- Yu, S.-X.; Wei, J.-C.; Li, X.-W.; Ma, S.-J. Shrinkage Characteristics of Cement Treated Base Subjected to Thermal Coupled with Moisture in the Field. Appl. Mech. Mater. 2013, 361–363, 1621–1624. [Google Scholar] [CrossRef]
- Su, L.-Y. Mechanics Analysis of Semi-Rigid Subgrade Pavement Structure. Appl. Mech. Mater. 2014, 580–583, 105–108. [Google Scholar] [CrossRef]
- Zang, G.-S.; Sun, L.-J.; Chen, Z.; Li, L. A nondestructive evaluation method for semi-rigid base cracking condition of asphalt pavement. Constr. Build. Mater. 2018, 162, 892–897. [Google Scholar] [CrossRef]
- Livneh, M.; Ishai, I.; Kief, O. Bituminous pre-coated geotextile felts for retarding reflection cracks. Reflective Crack. Pavements 1993, 20, 343–350. [Google Scholar]
- Doh, Y.S.; Baek, S.H.; Kim, K.W. Estimation of relative performance of reinforced overlaid asphalt concretes against reflection cracking due to bending more fracture. Constr. Build. Mater. 2009, 23, 1803–1807. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Zhong, Y. Reflective crack in semi-rigid base asphalt pavement under temperature-traffic coupled dynamics using XFEM. Constr. Build. Mater. 2019, 214, 280–289. [Google Scholar] [CrossRef]
- Gao, Y.-Y. Theoretical Analysis of Reflective Cracking in Asphalt Pavement with Semi-rigid Base. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 43, 149–157. [Google Scholar] [CrossRef]
- Thom, N.; Dawson, A. Sustainable Road Design: Promoting Recycling and Non-Conventional Materials. Sustainability 2019, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Cheraghian, G.; Wistuba, M.P. Ultraviolet aging study on bitumen modified by a composite of clay and fumed silica nanoparticles. Nature 2020, 10, 11216. [Google Scholar]
- Cheraghian, G.; Wistuba, M.P.; Kiani, S.; Barron, A.; Behnood, A. Rheological, physicochemical, and microstructural properties of asphalt binder modified by fumed silica nanoparticles. Sci. Rep. 2021, 11, 11455. [Google Scholar] [CrossRef] [PubMed]
- Linear tracking performance tests on full-depth asphalt pavement. Transp. Res. Rec. J. Transp. Res. Board 1997, 1570, 39–47. [CrossRef]
- Lane, B.; Kazmierowski, T. Ten-Year Performance of Full-Depth Reclamation with Expanded Asphalt Stabilization on Trans-Canada Highway, Ontario, Canada. Transp. Res. Rec. 2012, 2306, 45–51. [Google Scholar] [CrossRef]
- Dessouky, S.H.; Al-Qadi, I.L.; Yoo, P.J. Full-depth flexible pavement responses to different truck tyre geometry configurations. Int. J. Pavement Eng. 2014, 15, 512–520. [Google Scholar] [CrossRef]
- Melese, E.; Baaj, H.; Tighe, S.; Zupko, S.; Smith, T. Characterisation of full-depth reclaimed pavement materials treated with hydraulic road binders. Constr. Build. Mater. 2019, 226, 778–792. [Google Scholar] [CrossRef]
- Guo, M.; Liu, H.-Q.; Jiao, Y.-B.; Mo, L.-T.; Tan, Y.-Q.; Wang, D.-W.; Liang, M.-C. Effect of WMA-RAP Technology on Pavement Performance of Asphalt Mixture: A State-of-the-Art Review. J. Clean. Prod. 2020, 266, 121704. [Google Scholar] [CrossRef]
- Guo, M.; Liu, X.; Jiao, Y.-B.; Tan, Y.-Q.; Luo, D.-S. Rheological characterization of reversibility between aging and rejuvenation of common modified asphalt binders. Constr. Build. Mater. 2021, 301, 124077. [Google Scholar] [CrossRef]
