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Abstract: The relationship between wind energy and rural areas leads to the controversial debate
on the effects declared by rural communities after wind farms or single turbines are operative. The
literature on this topic lacks dedicated studies analysing how the behaviour of rural communities
towards wind turbines can affect the market value of farmlands. This research aims to examine to the
extent to which the easement of wind turbines can influence the market value of farmlands in terms
of willingness to pay (WTP) by a small rural community, and to identify the main factors affecting
the WTP. Starting from data collected via face-to-face interviews, a decision tree is then applied to
investigate the WTP for seven types of farmland in a rural town of Puglia Region (Southern Italy)
hosting a wind farm. Results of the interviews show a broad acceptance of the wind farm, while the
decision tree classification shows a significant reduction of WTP for all farmlands. The main factors
influencing the WTP are the education level, the possibility to increase the income, the concerns for
impacts on human health and for maintenance workmen. National and local policy measures have
to be put in place to inform rural communities about the ‘magnitude’ of the effects they identified
as crucial, so that policy-makers and private bodies will contribute to make the farmland market
more equitable.

Keywords: wind farm; rural areas; willingness to pay; decision analysis; decision tree

1. Introduction

Rural areas cover about 75% of the European Union populated mainland and host
nearly a quarter of the total population [1]. Here, the need to tackle climate change and
CO2 emissions poses several challenges, such as the exploration of endogenous energy
potential. As almost low-density territories, rural areas have a greater potential than cities to
develop renewable energy sources. As a consequence, the deployment of renewable energy
represents an opportunity for rural sustainable development [2]. Besides the reduction
of greenhouse gas emissions, renewable energy can increase and stabilize rural incomes,
foster the use of new products, technologies, and policy approaches, thus increasing the
innovation capacity in rural areas, and empower local communities, supplying them with
cheaper sources of energy [3].

In this context, wind energy is more deployed than other energy sources, because it is
considered a relatively mature technology, which is not likely to experience big evolutions
that can leave new turbines suddenly obsolete [3]. Furthermore, the widespread nature of
wind energy is also due to its better cost-effectiveness and feasibility in terms of energy
production, technical implementation, land occupation, and waste disposal, particularly
with respect to solar energy [2].

It is also important to underline that the capital cost of on-shore wind plants has
seen a strong reduction in the last 30 years, against the background of greater efficiency
and reliability [3]. Wind energy is a source of clean electricity and it is local, reliable, and
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affordable. It adds significant value to the European economy while contributing to the
objectives of energy independence and security. With 192 GW installed across the EU-28,
wind energy today supplies already 15% of the total European electricity demand and
helps save 10 billion €/year in fossil fuel imports. The bulk of wind power (98%) in Europe
is provided by onshore wind farms [4] and more than 5% of the European wind power is in
Italy. At the end of 2019, national wind installations amounted to 10.5 GW corresponding
to about 7100 turbines [5]. In this country, the wind energy sector is acknowledged to
offer important development opportunities in view of the Climate Target Plan 2030 [6].
Moreover, favourable national regulatory frameworks and financial incentives are crucial
for the development of wind energy. In Italy, especially in Puglia and Sicilia regions, the
incentive system regulated by the Ministerial Decree of 6 July 2012 has provided a feed-in
tariff equal to 268€ for each MWh of wind energy, leading to a strong boost for wind
turbine development [7]. It is also to be noted that private investments in wind energy are
playing a key role in promoting the energy transition process [8]. Despite the great financial
efforts put in place by the policy makers and private bodies (e.g., energy companies), the
realization of wind farms or even single turbines may encounter strong opposition from
local communities, especially in low population density areas like rural territories [9–11].

In this sense, on-shore wind technology has to face more obstacles than its off-shore
counterpart, related mainly to social, institutional, economic, and financial aspects, such
as market failures and distortions [12] and the loss of property value or limitations to
tourism activity [11,13]. Rural communities are involved in wind energy production as
they provide land for the installation of wind turbines and benefit from the economic
compensation (generally higher than the lease prices for farmlands), the reduction of
electricity costs, the creation of new job opportunities, and farm business diversification.
Nevertheless, for both single turbines and wind farms, impacts have been observed on
farmland property value and market dynamics, with a spatial relationship between farms
providing land and neighboring farms and properties [14]. In addition, the relationship
between wind energy and rural areas leads to the controversial debate on the effects
declared by rural communities after wind farms or single turbines are operative [15–17].
Indeed, these effects are very complex and go beyond the “not in my back yard” (NIMBY)
tendency [18], since they arise from the combination of various factors after the installation
of wind turbines, including the economic, social, and demographic features of these
communities [19–21], their knowledge on wind energy, and the views in terms of both
positive and negative consequences [22–24]. In fact, several studies investigated the effects
of wind farms or single turbines in rural areas from different perspectives. These include
effects on job increase [15,25]; income growth in terms of rent payments to farmland owners,
farm business diversification, reduction of electricity costs, and local community benefit
provisions [17,26–28]; impacts on farmland occupation and use, and recovery of marginal
areas [2,29,30]; visual impact on landscape [31–33] and alteration of agro-ecosystems [21];
effects on rural tourism [34–36]; social acceptance as a whole [23,37–39]; impacts on human
health [40–42]; and variation of property values with focus on houses and residential
land [43–46].

