Triggers of Delays in International Projects Using Engineering Procurement and Construction Delivery Methods in the Belt and Road Initiative: Case Study of a High-Speed Railway Projects
Abstract
:1. Introduction
2. Review of Relevant Literature
2.1. International EPC Contract under Belt and Road Initiative
2.2. Construction Delay Management
3. Research Methodology
3.1. Checklist of EPC HSR Delay Factors
3.2. The Questionnaire Survey
3.3. Data Analytical Procedure
4. Results of Data Analysis
Ranking of the Triggers of Delays in EPC HSR Projects
5. Discussion
5.1. Critical Delay Factors in the Engineering Phase
5.2. Critical Delay Factors in the Procurement Phase
5.3. Critical Delay Factors in the Construction Phase
6. Conclusions
7. Limitations and Future Research Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, Z.-Z.; Ma, Z.-J.; Sheu, J.-B.; Gao, H.O. Evaluation of Large-Scale Transnational High-Speed Railway Construction Priority in the Belt and Road Region. Transp. Res. Part E Logist. Transp. Rev. 2018, 117, 40–57. [Google Scholar] [CrossRef]
- Nikjow, M.A.; Li, L.; Qi, X.; Sonar, H. Risk Analysis of Belt and Road Infrastructure Projects Using Integrated ISM-MICMAC Approach. J. Model. Manag. Emerlad 2021. [Google Scholar] [CrossRef]
- Liu, W.; Dunfor, M. Inclusive Globalization: Unpacking China’s Belt and Road Initiative: Area Development and Policy. Area Dev. Policy 2016, 1, 323–340. [Google Scholar] [CrossRef]
- Huang, Y. Understanding China’s Belt & Road Initiative: Motivation, Framework and Assessment. China Econ. Rev. 2016, 40, 314–321. [Google Scholar] [CrossRef]
- Chan, S. The Belt and Road Initiative: Implications for China and East Asian Economies. Cph. J. Asian Stud. 2018, 35, 52. [Google Scholar] [CrossRef]
- Goodier, C.I. Delay Factors For International Engineerprocure- Construct (Iepc) High-Speed Rail Construction Projects. In Proceedings of the 34th Conference and Annual General Meeting, ARCOM, Belfast, UK, 3 September 2018; pp. 490–499. [Google Scholar]
- Andrić, J.M.; Wang, J.; Zhong, R. Identifying the Critical Risks in Railway Projects Based on Fuzzy and Sensitivity Analysis: A Case Study of Belt and Road Projects. Sustainability 2019, 11, 1302. [Google Scholar] [CrossRef] [Green Version]
- Sepasgozar, S.M.E.; Blair, J. Measuring Non-Road Diesel Emissions in the Construction Industry: A Synopsis of the Literature. Int. J. Constr. Manag. 2019, 21, 582–597. [Google Scholar] [CrossRef]
- Sepasgozar, S.; Li, H.; Shirowzhan, S.; Tam, V.W.Y. Methods for Monitoring Construction Off-Road Vehicle Emissions: A Critical Review for Identifying Deficiencies and Directions. Environ. Sci. Pollut. Res. 2019, 26, 15779–15794. [Google Scholar] [CrossRef]
- Gajjar, V.; Sharma, U.; Shah, M.H. Deliverable to Improve Air Quality Using NDVI Analysis for Ahmedabad City: Addressing the Agendas of SDG. Curr. Res. Environ. Sustain. 2021, 3, 100036. [Google Scholar] [CrossRef]
- Elburz, Z.; Nijkamp, P.; Pels, E. Public Infrastructure and Regional Growth: Lessons from Meta-Analysis. J. Transp. Geogr. 2017, 58, 1–8. [Google Scholar] [CrossRef]
- Nikjow, M.A.; Liang, L.; Qi, X.; Sepasgozar, S. Engineering Procurement Construction in the Context of Belt and Road Infrastructure Projects in West Asia: A SWOT Analysis. J. Risk Financ. Manag. 2021, 14, 92. [Google Scholar] [CrossRef]
- Choudhry, R.M.; Iqbal, K. Identification of Risk Management System in Construction Industry in Pakistan. J. Manag. Eng. 2013, 29, 42–49. [Google Scholar] [CrossRef]
- Galloway, P. Design-Build/EPC Contractor’s Heightened Risk—Changes in a Changing World. J. Leg. Aff. Dispute Resolut. Eng. Constr. 2009, 1, 7–15. [Google Scholar] [CrossRef]