- Guo, M.; Liang, M.-C.; Sreeram, A.; Bhasin, A.; Luo, D.-S. Characterization of Rejuvenation of Various Modified Asphalt Binders based on Simplified Chromatographic Techniques. Int. J. Pavement Eng. 2021. [Google Scholar] [CrossRef]
- Mrawira, D.M.; Luca, J. Thermal Properties and Transient Temperature Response of Full-Depth Asphalt Pavements. Transp. Res. Rec. 2002, 1809, 160–171. [Google Scholar] [CrossRef]
- Ceylan, H.; Guclu, A.; Tutumluer, E.; Thompson, M.R. Backcalculation of full-depth asphalt pavement layer moduli considering nonlinear stress-dependent subgrade behavior. Int. J. Pavement Eng. 2005, 6, 171–182. [Google Scholar] [CrossRef]
- Pekcan, O.; Tutumluer, E.; Ghaboussi, J. SOFTSYS for Backcalculation of Full-Depth Asphalt Pavement Layer Moduli. In Proceedings of the 8th International Conference on the Bearing Capacity of Roads, Railways and Airfields, Champaign, IL, USA, 29 June–2 July 2009; pp. 679–687. [Google Scholar]
- Kassem, E.; Walubita, L.; Scullion, T.; Masad, E.; Wimsatt, A. Evaluation of Full-Depth Asphalt Pavement Construction Using X-Ray Computed Tomography and Ground Penetrating Radar. J. Perform. Constr. Facil. 2008, 22, 408–416. [Google Scholar] [CrossRef]
- Johanneck, L.; Dai, S.-T. Responses and Performance of Stabilized Full-Depth Reclaimed Pavements at the Minnesota Road Research Facility. Transp. Res. Rec. 2013, 2368, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Braham, A. Comparing Life-Cycle Cost Analysis of Full-Depth Reclamation Versus Traditional Pavement Maintenance and Rehabilitation Strategies. Transp. Res. Rec. 2016, 2573, 49–59. [Google Scholar] [CrossRef]
- Song, S.H.; Paulino, G.H.; Buttlar, W.G. Simulation of Crack Propagation in Asphalt Concrete Using an Intrinsic Cohesive Zone Model. J. Eng. Mech. 2006, 132, 1215–1223. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-K.; Wang, J.-C. Simulation of Crack Propagation in Asphalt Concrete Pavement at Low Temperature Using Extended Finite Element Method. In Proceedings of the International Workshop on Energy and Environment in the Development of Sustainable Asphalt Pavements, Xi’an, China, 6–8 June 2010. [Google Scholar]
- Zhong, Y.-H.; Zhang, B.; Zhong, Y.-M.; Guo, C.-C. Response Analysis of Surface Crack in Asphalt Pavement under Moving Loads. Adv. Mater. Res. 2011, 250–253, 2769–2772. [Google Scholar] [CrossRef]
- Luo, S.; Qian, Z.-D.; Chen, C. Crack Propagation Simulation for Epoxy Asphalt Concrete Pavement. Key Eng. Mater. 2011, 460–461, 698–703. [Google Scholar] [CrossRef]
- Guo, H.-B.; Chen, S.-F. Numerical Simulation of the Reflective Crack Propagation Path for Open-Graded Large Stone Asphalt Mixes. J. Wuhan Univ. Technol. 2010, 152–153, 180–183. [Google Scholar] [CrossRef]
- Zhang, X.-C.; Sun, F.-M.; Wang, Y.; Zhang, N. Fracture Mechanics Analysis of Hydraulic Cracks in Asphalt Pavement. Appl. Mech. Mater. 2012, 138–139, 478–483. [Google Scholar] [CrossRef]
- Yang, S.-Y. Finite Element Transient Analysis on the Highway Reflective Crack in Temperature Change. Adv. Mater. Res. 2012, 594–597, 1482–1485. [Google Scholar] [CrossRef]
