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Abstract: Economic forecasts are an important instrument to judge the nation-wide economic sit-
uation. Such forecasts are mainly based on data from statistical offices. However, there is a time
lag between the end of the reporting period and the release of the statistical data that arises for
instance from the time needed to collect and process the data. To improve the forecasts by reducing
the delay, it is of interest to find alternative data sources that provide information on economic
activity without significant delays. Among others, satellite images are thought to assist here. This
paper addresses the potential of earth observation imagery for short-term economic forecasts. The
study is focused on the estimation of investments in the construction sector based on high resolution
(HR) (10–20 m) and very high resolution (VHR) (0.3–0.5 m) images as well as on the estimation
of investments in agricultural machinery based on orthophotos (0.1 m) simulating VHR satellite
imagery. By applying machine learning it is possible to extract the objects of interest to a certain
extent. For the detection of construction areas, VHR satellite images are much better suited than
HR satellite images. VHR satellite images with a ground resolution of 30–50 cm are able to identify
agricultural machinery. These results are promising and provide new and unconventional input for
economic forecasting models.

Keywords: economic forecast; earth observation; machine learning; Sentinel-2; WorldView; post-
classification comparison; template matching; change detection

1. Introduction

Economic investment is a key factor for a country’s economic development both in
the long-term and in the short-term. In many cases, an appropriate development of public
infrastructure is an important prerequisite for private investments and thus sustainable
economic growth. In this context, Alaloul et al. (2021) [1] highlight the importance of a
country’s construction sector for the development because it is closely intertwined with
other sectors of the economy. However, private investment is highly volatile in the short
term. Housing investments in particular exhibit pronounced boom bust cycles (Agnello
and Schuknecht 2011) [2]. The financial crisis of the years 2008 and 2009 is an example that
these housing cycles might have strong effects on the financial sector and are therefore a
threat to financial sector stability (Lee et al., 2021) [3]. On the other hand, due to several
macroprudential policy tools related to the housing market it has the capacity to stabilize
the financial sector and promote sustainability of the economic development (Carrasco-
Gallego 2021) [4].

For this reason, the macroeconomic analyses and forecasts of governments at the
federal and the state level, central banks, and international organizations like the European
Commission also include, among other things, analysis and forecast of investment and,
in particular, construction investment. Therefore, forecasts are built bottom up starting
with the most important components of gross domestic product (GDP), like consumption,
investment in equipment and construction, as well as external trade. This allows in depth
analysis of the different economic activities within the economy. For this reason, the most
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important source for these forecasts is the system of national accounts. In Germany, detailed
quarterly data for the whole country from the system of national accounts is published six
weeks after the end of the quarter. At the state level, GDP data are available at an annual
frequency and published three months after the end of the year. Since the actual needs for
this data require quicker forecasting reports, forecasters are looking for unconventional
data sources that are available independently from those official statistics and which are
able to support quicker but reliable forecasts (e.g., Donaldson and Storeygard 2016 [5],
Ademmer et al., 2021 [6], Blagov et al., 2021 [7]).

In particular, investments in construction and in machinery play an important role in
the forecasting process as these variables indicate short-run changes in economic activity
quite early. The financial crisis of the years 2008 and 2009 is popular evidence that the
housing sector often drives the business cycle. From this perspective, it is very interesting
that buildings could be identified in satellite images from space. This opens up the
possibility that earth observation satellite images could provide information that is able to
improve economic forecasts (Blagov et al., 2021 [7]).

Early studies with macro-economic focus used night light image data to estimate the
state of economic development (e.g., Henderson et al., 2012 [8]). Usually, GDP per capita is
used as a measure for this purpose but, in developing and emerging countries, reliable data
are not always available to calculate GDP per capita. According to Small et al. (2011) [9],
DMSP (Defense Meteorological Satellite Program) data can be used globally to analyze
long-run economic development. The advantage of such data is the global availability
in identical quality and the long time series of data over more than 20 years. For macro-
economic analysis in well-developed countries, their benefit is discussed controversially.
Nordhaus and Chen (2015) [10], Addison and Stewart (2015) [11], and Leßmann et al.
(2015) [12] are rather pessimistic on the use of DMSP data for income forecasts. Another
example is Faisal and Shaker 2014 [13], who successfully examine the relationship between
built-up areas derived from remote sensing and socio-economic parameters such as GDP in
selected Canadian cities. However, this study uses Landsat satellite images with a relatively
coarse resolution and utilizes a rather simple classification approach based on two indices.

In addition, other studies were looking for further applications of remote sensing
image data for economic analysis like investments in other goods. Very high resolution
(VHR) images seem to allow the identification of cars on parking lots (e.g., Spaceknow [14],
Schartner 2018 [15]). This information could be used as an indicator of the volume of
sales in the neighboring shops and therefore could improve short-term forecasts of private
consumption. However, the application of earth observation data for the analysis of short-
term economic activity is in an early stage of its development. Feasibility studies like the
“smart business cycle statistics” project from EUROSTAT propose positive evaluations but
still there is a need for specific case studies to judge the effects of integrating information
from earth observation satellites into economic models. Mostly related to our study are
empirical analyses of land use change by using remote sensing data. Riao et al. (2020) [16]
and Wang et al. (2020) [17] analyzed the urbanization process in different regions in China.
The studies prove the extensive conversion of arable land into building land.