- Corkin, L. Chinese Construction Companies in Angola: A Local Linkages Perspective. Resour. Policy 2012, 37, 475–483. [Google Scholar] [CrossRef]
- Zou, P.; Chen, Y.; Chan, T. Understanding and Improving Your Risk Management Capability: Assessment Model for Construction Organizations. J. Constr. Eng. Manag. 2010, 136, 854–863. [Google Scholar] [CrossRef]
- Wang, S.; Tang, W.; Li, Y. Relationship between Owners’ Capabilities and Project Performance on Development of Hydropower Projects in China. J. Constr. Eng. Manag. 2013, 139, 1168–1178. [Google Scholar] [CrossRef]
- Fallahnejad, M.H. Delay Causes in Iran Gas Pipeline Projects. Int. J. Proj. Manag. 2013, 31, 136–146. [Google Scholar] [CrossRef]
- Oswald, D.; Wade, F.; Sherratt, F.; Smith, S.D. Communicating Health and Safety on a Multinational Construction Project: Challenges and Strategies. J. Constr. Eng. Manag. 2019, 145, 04019017. [Google Scholar] [CrossRef] [Green Version]
- Han, S.H.; Yun, S.; Kim, H.; Kwak, Y.H.; Park, H.K.; Lee, S.H. Analyzing Schedule Delay of Mega Project: Lessons Learned From Korea Train Express. IEEE Trans. Eng. Manag. 2009, 56, 243–256. [Google Scholar] [CrossRef]
- Koushki, P.A.; Al-Rashid, K.; Kartam, N. Delays and Cost Increases in the Construction of Private Residential Projects in Kuwait. Constr. Manag. Econ. 2005, 23, 285–294. [Google Scholar] [CrossRef]
- Al-Khalil, M.I.; Al-Ghafly, M.A. Important Causes of Delay in Public Utility Projects in Saudi Arabia. Constr. Manag. Econ. 1999, 17, 647–655. [Google Scholar] [CrossRef]
- Jiang, F. Chinese Contractor Involvement in Wildlife Protection in Africa: Case Study of Mombasa-Nairobi Standard Gauge Railway Project, Kenya. Land Use Policy 2020, 95, 104650. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Xiong, W. Financing the Belt and Road Initiative. Eurasian Geogr. Econ. 2020, 61, 137–145. [Google Scholar] [CrossRef]
- Shang-Su, W.; Chong, A.; Research Fellow with the Military Studies Programme of the S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University, Singapore. Developmental Railpolitics: The Political Economy of China’s High-Speed Rail Projects in Thailand and Indonesia. Contemp. Southeast Asia 2018, 40, 503–526. [Google Scholar] [CrossRef]
- Wei, M. China-Middle East Cooperation in the Field of Infrastructure under the Framework of the “Belt and Road” Initiative. Asian J. Middle East. Islam. Stud. 2017, 11, 22–34. [Google Scholar] [CrossRef]
- Xiang, P.; Wan, Z. Overseas EPC projects risk management of Chinese contractors: A case study of Mecca light railway project. Int Econ Coop. J. 2011, 6, 52–55. [Google Scholar]
- Andrić, J.M.; Wang, J.; Zou, P.X.W.; Zhong, R. The Conceptual Model of Belt and Road Infrastructure Projects. In Proceedings of the International Symposium on Advancement of Construction Management and Real Estate; Springer: Singapore, 2018; Volume 15, pp. 325–340. [Google Scholar]
- Ugwu, M. FIDIC-Conditions of Contract for EPC/Turnkey Projects; Fidic Lausanne: Geneva, Switzerland, 1999. [Google Scholar]
- Guo, Q.; Xu, Z.; Zhang, G.; Tu, T. Comparative Analysis between the EPC Contract Mode and the Traditional Mode Based on the Transaction Cost Theory. In Proceedings of the 2010 IEEE 17Th International Conference on Industrial Engineering and Engineering Management, IEEE, Xiamen, China, 29–31 October 2010; pp. 191–195. [Google Scholar]
- Shen, W.; Tang, W.; Yu, W.; Duffield, C.F.; Hui, F.K.P.; Wei, Y.; Fang, J. Causes of Contractors’ Claims in International Engineering-Procurement-Construction Projects. J. Civ. Eng. Manag. 2017, 23, 727–739. [Google Scholar] [CrossRef] [Green Version]