- Liu, P.-F.; Chen, J.; Lu, G.-Y.; Wang, D.-W.; Oeser, M.; Leischner, S. Numerical Simulation of Crack Propagation in Flexible Asphalt Pavements Based on Cohesive Zone Model Developed from Asphalt Mixtures. Materials 2019, 12, 1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dempsey, B. Development and Performance of Interlayer Stress-Absorbing Composite in Asphalt Concrete Overlays. Transp. Res. Rec. J. Transp. Res. Board 2002, 1809, 175–183. [Google Scholar] [CrossRef]
- Cao, W.-D.; Yao, Z.-Y.; Shang, Q.-S.; Li, Y.-Y.; Yang, Y.-S. Performance Evaluation of Large Stone Porous Asphalt-Rubber Mixture. Adv. Mater. Res. 2011, 150–151, 1184–1190. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Zhang, L.-J.; Kou, B.; Shen, P. The Environment-Friendly High-Elasticity Asphalt Mixture Using as Stress Absorbing Layer. Adv. Mater. Res. 2012, 490–495, 3753–3761. [Google Scholar] [CrossRef]
- Baek, C. Performance Evaluation of Fiber-Reinforced, Stress Relief Asphalt Layers to Suppress Reflective Cracks. Appl. Sci. 2020, 10, 7701. [Google Scholar] [CrossRef]
- Tan, J.-Z.; Wei, J.-G.; Pan, C.; Huang, K.-X. Shear stress calculation of rubber asphalt overlay and stress-absorbing layer. In Proceedings of the 2016 International Conference on Civil, Architecture and Environmental Engineering, Taipei, Taiwan, 4–6 November 2016; CRC Press/Balkema: Boca Raton, FL, USA, 2016; Volume 1, pp. 189–193. [Google Scholar]
- Pan, R.; Li, Y.-M. Effect of warm mix rubber modified asphalt mixture as stress absorbing layer on anti-crack performance in cold region. Constr. Build. Mater. 2020, 251, 118985. [Google Scholar] [CrossRef]
- Deng, H.-L.; Fu, X.-Y.; Gao, W.-X.; Ni, T.-T.; Chen, K.-J. Research on New Technology to Control Highway Semi-Rigid Base Asphalt Pavement Cracks. Adv. Mater. Res. 2011, 194–196, 1632–1638. [Google Scholar] [CrossRef]
- Wargo, A.; Safavizadeh, S.A.; Kim, Y.R. Comparing the Performance of Fiberglass Grid with Composite Interlayer Systems in Asphalt Concrete. Transp. Res. Rec. 2017, 2631, 123–132. [Google Scholar] [CrossRef]
- Li, P.; Mao, Y.; Nian, T.-F.; Ma, K. Crack propagation behavior between base and surface courses of asphalt pavement based on weight function method. J. Beijing Jiaotong Univ. 2017, 41, 61–68. (In Chinese) [Google Scholar]
Material Name | Elastic Modulus (MPa) | Poisson’s Ratio |
---|---|---|
SMA-13 | 1500 | 0.25 |
AC-13 | 1450 | 0.25 |
AC-20 | 1400 | 0.25 |
AC-25 | 1350 | 0.25 |
ATB-25 | 1200 | 0.40 |
Lime-ash soil | 800 | 0.35 |
Cement stabilized macadam | 1600 | 0.25 |
Low content cement stabilized macadam | 1300 | 0.25 |
Modified soil | 400 | 0.40 |
Soil | 50 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, F.; Li, T.; Li, X.; Li, Y.; Guo, M. Research on the Anti-Reflective Cracking Performance of a Full-Depth Asphalt Pavement. Sustainability 2021, 13, 9499. https://doi.org/10.3390/su13179499
Hou F, Li T, Li X, Li Y, Guo M. Research on the Anti-Reflective Cracking Performance of a Full-Depth Asphalt Pavement. Sustainability. 2021; 13(17):9499. https://doi.org/10.3390/su13179499
Chicago/Turabian StyleHou, Fujin, Tao Li, Xu Li, Yunliang Li, and Meng Guo. 2021. "Research on the Anti-Reflective Cracking Performance of a Full-Depth Asphalt Pavement" Sustainability 13, no. 17: 9499. https://doi.org/10.3390/su13179499
APA StyleHou, F., Li, T., Li, X., Li, Y., & Guo, M. (2021). Research on the Anti-Reflective Cracking Performance of a Full-Depth Asphalt Pavement. Sustainability, 13(17), 9499. https://doi.org/10.3390/su13179499