Various earth observation systems have already been available for decades and offer
satellite images with different spatial and temporal resolutions. However, comprehensive
free data in a high resolution (HR) of up to 10 m have only been available since the launch
of modern non-commercial sensors such as the European Space Agency’s Sentinel satellites
of the Copernicus program in 2014. Images with very high resolutions (VHR) are acquired
from commercial satellites such as WorldView (0.3–0.5 m).

Corresponding to the variety of different earth observation satellites with their spe-
cific characteristics, research studies developed many different strategies to extract in-
formation from the imagery. Early methods were based on pixel-based classification
strategies that later were complemented by object-based classification approaches (e.g.,
Myint et al., 2011 [18], Blaschke et al., 2008 [19]). These were then complemented by a huge
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variety of machine learning approaches to use other image features during the classification
stage (e.g., Mao et al., 2020 [20]).

Since satellite images can be acquired with high temporal frequency, they seem to
be well suited to support a modified reporting strategy by identifying new construction
sites and new buildings and therefore construction investments by comparison with earlier
situations. Xi et al. (2019) [21] as well as Pesaresi et al. (2016) [22] investigate the use
of optical Sentinel-2 data for built-up area detection. Once buildings are detected, it
is necessary to evaluate which buildings are new compared to an earlier point in time.
Here, specific change detection approaches are necessary (e.g., Radke et al., 2005 [23],
Olteanu-Raimond et al., 2020 [24], Henits et al., 2016 [25]). Juergens and Meyer-Heß
(2021) [26] worked with finer spatial resolution and reported on their findings related to
construction areas based on mono-temporal VHR satellite images and combined change
detection analysis.

Similar to that is the identification of new agricultural machinery on outdoor parking
lots, where those goods are waiting to be delivered to the customer. A probable solution
could be the detection of the machinery’s pattern within an image using Template Matching
as described by (Jasvilis et al., 2016 [27]) for other complex structures such as oil palms
or pavement markings. By assessing the outdoor ”storage“ this way using VHR satellite
images in certain intervals, the estimation of the full number of produced land machines
seems feasible. For instance, Rosenski and Schartner (2018) [28] report on such possible
applications of VHR satellite images for economic statistics. Further related to this work
is research by Zambanini et al., 2020 [29], who use VHR stereo satellite imagery for the
development of parking space availability models, as well as Tang et al., 2017 [30], who
optimize Faster R-CNN for general methodological purposes. However, this study aims at
national forecasts. Thus, the short-term detection of construction sites and vehicles with as
inexpensive data as possible is too focused and does not allow the use of stereo imagery or
LiDAR-derived 3D-models as well as extensive training of machine learning approaches.

Since there is a need and great potential in the HR and VHR image domain for
economic applications, this study concentrates on the estimation of investments in the
construction sector based on HR and VHR images and on the estimation of investments in
agricultural machinery based on orthophotos simulating VHR satellite imagery. Overall,
this paper investigates the potential of earth observation imagery for short-term eco-
nomic forecasting.

2. Materials and Methods

The basic objective is to find out if optical remote sensing data are able to improve
short-term economic forecasts. These forecasts are typically produced by using time series
models based on economic data. One target variable is construction investments, which are
published quarterly. In Germany, data for construction investments are published by the
Federal Statistical Office six weeks after the end of the quarter of interest. Another target
variable is the investment in machinery.

Variables that are commonly used for forecasting construction investments are
either general measures of economic activity like GDP, the unemployment rate
(Alaloul et al., 2021 [1]; Ng et al., 2011 [31]), or variables that are related to the de-
mand or supply side of the housing market (Demers 2005 [32]; Lunsford 2015 [33]).
Demers (2005) [32] uses the price of housing accommodation, the share of the 25- to
44-year-old population, wealth of households, and the interest rate as explanatory variables
in the forecast equation. However, some of these variables are published with a lag
and, even more importantly, none of these variables is directly related to construction
investments. To reduce this problem, an alternative approach includes leading indicators
in the forecasting equation that are directly related to the construction sector. Lunsford
(2015) [33] uses building permits and housing starts that are published monthly. In
Germany, only building permits are available on a monthly basis at the federal level.
Unfortunately, they are published with a delay of six weeks. At the state level, building
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permits are published quarterly with a delay of six weeks. Another important variable
is the number of workers in the construction sector. Forecast evaluation studies (e.g.,
Aye et al., 2016 [34]) find that specific housing market variables are able to improve the
forecasting performance. From this perspective, the advantages of satellite image data
are that it measures construction activity directly and the data provide information on the
regional distribution of construction activity. This information must be converted into
quantitative time series data, preferably with a monthly or quarterly frequency.

To analyze the general information content of satellite image data, open satellite image
data of the Sentinel-2 satellites are investigated first. The aim is to construct a quantitative
measure for construction activities in a specific area. A possible measure is the number of
construction sites or the size of the areas of these construction sites. In case these data from
the satellite images is too coarse, one could add commercial VHR data instead, to reach
higher accuracies.