- Hale, D.R.; Shrestha, P.P.; Gibson, G.E.; Migliaccio, G.C. Empirical Comparison of Design/Build and Design/Bid/Build Project Delivery Methods. J. Constr. Eng. Manag. 2009, 135, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Ozdas, A.; Okmen, O. Risk Analysis in Fixed-Price Design-Build Construction Project. Buiding Environ. 2004, 39, 229–237. [Google Scholar] [CrossRef]
- Du, L.; Tang, W.; Liu, C.; Wang, S.; Wang, T.; Shen, W.; Huang, M.; Zhou, Y. Enhancing Engineer–Procure–Construct Project Performance by Partnering in International Markets: Perspective from Chinese Construction Companies. Int. J. Proj. Manag. 2016, 34, 30–43. [Google Scholar] [CrossRef]
- Pal, R.; Wang, P.; Liang, X. The Critical Factors in Managing Relationships in International Engineering, Procurement, and Construction (IEPC) Projects of Chinese Organizations. Int. J. Proj. Manag. 2017, 35, 1225–1237. [Google Scholar] [CrossRef]
- Dainty, A.R.J.; Millett, S.J.; Briscoe, G.H. New Perspectives on Construction Supply Chain Integration. Supply Chain Manag. Int. J. 2001, 6, 163–173. [Google Scholar] [CrossRef]
- El Asmar, M.; Lotfallah, W.; Whited, G.; Hanna, A.S. Quantitative Methods for Design-Build Team Selection. J. Constr. Eng. Manag. 2010, 136, 904–912. [Google Scholar] [CrossRef]
- Chang, T.; Deng, X.; Hwang, B.-G.; Zhao, X. Improving Quantitative Assessment of Political Risk in International Construction Projects: The Case of Chinese Construction Companies. J. Constr. Eng. Manag. 2019, 145, 04019083. [Google Scholar] [CrossRef]
- PMI. A Guide to the Project Management Body of Knowledge; Pennsylvania PMI (Project Management Institute): Newtown Square, PA, USA, 2013; ISBN ANSI/PMI 99-001-2008. [Google Scholar]
- Yuan, T.; Xiang, P.; Li, H.; Zhang, L. Identification of the Main Risks for International Rail Construction Projects Based on the Effects of Cost-Estimating Risks. J. Clean. Prod. 2020, 274, 122904. [Google Scholar] [CrossRef]
- Wang, C.; Loo, S.C.; Yap, J.B.H.; Abdul-Rahman, H. Novel Capability-Based Risk Assessment Calculator for Construction Contractors Venturing Overseas. J. Constr. Eng. Manag. 2019, 145, 04019059. [Google Scholar] [CrossRef]
- NDRC Vision and Actions on Jointly Building the Silk Road Economic Belt and 21st-Century Maritime Silk Road 2015. Available online: https://www.mei.edu/publications/positioning-provinces-along-chinas-maritime-silk-road (accessed on 11 June 2021).
- Gholizadeh, A.; Saneinia, S.; Zhou, R. Belt and Road Initiative (BRI) as a Turning Point on China’s Infrastructure Interconnection and Talent Exchange: Case of High-Speed Railway. J. Soc. Polit. Sci. 2019, 2, 990–996. [Google Scholar] [CrossRef]
- Richardson, K. Indonesia: Lessons for the US–China Geoeconomic Competition. J. Indo-Pac. Aff. 2020, 11. [Google Scholar]
- Pouryousef, H.; Teixeira, P.; Sussman, J. Track Maintenance Scheduling and Its Interactions With Operations: Dedicated and Mixed High-Speed Rail (HSR) Scenarios. In Proceedings of the Joint Rail Conference; ASMEDC: Urbana, IL, USA, 2010; Volume 2, pp. 317–326. [Google Scholar]
- Arditi, D.; Nayak, S.; Damci, A. Effect of Organizational Culture on Delay in Construction. Int. J. Proj. Manag. 2017, 35, 136–147. [Google Scholar] [CrossRef]
- Assaf, S.A.; Al-Hejji, S. Causes of Delay in Large Construction Projects. Int. J. Proj. Manag. 2006, 24, 349–357. [Google Scholar] [CrossRef]
- Sambasivan, M.; Soon, Y.W. Causes and Effects of Delays in Malaysian Construction Industry. Int. J. Proj. Manag. 2007, 25, 517–526. [Google Scholar] [CrossRef]
- Zafar, I.; Wuni, I.Y.; Shen, G.Q.P.; Ahmed, S.; Yousaf, T. A Fuzzy Synthetic Evaluation Analysis of Time Overrun Risk Factors in Highway Projects of Terrorism-Affected Countries: The Case of Pakistan. Int. J. Constr. Manag. 2019, 1–19. [Google Scholar] [CrossRef]