Nevertheless, the scientific literature on the link between wind energy and rurality
is scarce in research deeply analysing how the behaviour of rural communities towards
wind farms or turbines can affect the market value of farmlands both burdened by these
installations and located in the surrounding areas, namely farmlands subject to wind
turbines [14,47–50]. Several questions still arise about the opportunities and capacities of
these rural actors to ‘plug into’ the complex, supra-local system of wind energy provision,
regulated by policy arrangements and corporate actors often acting at broader spatial
levels [51].

The aim of this research is two-fold. The first aim is to evaluate the extent to which
the easement of wind turbines can influence the farmland value in terms of willingness
to pay (WTP) by a small rural community. Then, the second aim is to identify the main
factors affecting the WTP for seven types of farmland. The achievement of these aims
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can contribute to filling the knowledge gap on the tangible effects of wind turbines on
farmland value, thus providing insights to policymakers and private bodies to make the
farmland market more equitable, and suggestions to people in rural communities involved
in these transactions.

The research is carried out by using the data collected via face-to-face interviews
through the application of a decision tree [52]. Basically, the decision tree is one of the
most intuitive and frequently used technique in data science capable to analyse in depth a
course of actions and various outcomes [53] and to provide classification rules for under-
standing the behaviour and the decision-making process [54,55]. In particular, a decision
tree is chosen due to its capability to take into account simultaneously the demographic,
economic, and social features of rural communities, together with their knowledge on
wind energy and the views on positive and negative effects in the rural territory. Moreover,
a decision tree is suitable to identify the factors influencing the choices of these actors
involved in different farmland transactions. In fact, complex decisions on wind energy
have to be tackled by suitable approaches dealing with multiple conflicting aspects through
involvement of social actors, so that decision-making capabilities are improved [33,56–58].

The research is realized in the rural town of Villa Castelli (Puglia Region, Southern
Italy), which hosts a wind farm consisting of 10 turbines, 80 m in height, having a rotor
diameter of 90 m and a power of 2 MW each, to provide a total energy output of 20 MW.
Southern Italy provides the highest quota of national wind energy supply with more than
97% of installations, and 66% of total installations in Southern Italy are located in the
regions of Puglia, Basilicata, Campania, and Sicilia [32]. Among these regions, Puglia has
the highest number of installations (35% of national installations) and the largest energy
capacity (24% of national renewable energy capacity). However, the high concentration
of on-shore wind farms in this region has posed various issues over time, including the
consequences of expansion and redevelopment of existing wind farms in the rural territory.

The paper is organized as follows. After describing the methodology for the data
collection, the decision tree is illustrated both from the theoretical and the empirical
perspectives (Section 2). Then, Section 3 shows the results about the description of the
sample and the decision tree classification. Section 4 provides the discussion of the results
with a focus on those obtained from the decision tree application. Finally, concluding
remarks are reported in Section 5.

2. Materials and Methods
2.1. Data Collection

A questionnaire to investigate the WTP for 7 types of farmland subject to wind turbines
was circulated from December 2019 to February 2020 through face-to-face interviews by an
expert living in the same area and with deep knowledge about the local rural community
and farmland market. In order to obtain a sample tailored to the research goal and actually
involved in wind energy, the following inclusion criteria were used: to be resident in the
town of Villa Castelli within 5 km from the windfarm; to be willing to buy farmlands subject
to wind turbines; age ≥18 years old; to be employed in agriculture as farmer or agricultural
entrepreneur, freelance professional, and worker in agriculture. The questionnaire was
supplied together with the definition of wind energy, a brief description of the wind farm
including pictures, and the technical features of the turbines. The questionnaire consisted
of 23 questions organized into the following 3 parts:

• Part 1: Demographic, social, and economic features of the respondents. This section
aimed to obtain specific information regarding gender, age, education level, category
of employment, type of knowledge on wind energy, and the perception about the
attention paid by the energy companies to public opinion before the installation of
wind turbines. Furthermore, this section investigated if the respondents own farmland
and if this land accommodates wind turbines.

• Part 2: Effects of wind turbines on rural community. This section aimed to inves-
tigate both the positive and negative effects of wind turbines declared by the local
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rural community. Among the positive effects, the possible job increase in the study
area, the income increase of farmland owners, and the opportunities of recovery of
marginal areas (e.g., rural areas that cannot be used for cost-effective agriculture) were
investigated. On the contrary, the analysis of negative effects regarded the impacts of
wind turbines on human health, the impacts on the landscape and agroecosystems,
the cultivation and building constraints arising from the easement, the presence of
maintenance workmen in the farmland, and the depreciation of the farmland also
caused by the easement.

• Part 3: Willingness to pay farmland owners subject to wind turbines. The last section
of the questionnaire looked to get the WTP of the respondents for 7 types of farmland:
sowable crops, vineyard, olive grove, orchard, livestock farm, rural facilities, and
woodland. These farmlands reflect the features of the study area, which include exten-
sive farming of sowable crops and orchards; specialized viticulture and olive growing;
small livestock farms; woodlands with deciduous trees and Mediterranean scrub; rural
facilities, such as small houses, sheds, warehouses for machinery and equipment.

The elicitation of the WTP follows the payment scale (PS) approach [59], where the
respondents choose a value from a pre-specified and ordered list. Thus, the respondents
were asked to choose the WTP, in relation to the current market value, for each farmland
from a list of percentage shares ranging from 40% to 100% at intervals of 5%. It is to be
noted that the market values of farmlands were not shown to the respondents because they
had in depth knowledge of the local market trend.