For the methodological approaches one followed three ideas:

1. Exploit freely available HR Sentinel-2 data to detect construction areas and new
buildings by using the spectral bands with 10 m and 20 m geometric resolution
(Section 2.1.1). Based on the twin constellation of Sentinel-2A and Sentinel-2B it is
possible to get their imagery every five days.

2. Extract construction areas with high precision from commercial VHR images of the
WorldView satellite family with 0.3 m–0.5 m and find out which benefits could result
from using the higher geometric resolution (Section 2.1.2). Based on the orbital
characteristics and the pointing capabilities of the WorldView satellites, it is possible
to get their imagery every 1–5 days.

3. Perform a feasibility study on the possible extraction of agricultural machinery in
different image resolutions. Due to availability and practical reasons, the use of VHR
satellite images will be simulated with orthophotos. The original resolution of 0.1 m
will be reduced to 0.3 m, 0.5 m, and 1 m to find the minimal resolution that is needed
for successful detections of agricultural machinery. This could then ease the choice of
suitable satellite imagery to perform the same task on larger scales (Section 2.2).

2.1. Detection of Construction Sites

To evaluate the usability of HR and VHR earth observation data to identify and quan-
tify construction activities, the German capital Berlin is selected as it must publish national
accounts data including construction investments as a federal state. This investigation is
based on freely available HR Sentinel-2 images and on commercial VHR images from the
family of WorldView (WV) satellites.

Each scene is classified using object-based image analysis (OBIA) and a kNN (k-nearest
neighbors) machine learning classifier as this approach visually worked best among the
other machine learning techniques such as Support Vector Machine or Random Forest
with the given data. The algorithm utilizes previously learned properties such as spectral
signatures for different land cover classes and assigns unknown image objects accordingly.
To train the classifier, samples are collected for each scene individually to gather repre-
sentative surface information for each land cover category. Basically, the mono-temporal
classification results for all individual scenes are then used to refine the result with GIS-
based analysis.

Two reference datasets are consulted for evaluation of built-up structures: The first
one is the Imperviousness Classified Change (IMCC) 2015–2018 dataset, that contains
changes of sealed surfaces from 2015 to 2018 with a resolution of 20 m. It was produced
as part of the Copernicus program and is a continuation of a time series going back to
2006, which is derived from HR satellite data (including Sentinel-2) and other data sources
(Copernicus [35]).

The second dataset, Land Cover DE of the German Aerospace Center (DLR), is based
on Sentinel-2 scenes from June 2015 to April 2017 and includes a multi-temporal land
cover classification with a geometric resolution of 10 m. It covers the whole of Germany
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and is subdivided into artificial surfaces (built-up areas), bare soil, water, and vegetation.
The latter also includes a temporal component and is further subdivided into high/low
and seasonal/permanent vegetation. In addition to the satellite spectral channels, a num-
ber of indices are used: Normalized Difference Vegetation Index (NDVI), Normalized
Difference Water Index (NDWI), and Normalized Difference Built-Up Index (NDBI). Classi-
fication is performed using a Random Forest machine learning approach, taking additional
information on sealing into account (DLR 2020 [36], Weigand et al., 2020 [37]).

2.1.1. Sentinel-2 HR Image Analysis for the Detection of Construction Areas and
New Buildings

For the time period 2015–2020, available cloud-free Sentinel-2 scenes for the city of
Berlin are downloaded. Altogether, the 20 scenes listed in Table 1 have good quality.
It becomes clear that cloud-free images are less frequent in the second half of the year
because the weather conditions in Germany’s climate region do not allow more cloud-free
image acquisition days in the respective seasons. This makes it more difficult to create a
reliable indicator on a quarterly basis since the number of images differ between quarters,
however statistical forecasts are traditionally based on observations at regular intervals.
The Sentinel-2 images cover the area shown in Figure 1. Only the far eastern part is not
covered, but the forest dominated area is of low interest for the detection of new buildings
and construction areas. Therefore, this small missing area is neglected.
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Table 1. Acquisition dates of cloud-free Sentinel-2 scenes for Berlin (2015–2020).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2015 4 24
2016 2 27
2017 13 27 16
2018 8 7 7 28
2019 16 19 13 25 10
2020 8 6 2 16

In this study, images of the past (2015–2020) are used to find an extraction methodology
for new buildings and construction areas. Since some of the new objects (e.g., construction
areas) can only be identified (to be buildings) after completion, one is dependent on images
showing the final stage of a construction process. A simple indicator for construction
activity within a region would be the number of construction completions between two
observations. Even better would be an indicator based on information about the build-up
areas. To comprise these future stages of development, one needs historical images for
verification. Once the methodology works properly, it is believed that it can be applied on
images without knowing the final stage beforehand.

All 20 scenes are classified according to the land cover nomenclature listed in Table 2.
The nomenclature assumes that these classes are relevant and that construction activities
could be characterized by bare soil without vegetation (e.g., construction sites) or by sealed
surfaces consisting of artificial materials (e.g., concrete, roof tiles, etc.).