- Le-Hoai, L.; Lee, Y.D.; Lee, J.Y. Delay and Cost Overruns in Vietnam Large Construction Projects: A Comparison with Other Selected Countries. KSCE J. Civ. Eng. 2008, 12, 367–377. [Google Scholar] [CrossRef]
- Gunduz, M.; Ahsan, B. Construction Safety Factors Assessment through Frequency Adjusted Importance Index. Int. J. Ind. Ergon. 2018, 64, 155–162. [Google Scholar] [CrossRef]
- Habibi, M.; Kermanshachi, S.; Safapour, E. Engineering, Procurement, and Construction Cost and Schedule Performance Leading Indicators: State-of-the-Art Review. In Proceedings of the Construction Research Congress 2018, American Society of Civil Engineers, New Orleans, Louisiana, 29 March 2018; pp. 378–388. [Google Scholar]
- Bhargava, A.; Anastasopoulos, P.C.; Labi, S.; Sinha, K.C.; Mannering, F.L. Three-Stage Least-Squares Analysis of Time and Cost Overruns in Construction Contracts. J. Constr. Eng. Manag. 2010, 136, 1207–1218. [Google Scholar] [CrossRef]
- Wambeke, B.W.; Hsiang, S.M.; Liu, M. Causes of Variation in Construction Project Task Starting Times and Duration. J. Constr. Eng. Manag. 2011, 137, 663–677. [Google Scholar] [CrossRef]
- Pourrostam, T.; Ismail, A. Causes and Effects of Delay in Iranian Construction Projects. Int. J. Eng. Technol. 2012, 4, 598–601. [Google Scholar] [CrossRef] [Green Version]
- Marzouk, M.M.; El-Rasas, T.I. Analyzing Delay Causes in Egyptian Construction Projects. J. Adv. Res. 2014, 5, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.Z.; Ding, L.Y.; Zhou, C.; Luo, H.B. Analysis of Factors Influencing Safety Management for Metro Construction in China. Accid. Anal. Prev. 2014, 68, 131–138. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Tuan, K.N.; Luu, V.T. Delay Factor Analysis for Hospital Projects in Vietnam. KSCE J. Civ. Eng. 2015, 20, 519–529. [Google Scholar] [CrossRef]
- Shah, R.K. An Exploration of Causes For Delay and Cost Overrun in Construction Projects: A Case Study of Australia, Malaysia & Ghana. J. Adv. Coll. Eng. Manag. 2016, 2, 16. [Google Scholar]
- Sepasgozar, S.M.E.; Karimi, R.; Shirowzhan, S.; Mojtahedi, M.; Ebrahimzadeh, S.; McCarthy, D. Delay Causes and Emerging Digital Tools: A Novel Model of Delay Analysis, Including Integrated Project Delivery and PMBOK. Buildings 2019, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Durdyev, S.; Omarov, M.; Ismail, S. Causes of Delay in Residential Construction Projects in Cambodia. Cogent Eng. 2017, 4, 1291117. [Google Scholar] [CrossRef]
- Matthews, J.; Love, P.E.D.; Mewburn, J.; Stobaus, C.; Ramanayaka, C. Building Information Modelling in Construction: Insights from Collaboration and Change Management Perspectives. Prod. Plan. Control 2018, 29, 202–216. [Google Scholar] [CrossRef]
- Wang, T.-K.; Ford, D.N.; Chong, H.-Y.; Zhang, W. Causes of Delays in the Construction Phase of Chinese Building Projects. Eng. Constr. Archit. Manag. 2018, 25, 1534–1551. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.-X.; Shan, M.; Chan, A.P.C.; Liu, X.; Zhao, Y.-Q. Investigating the Causes of Delay in Grain Bin Construction Projects: The Case of China. Int. J. Constr. Manag. 2019, 19, 1–14. [Google Scholar] [CrossRef]
- Khatib, B.A.; Poh, Y.S.; El-Shafie, A. Delay Factors Management and Ranking for Reconstruction and Rehabilitation Projects Based on the Relative Importance Index (RII). Sustainability 2020, 12, 6171. [Google Scholar] [CrossRef]
- Tohidi, H.; Jabbari, M.M.; Tohidi, O. Exploratory Analysis of Factors Influencing Delay in EPC Contracts of Iranian Power Development Company. Hong Kong 2018, 6. [Google Scholar]
- Wang, J.; Yuan, H. System Dynamics Approach for Investigating the Risk Effects on Schedule Delay in Infrastructure Projects. J. Manag. Eng. 2017, 33, 04016029. [Google Scholar] [CrossRef]