2.2. The Decision Tree

The decision tree, also known as a classification tree, is one of the most intuitive
and frequently used techniques in data science [52]. At its core, a decision tree can be
defined as a tool that helps to make decisions by exploring a course of actions and various
outcomes [53]. The popularity of decision trees in data science is due to their capability in
handling complex problems by providing an understandable representation and an easy
interpretation, and also because of their flexibility in the inference process by supplying
logical rules of classification [60]. More specifically, decision trees show the following
advantages [55]: (i) Variable selection: decision trees can be used to select the most relevant
input variables to formulate decisions. Indeed, certain variables could be of marginal
importance, and thus should not be included in the data mining. (ii) Variable importance:
once a set of relevant variables is identified, it is possible to know which are the key
variables. Generally, the more records (i.e., the objects) a variable has an effect on, the
greater the importance of the variable. (iii) Data mining: decision trees can deal with both
numerical (i.e., continuous) and nominal (i.e., categorical) variables. Mining numerical
variables may require discretization before or during the model building. In this respect,
the decision tree algorithms can discretize numerical data into a more manageable number
of categories (e.g., binarization). (iv) Handling missing values: decision trees can manage
missing data either by classifying these data as a separate category to analyse with the
other categories, or by using a decision tree that sets the missing values as target variables
in order to replace these values with those predicted. (v) Prediction: when decision trees
are built from historical data, it is possible to predict the results for future records in a
straightforward way.

A decision tree takes the shape of a decision flowchart or an inverted tree, where an
attribute (i.e., variable) is tested in each node [61,62]. The main elements of a decision tree
are nodes and branches. There are three types of nodes [55,63,64]: (i) A root node, also
called decision node, represents the first question that involves to make a choice between
two or more options. A root node has no incoming edges and zero or more outgoing edges.
(ii) Chance nodes, also named child nodes, are the result of splitting a node into new nodes,
and thus they are one of the possible choices at a certain point of the tree structure. Each
chance node has one incoming edge and two or more outgoing edges. (iii) Leaf nodes, also
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defined end nodes, represent the final answer to a combination of decisions or events. Each
leaf node does not split any further, so it has one incoming edge and no outgoing edges.

A branch, also called edge, can be defined as a subsection of the tree that connects
the nodes. Each branch represents one of the possible alternatives or courses of action
available at that point of the tree [53,54,63]. Each pathway from the root node, through the
chance nodes, and to a leaf node identifies a classification decision rule. These pathways
can be represented also as “if-then” rules. For instance, “if condition 1 and condition 2 and
condition . . . and condition k occur, then outcome j occurs” [55].

The main steps for building a decision tree are splitting, stopping and pruning. Split-
ting is the process of dividing a node into two or more purer subsets (i.e., child nodes);
purity is a metric used by a decision tree algorithm to set the splitting order of the nodes [53].
Only the input variables linked to the target outcome are used to split the nodes into purer
child nodes; in some cases, not all the input variables will appear in the decision tree, while
a certain input variable may occur several times at different levels of the decision tree [55].
The splitting procedure ends when each child node is made of homogeneous records
(i.e., the pure child node) or when certain stopping or pruning criteria are met [54,65].
According to the type of decision tree algorithm, there are different methods to carry out
the splitting, such as information gain, Gini index, DKM criterion, normalized impurity
based criteria, gain-ratio and Twoing criterion [65–67].

It is to be noted that a very complex decision tree can show each leaf node 100%
pure [61,65]. This kind of tree is over fitted to the data, thus making the interpretation of
results difficult, and it also lacks robustness, especially when the decision tree is used for
prediction [52]. Therefore, stopping or pruning procedures can be applied to prevent the
decision tree from becoming overly complex. Stopping is the most common procedure
used to determine when to end splitting [53]. There are several parameters to perform
the stopping according to the goal of the research and the features of the dataset: (i) the
minimum number of records in a leaf; (ii) the minimum number of records in a node prior
to split; (iii) the number of steps (depth) of any leaf from the root node [55,67].

However, the use of tightly stopping criteria tends to create small and under-fitted
decision trees, while loosely stopping criteria leads to large decision trees that are over-
fitted to the training set. Therefore, pruning methods were developed for solving this
issue [65]. Furthermore, another key motivation of using pruning is the ‘trading accuracy
for simplicity’: when the goal is to produce an accurate but smart description, pruning is
highly useful [54]. Pruning is defined as a procedure that reduces the size of decision trees
by removing sections of the tree (e.g., child nodes) with little energy of classification or
importance [53]. The goals of pruning are to reduce the complexity of the final classification
and to obtain a better predictive accuracy by reducing over-fitting and removing sections
of a tree that may be based on noisy or erroneous data [66]. There are a variety of pruning
techniques based on the decision tree algorithm, such as cost-complexity pruning, reduced
error pruning, minimum error pruning, pessimistic pruning, error-based pruning, optimal
pruning, and minimum description length pruning [54]. Many variations of the decision
tree algorithm were developed [62]. These include chi-squared automatic interaction
detector (CHAID) [68], classification and regression tree (CART) [69], iterative dichotomizer
3 (ID3) [70] and its evolution C4.5 [71,72], and conditional inference trees [73].

Among these algorithms, C4.5 is a landmark decision tree algorithm widely used as
workhorse in machine learning [67]. Furthermore, C4.5 ranked #1 in a survey paper titled
“Top 10 Algorithms in Data Mining” [74]. According to various scholars [53,54,63], C4.5
shows the following strengths. (i) It can handle both continuous and discrete attributes.
This means that C4.5 can be used for classification or regression and work with categorical
and numerical data. Handling of continuous attributes is done by splitting the attribute’s
value range into two subsets (binary split). Specifically, C4.5 searches for the best threshold
that maximizes the gain ratio criterion. All values above the threshold form the first subset,
while all other values form the second subset. (ii) It can work with missing data (marked
as ?), which are simply not used in gain and entropy calculations. (iii) It uses a pruning
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procedure to remove branches not contributing to the accuracy and replace them with leaf
nodes. However, C4.5. has some drawbacks, including the construction of empty branches
with zero values, the tendency to construct very large trees with many subsets, and the
susceptibility to overfitting [53,63].