Table 2. Classification nomenclature for Sentinel-2 land cover classifications.

Color Class Name
Bare Soil

Vegetation
Sealed surface

Water

The idea behind the classification strategy is that each scene is classified independently,
so that changes will turnout in the following image(s). Afterwards, a change detection
approach based upon a post-classification comparison was performed.

For the classification approach, between 600 and 900 representative samples per scene
for all different land cover types to cover all their different spectral appearances are defined
manually. Different object features (spectral values, indices, and color space transformation)
are used to feed the classifier (Table 3).

Table 3. Object features used for the Sentinel-2 land cover classifications.

Feature Group Band/Attribute Based on . . .

Spectral

B02 (blue, 10 m)

means,
standard deviations,

maximum differences

B03 (green, 10 m)
B04 (red, 10 m)

B08 (near infrared, 10 m)
B8A (red edge, 20 m)

B11 (shortwave infrared, 20 m)
B12 (shortwave infrared, 20 m)

Indices
NDVI (B08 − B04)/(B08 + B04)

NDVIre (B8A − B04)/(B8A + B04)
NDBI (B11 − B08)/(B11 + B08)

IHS-Transformation Intensity, Hue, Saturation B02, B03, B04

The high number and spectral resolution of the spectral bands of Sentinel-2 allows
one to calculate a number of different indices (e.g., Normalized Difference Vegetation
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Index (NDVI), NDVIre (NDVI Red Edge), Normalized Difference Built-Up Index (NDBI),
Built Up Index (BU), Urban Index (UI), etc.) and color transformations like Intensity-
Hue-Saturation transformation (IHS-transformation), and also offers a good chance for
simple spectral based classification. According to Jungnickl and Bill (2017) [40] as well
as Ettehadi Osgouei et al. (2019) [41], one has to be careful with those “building indices“
regarding seasonality effects. Here, the criteria to be used for the classifier as mentioned
above are determined as explorative.

2.1.2. WorldView VHR Image Analysis for the Detection of Construction Areas and
New Buildings

To investigate the benefits of higher spatial resolution, six commercial cloud-free
pan-sharpened WorldView satellite images were ordered. Depending on the satellite, the
spatial resolution is between 30 cm and 50 cm (Table 4). Due to this very high spatial
resolution, the extraction of construction areas is especially in the focus here. To judge the
suitability, one selected a test area (ca. 30 km2) at the southern edge of Berlin.

Table 4. Acquisition dates of cloud-free WorldView scenes.

2015-04-25 2016-11-20 2017-05-29 2018-04-29 2019-10-30 2020-08-08

Satellite WV-3 WV-3 WV-4 WV-3 WV-2 WV-2
Resolution 0.3 m 0.3 m 0.3 m 0.3 m 0.5 m 0.4 m

Again, for the VHR images, this study uses images of the past (2015–2020) to find
an extraction methodology for construction areas. The number of construction sites or
the sum of the built-up area are simple indicators for construction activity within a given
time-period. The logic is the same as with the Sentinel-2 images. Once the developed
methodology works, it can be applied on further images without knowing the final stage
beforehand. To get reliable information about construction activity within this area it would
be ideal to get images at a quarterly frequency. Due to the climatic conditions in central
Europe, clouds often obscure the satellite images. This causes an uneven distribution of
cloud-free images, time-wise.

As construction areas are spectrally different from other land cover types, a land
cover classification could be an efficient way to identify construction activities as well as
new buildings. Prepared by an image segmentation, a K-nearest neighbor classification
is applied, based on approximately 38,000 samples per image collected on a 4 m grid
beforehand. Those samples are representative for each land cover class (Table 5). The object
features listed in Table 6 are used to train the classifier.

Table 5. Classification nomenclature for WorldView land cover classifications.

Color Class Group
Bare soil

unsealedVegetation
Construction

Industry
sealedResidential

Other Artificial
Water
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Table 6. Object features used for the WorldView land cover classifications.

Feature Group Band/Attribute Based on . . .

Spectral

Blue
Means,

standard deviations,
maximum differences

Green
Red

Infrared

Indices NDVI

IHS-Transformation Saturation, intensity Red, green, blue

Per satellite scene, a mono-temporal classification is performed and the result is then
used to refine it with GIS-based analysis.

The first attempt is to analyze the “classification pattern”. It is based on the observation
that construction areas are composed of many small objects of different materials. This
could lead to neighboring areas classified to different land cover classes. To identify the
class composition pattern, eight test sites are used, each for known residential, industrial,
and construction areas. Inside each area, the class compositions and their frequency are
analyzed. It is hoped that characteristic patterns for those three land cover types could
be identified.

Since for each of the six image acquisition dates one classification result will be
available, it is possible to consider a post-classification comparison based on more than one
classification result. This time series constellation is an option to retrace the construction
activities. The retrospective tracking of land cover changes can then help to understand
the construction activity and use observed multi-temporal results for forecasting. Table 7
lists three possible approaches to identify new buildings and construction areas.

Table 7. Multi-temporal post-classification approaches for construction area identification.