- Alhajri, A.; Alshibani, A. Critical Factors behind Construction Delay in Petrochemical Projects in Saudi Arabia. Energies 2018, 11, 1652. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Shuai, Q. Study on Cost Management of the General Contractor in EPC Project. In Proceedings of the 2010 3rd International Conference on Information Management, Innovation Management and Industrial Engineering, IEEE, Kunming, China, 26–28 November 2010; pp. 478–481. [Google Scholar]
- Cui, H.; Liang, L. Fuzzy Comprehensive Evaluation of Risk for EPC Project Based on the Economic Crisis; IEEE: Changsha, China, May 2010; pp. 362–365. [Google Scholar]
- Masi, D.; Micheli, G.J.L.; Cagno, E. A Meta-Model for Choosing a Supplier Selection Technique within an EPC Company. J. Purch. Supply Manag. 2013, 19, 5–15. [Google Scholar] [CrossRef]
- Ke, H.; Xu, J. Research and Control of the Risk of EPC Contractor Based on the Supply Chain; Atlantis Press: Xi’an, China, 2015. [Google Scholar]
- Arnoni, Y. EPC Project Management Compared to Corporate Management and Total Quality Management. In Proceedings of the Managing for Quality: Proceedings of the Project Management Institute; Drexel Hill, Pa: Project Management Institute, Dallas, TX, USA, 27 September–2 October 1991; pp. 797–804. [Google Scholar]
- Ahmed, T.N.; Ruwanpura, J.Y.; Clark, R. Predicting Schedule and Cost Elements’ Variation for EPC Projects in Alberta. In Proceedings of the Construction Research Congress, San Diego, CA, USA, 5–7 April 2005; American Society of Civil Engineers ASCE: San Diego, CA, USA, 2005; pp. 1–10. [Google Scholar]
- Dachyar, M.; Department of Industrial Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia; Sanjiwo, Z.A.H.; Department of Industrial Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia. Business Process Re-Engineering of Engineering Procurement Construction (EPC) Project in Oil and Gas Industry in Indonesia. Indian J. Sci. Technol. 2018, 11, 1–8. [Google Scholar] [CrossRef]
- Abawi, K. Qualitative and Quantitative Research. 2008. Available online: https://www.gfmer.ch/Medical_education_En/Afghanistan_2008/pdf/Qualitative_quantitative_research_Abawi_Afghanistan_2008.pdf (accessed on 11 June 2021).
- Yang, J.-B.; Wei, P.-R. Causes of Delay in the Planning and Design Phases for Construction Projects. J. Archit. Eng. 2010, 16, 80–83. [Google Scholar] [CrossRef]
- Osei-Kyei, R.; Chan, A.P.C.; Ameyaw, E.E. A Fuzzy Synthetic Evaluation Analysis of Operational Management Critical Success Factors for Public-Private Partnership Infrastructure Projects. Benchmarking Int. J. 2017, 24, 2092–2112. [Google Scholar] [CrossRef]
- Campbell, S.; Greenwood, M.; Prior, S.; Shearer, T.; Walkem, K.; Young, S.; Bywaters, D.; Walker, K. Purposive Sampling: Complex or Simple? Research Case Examples. J. Res. Nurs. 2020, 25, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Pett, M.; Lackey, N.; Sullivan, J. Making Sense of Factor Analysis; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2003. [Google Scholar]
- Muneeswaran, G.; Manoharan, P.; Awoyera, P.O.; Adesina, A. A Statistical Approach to Assess the Schedule Delays and Risks in Indian Construction Industry. Int. J. Constr. Manag. 2020, 20, 450–461. [Google Scholar] [CrossRef]
- Tavassolirizi, M.; Sarvari, H.; Chan, D.W.M.; Olawumi, T.O. Factors Affecting Delays in Rail Transportation Projects Using Analytic Network Process: The Case of Iran. Int. J. Constr. Manag. 2020, 1–12. [Google Scholar] [CrossRef]
- ENR ENR’s 2018 Top 250 International Contractors. Available online: https://www.enr.com/toplists/2018-Top-250-International-Contractors-1 (accessed on 30 August 2020).