In this research, the C4.5 algorithm is applied by following the stepwise procedure
described by [71,72,74]. Moreover, the data mining, the subsequent building of the decision
trees and the extraction of the classification rules are carried out by using the “Konstanz
Information Miner” (KNIME) analytics platform, developed by the University of Kon-
stanz [75]. Specifically, the data collected from the questionnaires are a set of discrete and
continuous variables. Each farmland is the target variable (expressed by the WTPs declared
by the respondents), while the features of the respondents and the declared positive and
negative effects of wind turbines are the independent variables. Given a certain target vari-
able, the C4.5 algorithm induces a decision tree, 7 decision trees are created according to the
number of farmlands. The C4.5 parameters set for building the decision trees into KNIME
are: 3 records per node, gain-ratio method for the splitting procedure, and reduced error
pruning for reducing over-fitting [71,72,76]. Finally, in order to evaluate the classification
accuracy of the decision trees, the confusion matrix is also computed in KNIME. Basically,
the confusion matrix summarizes the classification performance of a classifier algorithm
with respect to a dataset. This is a two-dimensional matrix, where each row represents
the instances in an actual class while each column represents the instances in a predicted
class [77]. The analysis of the confusion matrix enables to obtain the overall accuracy
of classification, as the ratio between the correct classified instances (reported along the
diagonal of the matrix) and all the instances, and it can be expressed as a percentage [78].

3. Results
3.1. Description of the Sample

The initial sample consisted of 175 observations, but the questionnaires with protest
and inconsistent answers and those wrongly filled in by the data collector were excluded
from the analysis. The final sample consists of 100 observations. The number of question-
naires with inconsistent answers was 67. In particular, 45 respondents declared a very high
WTP (between 90% and 100%), although they also declared several negative impacts of
wind turbines, such as those related to human health, cultivation and building constraints,
and depreciation of the farmland. On the contrary, 22 respondents declared a very low
WTP (between 40% and 50%) but they also stated positive impacts of wind turbines, like the
income increase of farmland owners and the opportunities to recover marginal areas. Three
questionnaires were wrongly completed by the data collector, because some demographic
and economic features of respondents as well as data on the positive and negative effects
of wind turbines were not recorded. In addition, five respondents refused to complete the
questionnaire, showing a protest attitude.

The results of Section 1 of the questionnaire (Table 1) show that 64% of the sample
is made up of women and about half (48%) are aged between 41 and 60 years old. Over
60% of the respondents have secondary school (31%) and high school (33%) degrees,
while one fourth are graduates. Most of the respondents (68%) are workers in agriculture,
while 16% are farmers or agricultural entrepreneurs, and the remaining 16% are freelance
professionals in agriculture. With regard to the level of knowledge on wind energy, more
than half of the sample (57%) stated that they have not any knowledge on this topic, 36%
got information in an autonomous way and only 7% of the respondents obtained some
evidences by taking part in public meetings or debates. The sample was also asked if the
energy companies paid attention to the opinion of the local rural community before the
installation of wind turbines, and almost the entire sample (96%) answered negatively.
Moreover, most of the respondents (73%) own farmlands and only 8% own farmlands
subject to wind turbines.
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Table 1. The demographic, social and economic features of the sample.

Feature and Code Scale of Measurement Frequency (%)

Gender
(GENDER)

F = Female 64%
M = Male 36%

Age
(AGE)

1 = 18–40 years old 39%
2 = 41–60 years old 48%
3 = >60 years old 13%

Education level
(EDUCATION)

1 = Elementary school 11%
2 = Secondary school 31%

3 = High school 33%
4 = University degree or postgraduate 25%

Employment
(EMPLOYMENT)

1 = Freelance professional in agriculture 16%
2 = Farmer or agricultural entrepreneur 16%

3 = Worker in agriculture 68%

Knowledge on wind energy
(KNOWLEDGE)

1 = None 57%
2 = Autonomous 36%

3 = Public meetings or debates 7%

Attention to public opinion
(ATTENTION)

NO = No attention 96%
YES = attention 4%

Owner of farmland
(OWNER)

NO = Not owner 27%
YES = Owner 73%

Owner of farmland subject to
wind turbines (EASEMENT)

NO = Not owner 92%
YES = Owner 8%

In the second section of the questionnaire, the respondents also declared which
possible effects (positive or negative) could arise from the installation of wind turbines
(Table 2). Regarding the positive effects, only 2% of the sample believes that there may
be effects regarding an increase of jobs. Few respondents (12%) believe their income
will increase due to a rent fee for the installation of turbines on their farmland or due
to a reduction of electricity costs. Additionally, almost all the respondents believe that
the wind farm can be an important intervention to recover marginal areas that do not
ensure cost-effective agriculture. Concerning the potential negative effects, only 13% of the
respondents are concerned by impacts on human health. A third of the sample are afraid
of visual impacts on the landscape and on the alteration of the agroecosystem, while 38%
are worried about possible constraints for the management of farmlands, such as realizing
new arboreal plants or new rural artefacts or facilities. Finally, 22% of the respondents are
concerned about the presence of workers involved in the maintenance of wind turbines,
while 31% are worried about a depreciation of farmlands as a result of the construction of
such installations.