New permanent sealing without visible construction sites

A

2015 2016 2017 2018 2019 2020
unsealed sealed

unsealed sealed
unsealed sealed

unsealed sealed
unsealed sealed

B

Construction area on previously unsealed surfaces with subsequent sealing

2015 2016 2017 2018 2019 2020
unsealed construction sealed

unsealed construction sealed
unsealed construction sealed

unsealed construction sealed

C

Biennial construction areas with subsequent sealing

2015 2016 2017 2018 2019 2020
construction sealed

construction sealed
construction sealed

construction sealed
Unsealed corresponds to the classes Bare Soil and Vegetation (Table 5); sealed corresponds to the classes Industry,
Residential, and Other artificial (Table 5).

The first approach (A) does not identify a construction area between two image
acquisitions, since in the first image there is no construction visible, but only the “normal”
land cover. In the second image, the construction activity is already completed and new
buildings can be observed. This could happen, if the time interval between the two
cloud-free images is too large to identify construction activities in-between.
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Approach B is applicable when three stages can be identified. Beginning with no
construction activity (“unsealed normal land cover”), followed by, secondly, a construction
activity, and in the third image the stage of completed buildings.

The third approach (C) is useful for construction areas that exist in two temporally
adjacent images. In the third image the construction is completed.

2.2. Detection of Machinery

Besides investments in buildings, one is interested in investments in machinery. One
significant type that can be observed from space is agricultural machinery which is typically
parked on outdoor parking lots after completion. Since it is unclear if identification and
counting of agricultural machinery is possible with VHR satellite images, an experiment
with degraded aerial RGBI-ortho-images was designed. The ortho-images themselves
are not available world-wide and have an uncertain temporal resolution, thus it is not
considered for routine economic forecasts.

For the detection of vehicles or agricultural machinery, a parking lot of an important
manufacturer in Harsewinkel, Germany, was chosen. For this area, a digital orthophoto
with a spatial resolution of 10 cm was acquired. To use such images to judge the usability
of agricultural machinery in VHR satellite images, the spatial resolution was degraded to
30 cm, 50 cm, and 1 m, which corresponds to most VHR satellites.

The detection of agricultural machinery or vehicles cannot be performed solely upon
local spectral image properties to be reliable. Much more promising is the analysis of spatial
patterns in an image’s grey value matrix. This can be performed by identifying objects via
template matching. The principle is based on the comparison between a given sample or
template of the desired object and the image content. A template is moved across the image
to identify fitting objects within the image. The fit is calculated by a correlation coefficient
and the result is stored in a separate image. Locations with correlation values above a
given threshold are assumed to be successful matches of the sought object (Figure 2).
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and vehicle configurations into account. These are then scaled and rotated during execution
to detect vehicles in different orientations and sizes.

http://www.govdata.de/dl-de/zero-2-0
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Figure 3. Generation of 10 templates (bottom) from image samples (top). Image source: Land NRW,
http://www.govdata.de/dl-de/zero-2-0 (accessed on 5 June 2021) [42].

To be able to judge the result, a reference data set is prepared manually. In the original
ortho-image (27 March 2017) of the factory in Harsewinkel, all land machines are counted
and transformed into a reference data set with 744 vehicles (Figure 4). This is later used
to evaluate the results of the template matching based on different spatial resolutions.
The template matching is applied to identify field choppers and combine harvesters with
slightly varying configurations.

Sustainability 2021, 13, x FOR PEER REVIEW 11 of 25 
 

 

 
Figure 4. Parking lot with 744 highlighted agricultural vehicles of an important manufacturer in Harsewinkel, Germany. 
Orthophoto from 27 March 2017, image source: Land NRW, http://www.govdata.de/dl-de/zero-2-0 (accessed on 5 June 
2021) [42]. 

3. Results 
3.1. Results of the Sentinel-2 Classification 

Figure 5 exemplarily shows the classification result of the Sentinel-2 scene of 16 Oc-
tober 2017. The different natural land cover classes and newly sealed areas can be clearly 
identified in the complete scene as well as in the enlarged area. 
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3. Results
3.1. Results of the Sentinel-2 Classification

Figure 5 exemplarily shows the classification result of the Sentinel-2 scene of 16
October 2017. The different natural land cover classes and newly sealed areas can be clearly
identified in the complete scene as well as in the enlarged area.
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Figure 5. Sentinel-2 classification result of the 16 October 2017 for the complete study area (top) and in detail (below).
Image source: Copernicus Sentinel data 2017 (accessed on 26 August 2020) [38].

From the classification results of all used scenes, area statistics are calculated and
converted to diagrams (Figure 6). The differences of each land cover class over time can
be seen for Berlin. The differences mainly relate to seasonal effects of green vegetation. It
is challenging to identify increasing sealed surfaces directly from the areal statistics, as
vegetation crown cover shields underlying sealed surfaces during certain time periods.
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Figure 6. Classification results of the city of Berlin based on the Sentinel-2 images.