- Wragg, C.B.; Maxwell, N.S.; Doust, J.H. Evaluation of the Reliability and Validity of a Soccer-Specific Field Test of Repeated Sprint Ability. Eur. J. Appl. Physiol 2000, 83, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Shang, G.; Sui Pheng, L. The Adoption of Toyota Way Principles in Large Chinese Construction Firms. J. Technol. Manag. China 2012, 7, 291–316. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient Alpha and the Internal Structure of Tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Doloi, H.; Sawhney, A.; Iyer, K.C. Structural Equation Model for Investigating Factors Affecting Delay in Indian Construction Projects. Constr. Manag. Econ. 2012, 30, 869–884. [Google Scholar] [CrossRef]
- Bajjou, M.S.; Chafi, A. Empirical Study of Schedule Delay in Moroccan Construction Projects. Int. J. Constr. Manag. 2020, 20, 783–800. [Google Scholar] [CrossRef]
- Black, S.A.; Porter, L.J. Identification of the Critical Factors of TQM. Decis. Sci. 1996, 27, 1–21. [Google Scholar] [CrossRef]
- Chou, Y.U.-M.; Polansky, A.M.; Mason, R.L. Transforming Non-Normal Data to Normality in Statistical Process Control. J. Qual. Technol. 1998, 30, 10. [Google Scholar] [CrossRef]
- Ameyaw, E.E.; Hu, Y.; Shan, M.; Chan, A.P.C.; Le, Y. Application of Delphi Method in Construction Engineering and Management Research: A Quantitative Perspective. J. Civ. Eng. Manag. 2016, 22, 991–1000. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y.; Phillips, L.W. Assessing Construct Validity in Organizational Research. Adm. Sci. Q. 1991, 36, 421. [Google Scholar] [CrossRef]
- Kometa, S.T.; Olomolaiye, P.O.; Harris, F.C. Attributes of UK Construction Clients Influencing Project Consultants’ Performance. Constr. Manag. Econ. 1994, 12, 433–443. [Google Scholar] [CrossRef]
- Kog, Y.C. Construction Delays in Indonesia, Malaysia, Thailand, and Vietnam. Pract. Period. Struct. Des. Constr. 2019, 24, 04019013. [Google Scholar] [CrossRef]
- Ruqaishi, M.; Bashir, H.A. Causes of Delay in Construction Projects in the Oil and Gas Industry in the Gulf Cooperation Council Countries: A Case Study. J. Manag. Eng. 2015, 31, 05014017. [Google Scholar] [CrossRef]
- Andrić, J.M.; Wang, J.; Zou, P.X.W.; Zhang, J.; Zhong, R. Fuzzy Logic–Based Method for Risk Assessment of Belt and Road Infrastructure Projects. J. Constr. Eng. Manag. 2019, 145. [Google Scholar] [CrossRef]
- Ye, G.; Jin, Z.; Xia, B.; Skitmore, M. Analyzing Causes for Reworks in Construction Projects in China. J. Manag. Eng. 2015, 31, 04014097. [Google Scholar] [CrossRef]
- Lee, C.K.; Yiu, T.W.; Cheung, S.O. Selection and Use of Alternative Dispute Resolution (ADR) in Construction Projects — Past and Future Research. Int. J. Proj. Manag. 2016, 34, 494–507. [Google Scholar] [CrossRef]
- Ahsan, K.; Gunawan, I. Analysis of Cost and Schedule Performance of International Development Projects. Int. J. Proj. Manag. 2010, 28, 68–78. [Google Scholar] [CrossRef]
- Diallo, A.; Thuillier, D. The Success Dimensions of International Development Projects: The Perceptions of African Project Coordinators. Int. J. Proj. Manag. 2004, 22, 19–31. [Google Scholar] [CrossRef]
Factor Grouping | Triggers of Delays |
---|---|
Contractor Related (CR) | CR#1-Typically, change of subcontractors [18] |
CR#2-Inadequate contractor experience [66] | |
CR#3-Ineffective construction approach [67] | |