Regarding the Section 3 of the questionnaire that investigated the WTP for a farmland
subject to wind turbines, the results summarized in Table 3 show a general strong WTP
reduction regardless of the type of farmland, but there are no significant WTP variations
among the different types of farmland. In fact, the most frequent WTP (the mode) is 60% in
almost all the types of farmland except in olive grove and orchard where the modal WTP is
equal to 50%. In addition, there are also no significant variations within the average WTP
(the mean), where the values ranges from 63.1% in rural facilities to 66.5% in woodland. It
is to be noted that Table 3 shows only the answers about the WTP without going into the
detail of the decision process, which is presented in Section 3.2.
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Table 2. The positive and negative effects of wind turbines on farmlands declared by the local
rural community.

Positive Effect and Code Scale of Measurement Frequency (%)

Job increase
(JOB)

NO = No increase 98%
YES = Increase 2%

Income increase
(INCOME)

NO = No increase 88%
YES = Increase 12%

Recovery of marginal areas
(MARGINAL AREAS)

NO = No recovery 4%
YES = Recovery 96%

Negative Effect and Code Scale of Measurement Frequency (%)

Impacts on human health
(HEALTH)

NO = No impacts 87%
YES = Impacts 13%

Impacts on landscape and agroecosystem
(LANDSCAPE&AGRO)

NO = No impacts 67%
YES = Impacts 33%

Cultivation and/or building constraints
(CONSTRAINTS)

NO = No constraints 62%
YES = Constraints 38%

Concerns on maintenance workmen
(WORKMEN)

NO = No concerns 78%
YES = Concerns 22%

Concerns on depreciation of farmland
(DEPRECIATION)

NO = No concerns 69%
YES = Concerns 31%

Table 3. The most frequent WTP and the average WTP for each type of farmland.

Farmland and Code Average WTP (%) Most Frequent WTP (%)

Sowable crops (SC) 65.7% 60%

Vineyard (VY) 64.0% 60%

Olive grove (OG) 64.3% 50%

Orchard (OR) 64.2% 50%

Livestock farm (LF) 65.6% 60%

Rural facilities (RF) 63.1% 60%

Woodland (WO) 66.5% 60%

3.2. Decision Tree Classification

The decision trees are shown in Figures A1–A7. In order to provide a concise descrip-
tion of each tree, the results follow the path of the most frequent WTP across the highest
number of nodes (i.e., variables), particularly from the root node, through the child nodes
and up to the leaf node. However, both the nodes with the most frequent and the highest
WTPs are marked respectively in yellow and green in all the decision trees.

There are five farmlands showing an income increase as root node, namely sowable
crops, olive grove, orchard, livestock farm and woodland. Regarding the sowable crops
(Figure A1), the most frequent WTP is 60% and relates to 28 respondents out of 100. This
WTP is linked to respondents declaring that wind turbines cannot increase their income,
they are not concerned about the presence of maintenance workmen in the farmland, they
hold a high school degree and are not worried about the impacts of wind turbines on human
health. Moreover, these respondents are workers in agriculture, they are not concerned
about the farmland depreciation caused by wind turbines, they have no knowledge on
wind energy, and are between 41 and 60 years old.

The decision tree describing the WTP for the olive grove (Figure A2) shows that
the most frequent WTP is 50% and observed in 33 respondents out of 100. Even for this
farmland, the respondents think that wind turbines cannot lead to an income increase,
they hold a high school degree and are not afraid of impacts on their health. In addition,
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these respondents are not informed on wind energy, and they are female between 41 and
60 years old.

The decision tree exploring the WTP for the orchard (Figure A3) is almost equal to the
decision tree that analyse the behaviour of the local rural community towards the olive
grove. Consequently, 33 respondents showed nearly the same features as described above
and declared a WTP equal to 50%.

Regarding the woodland (Figure A4), it is observed that the main WTP is 60% and it
is declared by 32 respondents, who do not believe that wind turbines may increase their
income. Additionally, they hold a high school degree and are not worried about impacts
on health, they have not any knowledge on wind energy, they are workers in agriculture,
and between 41 and 60 years old.

The decision tree investigating the WTP for the livestock farm (Figure A5) is the
last showing the income increase as root node. Here, the main WTP is 60% and refers to
32 respondents out of 100 who think that the income increase is not possible, they hold
a secondary school degree, and they are not concerned by the damage to human health
that turbines may cause. Furthermore, these respondents are workers in agriculture, they
are not informed on wind energy and they believe that the wind turbines do not affect the
visual quality of landscaper, nor cause alteration of the agroecosystem.

Concerning the last two decision trees, namely vineyard and rural facilities, the root
node indicates the owners of farmlands subject to wind turbines. Moreover, in the case
of vineyards (Figure A6), the prevailing WTP is 60% and relates to 34 respondents. They
do not own farmlands subject to wind turbines and do not expect to increase their income
thanks to this technology. In addition, they are graduate or postgraduate and they are
not bothered by the maintenance workmen in the farmland. Moreover, these respondents
are male without knowledge on wind energy, and they already own a farmland in the
study area.

Finally, even for the rural facilities (Figure A7) the most frequent WTP is 60% and it is
observed in 33 respondents out of 100. They do not own farmlands subject to wind turbines
and do not expect any income increase. Moreover, they do not care about cultivation
and/or building constraints and believe that the turbines do not threat both the visual
quality of landscape and the agroecosystem. Lastly, these respondents hold a high school
degree, they are not informed on wind energy, and are between 41 and 60 years old.