Table 8 compares the classification results to reference data. The average land cover
statistics of the classification performed here (Sentinel-2 2015–2020 avg) differ significantly
from the reference classification (DLR 2015–2017), especially in the case of Bare Soil. Bare
Soil in the classification performed here appears mainly as low seasonal vegetation in the
multi-temporally classified reference data set. This is because the reference was created
with a different intention, which is reflected in the class descriptions. The multi-temporal
classification allows one to integrate further knowledge of a second image that could
possibly identify vegetation for one point in time. Then, this results in a type of seasonal
vegetation. In the mono-temporal classification performed here this additional knowledge
does not exist; the classifier can only rely on the reflected energy at one acquisition date.

Table 8. Land cover statistics (left and center) of the classifications in comparison to the Land Cover
DE reference data set (DLR 2015–2017, right) [36].

Sentinel-2 2015–2020
(Avg) Sentinel-2 2017-10-16 DLR 2015–2017

km2 % km2 % km2 %
Bare Soil 113 13 19 2 2 0

Vegetation 308 36 374 44 372 44
Sealed
Surface 387 45 419 49 429 50

Water 43 5 39 5 47 6
Sum 851 100 851 100 851 100

values are rounded

In contrast to the averaged results of 2015–2020, a comparison of the classification
result of 16 October 2017 with the reference data set reveals good fit (Figure 7). At this
date the specified classes are classified mainly correctly. This proves that the classification
approach itself is reliant, but a comparison with the reference could be misleading due to
its multi-temporal character.

In addition to that, the identification of sealed surfaces is limited due to the size of the
construction areas and the spatial resolution of the image data. This leads to the result that
in many cases individual Sentinel-2 images are not suited to reliably identify construction
activities in a city like Berlin.
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Figure 7. Comparison of the Sentinel-2 classification from 16 October 2017 (right) to the Land Cover DE reference dataset
with original coloring (left, DLR 2020 [36]). The classes Bare Soil, Sealed Surface, and Water were colored to match the
reference data. Background image: Sentinel-2 scene of 16 October 2017, image source: Copernicus Sentinel data 2017
(accessed on 26 August 2020) [38].

However, multi-temporal comparisons of subsequent image classification results
indicate reasonable findings (Figure 8). The images clearly show the growing amount of
sealed surface in the parcels that are already visible in the first image from 2015, up to
a point where they are completely sealed in 2018. In addition, some of the construction
sites stand out as bare soil and turn into sealing later. This could be verified with the
Imperviousness Classified Change 2015–2018 reference data set, which is based on the same
methodology (Copernicus) [35].Sustainability 2021, 13, x FOR PEER REVIEW 15 of 25 
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Figure 8. Identification of construction activities in the industrial area from Figure 5 in natural color Sentinel-2 scenes (top)
and corresponding classification results (bottom) from 4 July 2015 (left) and 7 May 2018 (center). This is compared to the
IMCC reference dataset (right). Image source: Copernicus Sentinel data 2018 (accessed on 26 August 2020) [38].
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3.2. Results of the WorldView Classification

Compared with the Sentinel-2 results, the classification of the VHR WorldView scenes
reveals much more differentiated results. Figure 9 exemplifies a classification result for the
image of 29 April 2018 with many active construction areas.
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Figure 9. Detailed view of the WorldView classification result from the 29 April 2018. Image source: WorldView Image
©2021, DigitalGlobe Inc., Westminster, CO, USA, a Maxar company [43].

These construction areas are clearly visible and can be discriminated from natural
bare soils. However, spectral differences are dependent on other factors like the seasonal
differences (e.g., sun angle, active/inactive construction sites) and varying degrees of soil
moisture. Quantitative classification results for all VHR scenes are given for every class in
Figure 10 and Table 9.
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Table 9. Land cover statistics of the WorldView classifications.

km2 2015-04-25 2016-11-20 2017-05-29 2018-04-29 2019-10-30 2020-08-08
Bare Soil 1.40 7.19 4.14 3.16 2.68 7.82

Vegetation 20.18 15.57 17.44 18.12 17.28 13.17
Construction 0.27 0.39 0.76 1.06 0.14 1.29

Industry 1.54 1.33 1.40 1.03 0.86 0.77
Residential 2.50 0.78 3.11 1.85 4.61 3.43

Other
Artificial 3.74 4.37 2.78 4.38 4.06 3.14

Water 0.02 0.02 0.02 0.04 0.02 0.02
Sum 29.64 29.64 29.64 29.64 29.64 29.64

Large commercial buildings as well as residential buildings can be reliably identified in
all available VHR-scenes. However, some problems exist to separate residential buildings
from other sealed surfaces. Misclassifications probably occur because of great spectral
similarity of the materials.

The tree canopy cover effect occurs also in the VHR images during summer months
and hides buildings underneath. This effect affects the land cover statistics during leave-on
periods, compared to leave-off periods.

The mono-temporal classification results are then refined by GIS analysis techniques.
One refinement approach is to search for characteristic classification patterns in known
environments. For residential and industrial areas as well as construction areas, one
analyzed eight cases each regarding their class composition. It is obvious that residential
or industrial areas differ from construction areas (see Figure 11). A further discrimination
between construction sites for residential or industrial buildings is not possible during the
period of construction. In Figure 12 one can see the result for 29 April 2018.
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Figure 11. One residential area (left) and one construction site (right) for which the respective
classification of the WV-3 scene from 29 April 2018 was extracted. Image source: WorldView Image
©2021, DigitalGlobe Inc., Westminster, CO, USA, a Maxar company [43].
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Figure 12. Land cover composition pattern of all extracted areas from Figure 11 (29 April 2018). R indicates construction
sites for residential buildings, I indicates construction sites for industry buildings.