CR#4-Impotent project team [66] | |
CR#5-Poor coordination and communication [67] | |
CR#6-Impractical technology [68] | |
CR#7-Insufficient scheduling and planning [6] | |
CR#8-Low supervision and site management [68] | |
CR#9-Reworking due to incompetence [6] | |
CR#10-Untrustworthy of subcontractors [18] | |
Equipment Related (ER) | ER#1-Equipment allocation problem [69] |
ER#2-Equipment breakdowns on a regularly [70] | |
ER#3-Insufficient equipment [71] | |
ER#4-Insufficient latest equipment [72] | |
ER#5-InefficientInefficience of the equipment [35] | |
ER#6-Equipment deficit [71] | |
ER#7-Slow deployment of equipment [70] | |
Design Related (DR) | DR#1-The complexity of project design [73] |
DR#2-Design changes during construction [74] | |
DR#3-Design errors [14] | |
DR#4-Insufficient survey before the design [75] | |
DR#5-Lack of experience in the design team [73] | |
DR#6-Delays in mistakes producing documents [75] | |
DR#7-Misunderstanding requirements by designer [75] | |
DR#8-Inefficent usage of the software [10] | |
DR#9-Ambiguous descriptions in drawings [74] | |
Project Related (PR) | PR#1-Project complexity [73] |
PR#2-Lack of significant execution [75] | |
PR#3-Unsuccessful delay penalties [73] | |
PR#4-Participants’ legal disagreements [10] | |
PR#5-Ineffective construction planning [10] | |
PR#6-Delay in payment and improper financial procedure [74] | |
Materials Related (MR) | MR#1-Shortage of Materials on Site [69] |
MR#2-Sorting material destroy [7] | |
MR#3-Lag manufacturing of materials [70] | |
MR#4-Material costs are rising [70] | |
MR#5-Materials late delivery [35] | |
MR#6-Delay in transportation materials [7] | |
MR#7-Low grade materials [69] | |
MR#8-Inconsistency of suppliers [35] |
Factor Grouping | ID | RII Output | Phase | |||||
---|---|---|---|---|---|---|---|---|
RII | SD | Mean | Rank | (p Value) Shapiro–Wilk Test | (p Value) Kruskal–Wallis Test | |||
Contractor Related (CR) | CR#1 | 0.742 | 0.35 | 3.712 | 9 | 0.00 * | 0.253 | Engineering |
CR#2 | 0.858 | 0.36 | 4.288 | 1 | 0.00 * | 0.289 | ||
CR#3 | 0.745 | 0.33 | 3.727 | 7 | 0.00 * | 0.044 | ||
CR#4 | 0.748 | 0.34 | 3.742 | 6 | 0.00 * | 0.203 | ||
CR#5 | 0.827 | 0.34 | 4.136 | 1 | 0.00 * | 0.723 | ||
CR#6 | 0.618 | 0.32 | 3.091 | 30 | 0.00 * | 0.234 | ||
CR#7 | 0.742 | 0.32 | 3.712 | 5 | 0.00 * | 0.023 | ||
CR#8 | 0.824 | 0.32 | 4.121 | 1 | 0.00 * | 0.534 | ||
CR#9 | 0.739 | 0.30 | 3.697 | 4 | 0.00 * | 0.325 | ||
CR#10 | 0.785 | 0.30 | 3.924 | 2 | 0.00 * | 0.654 | ||
Equipment Related (ER) | ER#1 | 0.664 | 0.28 | 3.37 | 19 | 0.00 * | 0.545 | Procurement |
ER#2 | 0.682 | 0.29 | 3.43 | 14 | 0.00 * | 0.047 | ||
ER#3 | 0.700 | 0.29 | 3.54 | 7 | 0.00 * | 0.432 | ||
ER#4 | 0.661 | 0.30 | 3.32 | 17 | 0.00 * | 0.543 | ||
ER#5 | 0.676 | 0.30 | 3.45 | 13 | 0.00 * | 0.645 | ||
ER#6 | 0.685 | 0.31 | 3.50 | 12 | 0.00 * | 0.453 | ||
ER#7 | 0.642 | 0.32 | 3.25 | 16 | 0.00 * | 0.213 | ||
Design Related (DR) | DR#1 | 0.621 | 0.32 | 3.106 | 18 | 0.00 * | 0.324 | Engineering |
DR#2 | 0.794 | 0.33 | 3.970 | 1 | 0.00 * | 0.541 | ||
DR#3 | 0.733 | 0.30 | 3.667 | 2 | 0.00 * | 0.143 | ||
DR#4 | 0.715 | 0.30 | 3.576 | 4 | 0.00 * | 0.197 | ||
DR#5 | 0.724 | 0.31 | 3.621 | 3 | 0.00 * | 0.089 | ||
DR#6 | 0.697 | 0.30 | 3.485 | 3 | 0.00 * | 0.345 | ||
DR#7 | 0.673 | 0.31 | 3.364 | 9 | 0.00 * | 0.251 | ||
DR#8 | 0.555 | 0.32 | 2.773 | 16 | 0.00 * | 0.234 | ||