Table 4 reports the number of records (i.e., objects) split by the nodes (i.e., variables) for
each type of farmland and the global influence of the variables on the WTP in the study area
expressed as average percentage. In particular, the education level is the most important
variable within the demographic, social, and economic features of respondents, showing
an average percentage of 87.6% and the highest influence of this variable is observed in
the vineyard with 95 records. Additionally, the possibility to increase the income thanks to
the installation of wind turbines is the most important variable within the positive effects
of wind turbines declared by the local rural community, with an average percentage of
97.7% and the highest influence is observed in five farmlands out of seven with 100 records
each, except in vineyard and rural facilities. Lastly, the variables indicating concern for the
impacts of wind turbines on human health and for maintenance workmen in the farmland
are the most important within the negative effects of turbines declared by the local rural
community. Specifically, the former variable has an average percentage of 36.3% and the
highest influence occurs in livestock farm (58 records). The last variable shows an average
percentage of 36.1% with the greatest influence in sowable crops with a total of 88 records.
The variables that do not influence the WTP at all are the effects of wind turbines on job
increase, the perception about the attention paid by energy companies to public opinion,
and the possibility to use wind turbines to recover marginal areas. These variables do not
occur in any decision tree, because they have no relevance to the final decision based on
the parameters set for building the trees (i.e., three records per node, gain-ratio method,
and reduced error pruning) [79].



Sustainability 2021, 13, 9630 10 of 25

Table 4. The number of objects for each farmland and variable, and the influence of each variable on
the WTP (average percentage).

Objects Per Farmland (No.)
Average %

SC VY OG OR LF RF WO

Demographic, Social and Economic Features

GENDER 0 27 27 27 21 0 21 17.6%

AGE 20 16 16 16 10 23 10 15.9%

EDUCATION 88 95 88 88 88 78 88 87.6%

EMPLOYMENT 0 0 0 12 62 17 28 17.0%

KNOWLEDGE 17 40 27 41 32 23 41 31.6%

ATTENTION 0 0 0 0 0 0 0 0%

OWNER 34 25 30 9 0 29 27 22.0%

EASEMENT 0 100 0 0 0 100 0 28.6%

Positive Effects

JOB 0 0 0 0 0 0 0 0%

INCOME 100 92 100 100 100 92 100 97.7%

MARGINAL AREAS 0 0 0 0 0 0 0 0%

Negative Effects

HEALTH 37 39 40 40 58 0 40 36.3%

LANDSCAPE &
AGRO 0 0 0 0 29 73 16 16.9%

CONSTRAINTS 0 0 0 0 0 87 0 12.4%

WORKMEN 88 48 48 48 21 0 0 36.1%

DEPRECIATION 20 0 0 0 20 36 0 10.9%

The C4.5 algorithm made it possible to generate also the set of classification rules
for each type of farmland after the creation of the decision trees. These rules provide
a sort of linguistic interpretation of the decision trees from the root node, through the
chance nodes until the leaf node. Thus, they represent a valuable support tool to better
understand the behaviour of the respondents in making the decision on the WTP. The
number of classification rules for each type of farmland are as follows: 22 rules for sowable
crops; 23 rules for vineyard; 19 rules for olive grove; 21 rules for orchard; 24 rules for
livestock farm; 26 rules for rural facilities; and 21 rules for woodland. Table 5 shows
some exemplary rules for all the types of farmland, particularly the rules classifying the
respondents on the basis of the most frequent and the highest WTPs. These exemplary
rules were selected among those rules having the highest number of nodes (i.e., variables),
and in the case of rules with an equal number of nodes the preference was given to the rules
supporting the highest number of records (i.e., observations). The interpretation of the
rules follows a general structure where the root and child nodes are in the first part of the
rule (If . . . ), while a certain leaf node is reported in the second part of the rule (then . . . ).
For instance, the first classification rule should be interpreted as follows: “If the potential
buyers are between 41 and 60 years old, they hold a high school degree, they are workers
in agriculture, they have no knowledge on wind energy, they are not concerned by impacts
on human health, nor by the presence of maintenance workmen and the depreciation of
farmland, and they believe that the wind turbines cannot increase their income, then they
are willing to pay for farmland with sowable crops at 60% of its market value”.
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Table 5. The exemplary classification rules for each type of farmland.

Classification Rule Farmland Code

If Age = 2 AND Knowledge = 1 AND Depreciation = NO AND
Employment = 3 AND Health = NO AND Education = 3 AND

Workmen = NO AND Income = NO then WTP = 60%
SC

If Knowledge = 2 AND Depreciation = NO AND Employment = 3 AND
Health = NO AND Education = 3 AND Workmen = NO AND

Income = NO then WTP = 100%
SC

If Owner = YES AND Knowledge = 1 AND Gender = M AND
Workmen = NO AND Education = 4 AND Income = NO AND

Easement = NO then WTP = 60%
VY

If Income = YES AND Easement = NO then WTP = 100% VY

If Gender = F AND Age = 2 AND Knowledge = 1 AND Health = NO AND
Education = 3 AND Income = NO then WTP = 50% OG

If Employment = 3 AND Income = YES then WTP = 100% OG

If Gender = F AND Age = 2 AND Knowledge = 1 AND Health = NO AND
Education = 3 AND Income = NO then WTP = 50% OR