The multi-temporal approaches detect different stages of construction or even new
houses directly. The results are slightly dependent on the season. It is easy to detect
construction sites in vital vegetation conditions of spring and early summer. In contrast to
that, winter scenes or dry-season scenes cause more misclassifications, possibly because
bare soil and construction sites become spectrally more congruent. For this reason, different
multi-temporal approaches are tested, as given in Table 7. For all three post-classification
comparison approaches, individual thresholds (minimum size) are defined to accept the
detected change to be significant. Approach A identifies basically new buildings and
sealed surfaces of at least 50 m2 size without identifying a construction area (Figure 13). In
Figure 14, areas larger than 20 m2 are shown that are (according to approach B) unsealed
in the first year, classified as construction sites in the second year, and sealed in the third
year. In addition to that, Figure 15 represents approach C with areas larger than 20 m2 that
are under construction in two consecutive images.
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Figure 13. Multi-temporal post-classification result (approach A), displayed on two WorldView scenes (24 May 2015 (left)
and 8 August 2020 (right)). One can identify areas that were unsealed in the first year and sealed in the second. Image
source: WorldView Image ©2021, DigitalGlobe Inc., Westminster, CO, USA, a Maxar company [43].
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The detected changes are then compared with the areal extent of new buildings and 
surrounding sealed areas. This reference is created very restrictively in the sense that only 
confident buildings and their sealed surrounding are considered for the comparison with 
the post-classification results. This is the basis to judge the accuracy of the determined 

Figure 14. Multi-temporal post-classification result (approach B), displayed on two WorldView scenes (24 May 2015 (left)
and 8 August 2020 (right)). One can identify areas that were not sealed in the first year of observation, were under
construction in the second year, and ended up as buildings or sealed surfaces in the third year. Image source: WorldView
Image ©2021, DigitalGlobe Inc., Westminster, CO, USA, a Maxar company [43].
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Figure 15. Multi-temporal post-classification result (approach C), displayed on two WorldView scenes (24 May 2015 (left)
and 8 August 2020 (right)). One can identify areas that were under construction for two years. Image source: WorldView
Image ©2021, DigitalGlobe Inc., Westminster, CO, USA, a Maxar company [43].

The detected changes are then compared with the areal extent of new buildings and
surrounding sealed areas. This reference is created very restrictively in the sense that only
confident buildings and their sealed surrounding are considered for the comparison with
the post-classification results. This is the basis to judge the accuracy of the determined
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construction area. Those that turned into buildings over a longer period of time are
not considered until full completion. This means that only the smallest possible area is
considered reliable and timely in the verification process. There is no other reference data
set for construction areas available. This is due to the specific and ephemeral nature of
construction areas. The verification results are listed in Table 10.

Table 10. Post-classification verification results.

Approach Total True Positive

Mono-temporal Pattern 2015 266,821 m2 33,641 m2 12.6%
Mono-temporal Pattern 2016 389,695 m2 55,351 m2 14.2%
Mono-temporal Pattern 2017 757,578 m2 144,010 m2 19.0%
Mono-temporal Pattern 2018 1,061,411 m2 406,272 m2 38.2%
Mono-temporal Pattern 2019 141,134 m2 71,006 m2 50.3%

A

Newly sealed 2015–2016 57,566 m2 46,614 m2 80.9%
Newly sealed 2016–2017 98,167 m2 20,150 m2 20.5%
Newly sealed 2017–2018 30,230 m2 13,477 m2 44.5%
Newly sealed 2018–2019 84,150 m2 44,962 m2 53.4%
Newly sealed 2019–2020 105,099 m2 51,645 m2 49.1%

B

Multi-temporal 2015–2017 27,528 m2 26,821 m2 97.4%
Multi-temporal 2016–2018 49,107 m2 44,583 m2 90.7%
Multi-temporal 2017–2019 118,761 m2 112,293 m2 94.5%
Multi-temporal 2018–2020 11,994 m2 10,670 m2 88.9%

C

Biennial 2015 & 2016 458 m2 77 m2 16.8%
Biennial 2016 & 2017 10,083 m2 1,364 m2 13.5%
Biennial 2017 & 2018 68,469 m2 28,340 m2 41.3%
Biennial 2018 & 2019 791 m2 620 m2 78.3%

3.3. Results of the Machinery Detection

After the template matching is performed, the result for the different spatial resolutions
with indicators called ‘precision’ and ‘recall’ can be evaluated. Precision is the relation of
correctly identified vehicles (true positives) from all hits (correct and false ones) of the
matching procedure.

precision =
true positives

true positives + f alse positives

Recall or ‘hit rate’ is the relation of correctly identified vehicles (true positives) com-
pared with the total number of all vehicles (correct and missed ones).

recall =
true positives

true positives + f alse negatives

Generally, higher values are better results. The values for recall and precision should
always be used together for a complete evaluation. This is due to the fact that a precision
of 90% means that 9 out of 10 vehicles really exist. This indicator does not inform one
about missed vehicles. In addition to that, a recall value of 100% simply expresses that all
available vehicles were identified. It does not inform one about vehicles that were counted
but are not existent.