DR#9 | 0.691 | 0.30 | 3.455 | 6 | 0.00 * | 0.218 | ||
Project Related (PR) | PR#1 | 0.567 | 0.31 | 2.833 | 13 | 0.00 * | 0.435 | Construction |
PR#2 | 0.567 | 0.29 | 2.833 | 13 | 0.00 * | 0.223 | ||
PR#3 | 0.633 | 0.27 | 3.167 | 10 | 0.00 * | 0.923 | ||
PR#4 | 0.676 | 0.27 | 3.379 | 6 | 0.00 * | 0.984 | ||
PR#5 | 0.670 | 0.29 | 3.348 | 5 | 0.00 * | 0.345 | ||
PR#6 | 0.664 | 0.30 | 3.318 | 5 | 0.00 * | 0.432 | ||
Materials Related (MR) | MR#1 | 0.697 | 0.32 | 3.485 | 3 | 0.00 * | 0.234 | Procurement |
MR#2 | 0.639 | 0.35 | 3.197 | 5 | 0.00 * | 0.452 | ||
MR#3 | 0.694 | 0.37 | 3.470 | 3 | 0.00 * | 0.234 | ||
MR#4 | 0.579 | 0.41 | 2.894 | 5 | 0.00 * | 0.437 | ||
MR#5 | 0.785 | 0.37 | 3.924 | 1 | 0.00 * | 0.423 | ||
MR#6 | 0.727 | 0.28 | 3.636 | 1 | 0.00 * | 0.190 | ||
MR#7 | 0.615 | 0.13 | 3.076 | 2 | 0.00 * | 0.234 | ||
MR#8 | 0.655 | 0.35 | 3.273 | 1 | 0.00 * | 0.5432 |
Factor Grouping | ID | RII | SD | Mean | Rank | EPC Phase |
---|---|---|---|---|---|---|
Contractor Related (CR) | CR#2 | 0.858 | 0.36 | 4.28 | 1 | Engineering |
CR#7 | 0.827 | 0.34 | 4.13 | 5 | ||
CR#8 | 0.824 | 0.32 | 4.12 | 1 | ||
Design Related (DR) | DR#2 | 0.794 | 0.33 | 3.97 | 1 | |
DR#3 | 0.733 | 0.30 | 3.66 | 2 | ||
DR#5 | 0.724 | 0.31 | 3.62 | 3 | ||
Materials Related (MR) | MR#1 | 0.697 | 0.32 | 4.48 | 1 1 | Procurement |
MR#5 | 0.785 | 0.37 | 3.92 | |||
MR#6 | 0.727 | 0.28 | 3.63 | |||
Equipment Related (ER) | ER#3 | 0.700 | 0.29 | 3.54 | 9 | |
ER#5 | 0.676 | 0.30 | 3.45 | 13 | ||
ER#6 | 0.685 | 0.31 | 3.50 | 12 | ||
Project Related (PR) | PR#4 | 0.676 | 0.27 | 3.37 | 6 | Construction |
PR#5 | 0.670 | 0.29 | 3.34 | 6 | ||
PR#6 | 0.664 | 0.30 | 3.31 | 4 |
Nu | Code/Groups | RII | Rank | Phase |
---|---|---|---|---|
1 | CR# Contractor Related | 0.763 | 1 | Engineering |
2 | DR# Design Related | 0.689 | 2 | |
3 | MR# Material Related | 0.674 | 3 | Procurement |
4 | ER# Equipment Related | 0.673 | 4 | |
5 | PR# Project Related | 0.629 | 5 | Construction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikjow, M.A.; Liang, L.; Qi, X.; Sepasgozar, S.M.E.; Chileshe, N. Triggers of Delays in International Projects Using Engineering Procurement and Construction Delivery Methods in the Belt and Road Initiative: Case Study of a High-Speed Railway Projects. Sustainability 2021, 13, 9503. https://doi.org/10.3390/su13179503
Nikjow MA, Liang L, Qi X, Sepasgozar SME, Chileshe N. Triggers of Delays in International Projects Using Engineering Procurement and Construction Delivery Methods in the Belt and Road Initiative: Case Study of a High-Speed Railway Projects. Sustainability. 2021; 13(17):9503. https://doi.org/10.3390/su13179503
Chicago/Turabian StyleNikjow, Mohammad Ajmal, Li Liang, Xijing Qi, Samad M. E. Sepasgozar, and Nicholas Chileshe. 2021. "Triggers of Delays in International Projects Using Engineering Procurement and Construction Delivery Methods in the Belt and Road Initiative: Case Study of a High-Speed Railway Projects" Sustainability 13, no. 17: 9503. https://doi.org/10.3390/su13179503
APA StyleNikjow, M. A., Liang, L., Qi, X., Sepasgozar, S. M. E., & Chileshe, N. (2021). Triggers of Delays in International Projects Using Engineering Procurement and Construction Delivery Methods in the Belt and Road Initiative: Case Study of a High-Speed Railway Projects. Sustainability, 13(17), 9503. https://doi.org/10.3390/su13179503