If Employment = 3 AND Income = YES then WTP = 100% OR

If Landscape&Agro = NO AND Knowledge = 1 AND Employment = 3
AND Health = NO AND Education = 2 AND Income = NO

then WTP = 60%
LF

If Knowledge = 2 AND Depreciation = NO AND Employment = 3 AND
Health = NO AND Education = 3 AND Income = NO then WTP = 100% LF

If Age = 2 AND Knowledge = 1 AND Education = 3 AND
Landscape&Agro = NO AND Constraints = NO AND Income = NO AND

Easement = NO then WTP = 60%
RF

If Age = 1 AND Knowledge = 2 AND Education = 3 AND
Landscape&Agro = NO AND Constraints = NO AND Income = NO AND

Easement = NO then WTP = 100%
RF

If Age = 2 AND Employment = 3 AND Knowledge = 1 AND
Health = NO AND Education = 3 AND Income = NO then WTP = 60% WO

If Employment = 3 AND Income = YES then WTP = 100% WO

Finally, Table 6 shows the classification accuracy of the decision tree obtained by the
confusion matrices of the farmlands. Although the sample size is not large because of the
sample inclusion criteria and the questionnaires is not valid, the C4.5 algorithm returned
a fairly reliable classification. Indeed, the overall classification accuracy ranges between
60% and 65% in almost all the farmlands, except in woodland where this accuracy is equal
to 59%.
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Table 6. The classification accuracy for each type of farmland.

Farmland and Code
Objects (No.) Overall

Accuracy (%)Correctly Classified Wrongly Classified

Sowable crops (SC) 65 35 65%

Vineyard (VY) 65 35 65%

Olive grove (OG) 63 37 63%

Orchard (OR) 64 36 64%

Livestock farm (LF) 60 40 60%

Rural facilities (RF) 61 39 61%

Woodland (WO) 59 41 59%

4. Discussion

The overall findings of the sample description highlight a broad acceptance towards
the wind farm in the study area, in agreement with the findings by other scholars [80,81].
However, most of the scientific literature is focused on residential properties, and only few
studies have investigated the impacts of wind turbines on farmland value. Moreover, these
studies did not report similar results, since they underlined both a reduction and increase
of farmland value [14,47–50,82]. Although the availability of wind energy could boost the
development of sustainable rural activities, such as greenhouses, grain mills, oil mills, and
dairies, this research shows that the presence of turbines is not always considered a strong
economic driver in terms of job creation and income growth, though the contribution of
turbines to recover the marginal areas could represent a key factor to ensure cost-effective
agriculture. Furthermore, regarding the environmental and social aspects, it is to be noted
that these installations are not seen as strong element compromising the visual quality of
landscape and causing the alteration of agroecosystem, neither as harmful factor for human
health. Subsequently, the results related to the negative effects on farming activity do not
show significant issues. Actually, neither the cultivation and/or building constraints, nor
the concerns regarding maintenance workmen are seen as a limiting factor. These last
aspects explain why there are not severe concerns also on farmland depreciation. As a
consequence, this stated wide acceptance can be linked to the “please in my back yard”
(PIMBY) attitude [83,84], which takes place when rural actors have adopted a sustainable
model viewing wind turbines as isolated technologies conferring distinct and verbalized
benefits [85]. In addition, the PIMBY attitude may not necessarily be driven solely by the
direct economic benefits of turbines, but also by a strong rural cultural tendency to implant
values such as prosperity and modernity within all technologies used for productive
purposes [85].

Even though a general broad acceptance of wind turbines emerges from the local
rural community, it is to be noted that the data from the interviews and the decision tree
classification show a significant reduction of the WTP for all the types of farmland. These
findings are in line with some studies that pointed to a decrease of farmland value [49,86],
while other scholars highlighted that wind turbines lead to higher farmland transaction
prices, though with a minimum effect [14]. Further research found that wind turbines
have not significant impact on the value of these properties [47,48,50]. In order to identify
the factors affecting the WTP in the study area, the following discussion focuses on the
variables that mostly influence WTP (Table 4) without going into the detail of each farmland,
since there are not significant variations of both the average and the most frequent WTPs
among the types of farmland.

Specifically, it is to be noted that the variable describing the education level occurs in all
the farmlands as well as several times within each decision tree starting for the first group
of child nodes, except in sowable crops where it occurs in the second group. Nevertheless,
the different levels of education cannot be clearly linked to a specific WTP variation, which
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means that this variable cannot provide homogeneous insight. For instance, in the decision
tree of rural facilities, the respondents holding secondary school degree are willing to pay
both 50% and 100% of the market value. In this regard, the effect of education has been
examined in several studies with inconclusive results [87–89]. Hence, it can be assumed
that the ambiguous behaviour in the study area may be influenced by the interaction of
the education level with other variables, such as the presence of impacts on landscape and
agroecosystem and the variable indicating the owner of farmland subject to wind turbines.

The income increase is a key factor too, because it occurs in all the farmlands and it is
also a root node in five decision trees out of seven (except in vineyard and rural facilities).
When it is supposed that the wind turbines can actually increase the income of farmland
owners, then the WTP can be equal to the entire market value (i.e., 100%). Otherwise, the
WTP decreases up to 60% except in olive grove and orchard where it further decreases
to 50%. This specific finding is consistent with other authors’ insights [87,90,91], which
underlined how ensuring some benefits or subsidy as compensation measure to people
living in areas subject to wind energy may increase their income, thus positively affecting
their attitude towards wind farms or turbines. Moreover, [28] found that rural communities
undertake wind energy production mainly to ‘future proof’ the farms, thus increasing
the long-term economic viability of rural areas through profitable capital investment and
business diversification.