Figure 16 shows the results for the template matching for the different spatial resolu-
tions with multiple templates and 80% correlation.
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Figure 16. Template matching results comparing resolutions of 10, 30, 50 and 100 cm. Orthophoto
from 27 March 2017. Image source: Land NRW, http://www.govdata.de/dl-de/zero-2-0 (accessed
on 5 June 2021) [42].

Table 11 additionally summarizes the results and confirms that both 30 cm and 50 cm
spatial resolution provide reliable results. However, with coarser resolution the results
slightly decline. In particular, small objects are characterized by less reliable results meaning
higher amount of less true positives. The image with 100 cm spatial resolution reveals
weaker results, which is due to the more difficult cognition of the vehicles’ shape.

http://www.govdata.de/dl-de/zero-2-0
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Table 11. Results of the template matching for different resolutions.

Resolution Precision Recall

10 cm 99.9% 97.7%
30 cm 97.4% 86.0%
50 cm 95.4% 85.6%

100 cm 71.3% 75.3%

This feasibility study underlines that VHR satellite images like from the WorldView
satellite family could be well suited for detection and identification of agricultural machin-
ery in the examined size class. This could be used for future economic forecasts of this
investment parameter.

4. Discussion

This study attempts to measure two economic variables directly by using satellite
images: new buildings or construction areas and agricultural machinery. It is one of the few
studies trying to use HR and VHR satellite data for an application in short-term economic
forecasting. One advantage of satellite images is that it is possible to measure construction
activities directly by identifying affected areas or objects. In contrast, current forecasting
models use more indirect indicators such as building permits or the number of workers in
the construction sector. A second advantage is that using satellite data allows the provision
of regionally strongly differentiated information about construction activities.

Regarding the detection of construction activities, one can assume that Sentinel-2
images can be used to detect new buildings. However, the results were dependent on
season. Confusion with bare soil as well as vegetation cover could influence the distinct
detection. Regardless of the high temporal frequency, the spectral ambiguity of some
land covers in mono-temporal classification cannot be overcome due to seasonal effects.
Application of multi-temporal classification approaches could help to overcome this and
lead to much more reliable results. However, for this specific application, multi-temporal
classification is not effective, due to the fact that quick changes are to be mapped. The
multi-temporal approach could cause delays as it would need at least one second cloud-free
image with the respective later acquisition date.

VHR satellite images benefit from the very high spatial resolution and can be used
to detect construction sites as well as new buildings. Post-classification change detection
approaches support the identification and help to categorize these objects. However,
even these images suffer from seasonal fluctuations and ambiguity of other land cover
categories. Another drawback is the costs associated with commercial satellite images. In
conjunction with the small area captured per image this could hinder a broad application,
e.g., nationwide. Here, a strategy concentrating on a number of well selected proxy
locations could help to overcome this bottleneck.

The initial mono-temporal classifications of both Sentinel-2 and WorldView scenes are
intentionally kept simple to better reveal the influence of the geometric resolution. However,
in particular the classification of VHR-data could benefit from additional features such as
shape, size, or texture.

Concerning the detection of agricultural machinery, it could be demonstrated that
VHR satellites like WorldView with a spatial resolution of 30 to 50 cm are well suited for an
object extraction approach via template matching. For this economic indicator nationwide
imagery is not needed, and instead one could concentrate on the known locations of the
manufacturers.

This study concentrates on the feasibility and on the development of practical and
quick approaches. In a next step, the usability as well as the reliability in economic models
must be evaluated. It is therefore necessary to create a time series with an annual or
preferably quarterly (or even monthly) frequency. In order to evaluate its information
content for forecasting activity in the construction sector and selected industries, a period
of several years is required.
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One should also do research on the robustness of the economic models against short-
comings of the image analysis results such as missing observations caused by clouds.

The increasing availability of new earth observation satellites with higher spatial
resolution and higher temporal revisit rates will most likely be beneficial in supporting the
data needs for quick and reliable forecasts.

Further research could also investigate weather independent RADAR images based on
synthetic aperture Radar (SAR) to overcome the cloud cover problem of optical satellites.

5. Conclusions

The results of this study show that VHR satellite images are a new and unconventional
source of information to be added to short-term economic forecasts. The information gained
by machine learning techniques is up-to-date and cannot be delivered by other sources.
The detection of construction areas from VHR satellite images is much more reliable than
from HR satellite images. VHR satellite images with a ground resolution of 30–50 cm are
able to identify agricultural machinery with high precision.

In its present stage the results are based on optical satellite images, which might
suffer from cloud coverage that obscures the view of the Earth’s surface and its objects,
like buildings or agricultural machinery. Further research will have to overcome these
limitations by integrating additional image sources. In addition to that, a higher degree of
automation in image object identification could be beneficial for a routine application.
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