The variable indicating the concerns for impacts on human health occurs in six decision
trees out of seven (except in rural facilities) and it is observed the first time between the
second and the third groups of child nodes and always after the income increase. The
WTP is between 60% and 70% when respondents are not worried by impacts on health.
Otherwise, there is a WTP reduction up to 50%. In this case, it is to be noted that reduction
of 50% is declared by few respondents, and thus it can be assumed that the influence of
this specific variable on the farmland value is high, but less important than the influence
exerted by the variable expressing the possibility to increase the income. As other authors
underlined [41,42], there are several potential negative effects for human health, such as
noise, low-frequency sounds, shadow flicker induced by rotating blades and stroboscopic
effects, and high fear of turbine crashing. All these effects may cause annoyance and the
so-called wind turbine syndrome (e.g., sleep disturbance, tiredness, headache, memory
and concentration loss, depression, migraine, anxiety), leading to a reduction of well-
being [92–94]. However, regarding rural facilities, it is reasonable to assume that the
presence of buildings makes it useful to use electricity, and that only in this case the
availability of wind energy may be perceived as an advantage, making the respondents
less sensitive with respect to the possible negative effects on health. This assumption
is consistent with [42,95], who underlined how the acceptance of wind farm projects is
strictly linked to the social and cultural attitudes, and thus to the belief that this energy is a
resource improving the common well-being.

Lastly, the variable expressing the concerns about the presence of maintenance work-
men in the farmland occurs in almost all the farmlands, except in rural facilities and
woodland. When respondents are concerned by maintenance operations, then the WTP
decreases up to 40%. On the contrary, this is between 60% and 70%. As a consequence, it
can be assumed that the potential farmland buyers see the presence of maintenance work-
men as a strong disturbance factor for agricultural activities. For instance, [96] highlighted
that wind turbines usually require several maintenance operations, such as inspection,
repairment, and replacement of various parts (e.g., anemometer, main bearing, blades,
tower, converter, brake pumps), but also gates, fences, paths, signs, and other access in-
frastructures that require periodic maintenance [97]. On the other hand, it is reasonable to
assume that respondents are not bothered by maintenance workmen in woodland due to
the short time spent annually in this farmland. Moreover, concerning rural facilities, it may
be stated that maintenance workmen are considered very important to keep the turbines
properly efficient in such an anthropic environment, where they can also supply electricity
for rural buildings [28,98].
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5. Conclusions

In this research, the decision tree was applied to examine the extent to which the
easement of wind turbines can influence the WTP of a small rural community for different
types of farmland, and to clearly identify the main factors influencing the WTP. The
obtained results highlighted a significant reduction of WTP for all farmlands and enabled
to clearly identify the main factors that influence the WTP for the farmlands in the study
area. These factors are the education level, the possibility to increase income, as well as
the concerns for impacts on human health and for the maintenance workmen, although
the different levels of education cannot provide homogeneous insight. European and
Italian policymakers and public bodies are making great investments to promote the
energy transition process through the wind energy, but the development of this source
of renewable energy in rural areas is still affected by communities’ perceptions, which
often lead to a sharp reduction of the WTP for farmlands. In the light of the results of this
research, national and local policy measures targeted to rural communities have to be put
in place, in order to inform residents about the ‘magnitude’ of the effects they identified
as crucial. In this way, the policymakers and private bodies will contribute concretely to
making the farmland market more equitable.

Although the results cannot be extended to the entire local rural community due
to the sample inclusion criteria and the consequently limited dataset, this research can
be considered a first step for future extensive studies, since it provides new insight to
policymakers and private bodies about the mechanisms and capacities of this community
to plug into such a complex context. It is also important to highlight that this research
identified the variation of farmland value in terms of WTP through an original and com-
prehensive approach. Actually, the existing studies used data from farmland transaction
prices and applied methods like appraisal by chartered surveyors, hedonic regression, price
comparison and spatial econometric approaches. Moreover, these studies took into account
few aspects, such as visual and noise inconveniences, as well as the distance, height, and
capacities of wind turbines.

It is also to be noted that the flexibility and the user friendliness of both the C4.5
algorithm and the KNIME analytics platform suggest that the proposed approach can
be replicated in diverse rural territories, taking into account that the results may vary in
relation to the farmlands under analysis and the communities’ features and perceptions.
Moreover, the obtained decision trees and classification rules required efforts to analyse
the results due to their complexity. Thus, the further regulation of splitting, stopping, and
pruning steps on a wider dataset could lead to the creation of less complex trees and then
to fewer rules.

Despite some drawbacks, this research offers a new viewpoint, but there remains
a need for further studies dealing with the same topic and method in order to build a
common ground for discussion. Hence, the involvement of more categories of rural actors
and the broad exploration of decision tree algorithms have to be encouraged.
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Figure A2. The decision tree describing the WTP for the olive grove. Figure A2. The decision tree describing the WTP for the olive grove.
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Figure A3. The decision tree describing the WTP for the orchard. Figure A3. The decision tree describing the WTP for the orchard.
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Figure A5. The decision tree describing the WTP for the livestock farm. Figure A5. The decision tree describing the WTP for the livestock farm.
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Figure A6. The decision tree describing the WTP for the vineyard. Figure A6. The decision tree describing the WTP for the vineyard.



Sustainability 2021, 13, 9630 21 of 25Sustainability 2021, 13, x FOR PEER REVIEW 21 of 25 
 

 

Figure A7. The decision tree describing the WTP for the rural facilities. 
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