Source Apportionment of Topsoil Heavy Metals and Associated Health and Ecological Risk Assessments in a Typical Hazy City of the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Chemical Analysis
2.3. Assessment Method
2.3.1. Method for Contamination Assessment
2.3.2. Method for Human Health Risk Assessment
2.3.3. Method for Ecological Risk Assessment
2.4. Data Analysis
3. Results and Discussion
3.1. Heavy Metal Accumulation in Topsoil
3.2. Spatial Distribution of Heavy Metals
3.3. Source Identification
3.4. Health Risk Assessment
3.5. Potential Ecological Risks
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Zhou, A.; Gan, Y.; Yu, T.; Wang, D.; Liu, Y. Controls on the δ34S and δ18O of dissolved sulfate in the quaternary aquifers of the north china plain. J. Hydrol. 2011, 400, 312–322. [Google Scholar] [CrossRef]
- Luo, X.-S.; Yu, S.; Zhu, Y.-G.; Li, X.-D. Trace Metal Contamination in Urban Soils of China. Sci. Total Environ. 2012, 421–422, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Wang, Y.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Wang, L.; Xiang, B. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ. Sci. Pollut. Res. 2018, 25, 1055–1069. [Google Scholar] [CrossRef]
- Li, G.; Sun, G.; Ren, Y.; Luo, X.-S.; Zhu, Y. Urban soil and human health, a review. Eur. J. Soil Sci. 2018, 69, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, M.A.H.; Karmaker, S.C.; Doza, B.; Rakib, A.; Saha, B.B. Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of dhaka district employing SOM, PMF and GIS methods. Chemosphere 2021, 263, 128339. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Kumar, V.; Ertunç, G.; Brevik, E.C. Ecological risk assessment and source apportionment of heavy metals contamination, an appraisal based on the Tellus soil survey. Environ. Geochem. Health 2021, 43, 2021–2142. [Google Scholar] [CrossRef] [PubMed]
- Ramazanova, E.; Lee, S.H.; Lee, W. Stochastic risk assessment of urban soils contaminated by heavy metals in Kazakhstan. Sci. Total Environ. 2021, 750, 141535. [Google Scholar] [CrossRef]
- Sutkowska, K.; Teper, L.; Czech, T.; Hulok, T.; Olszak, M.; Zogala, J. Quality of Peri-Urban Soil Developed from Ore-Bearing Carbonates: Heavy Metal Levels and Source Apportionment Assessed Using Pollution Indices. Minerals 2020, 10, 1140. [Google Scholar] [CrossRef]
- Gąsiorek, M.; Kowalska, J.; Mazurek, R.; Pająk, M. Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland). Chemosphere 2017, 179, 148–158. [Google Scholar] [CrossRef]
- Iqbal, J.; Shah, M.H. Distribution, correlation and risk assessment of selected metals in urban soils from Islamabad, Pakistan. J. Hazard. Mater. 2011, 192, 887–898. [Google Scholar] [CrossRef]
- Luo, X.-S.; Yu, S.; Li, X.-D. Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong, Implications for assessing the risk to human health. Environ. Pollut. 2011, 159, 1317–1326. [Google Scholar] [CrossRef]
- Brtnický, M.; Pecina, V.; Hladký, J.; Radziemska, M.; Koudelková, Z.; Klimánek, M.; Richtera, L.; Adamcová, D.; Elbl, J.; Galiová, M.V.; et al. Assessment of phytotoxicity, environmental and health risks of historical urban park soils. Chemosphere 2019, 220, 678–686. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Wang, Y.; Luo, G.; Chen, X.; Yang, X.; Hall, M.H.; Guo, R.; Wang, H.; Cui, J.; et al. Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma 2013, 192, 50–58. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, S.; Bao, H.; Chen, D.; Wang, C.; Li, B.; Tong, G.; Yuan, Y.; Xu, B. Improving risk management by using the spatial interaction relationship of heavy metals and PAHs in urban soil. J. Hazard. Mater. 2019, 364, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Kaur, M.; Bhatti, S.S.; Katnoria, J.K.; Nagpal, A.K. Investigation of metal concentrations in roadside soils and plants in urban areas of Amritsar, Punjab, India, under different traffic densities. Environ. Monit. Assess. 2021, 193, 222. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, Y.; Hou, H.; Shangguan, Y.; Li, F. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Sci. Total Environ. 2014, 468–469, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Liang, X. Heavy Metal Status of Soil and Plant in the North China Plain. Master Thesis, Henan University of Technology, Luoyang, China, 2010; pp. 46–56. [Google Scholar]
- Gu, D.N.; Li, L.P.; Xing, W.Q.; Zhao, C. Distribution of heavy metals in urban soils of zhengzhou city and soil quality assessment. Chin. J. Soil Sci. 2009, 4, 921–925. (In Chinese) [Google Scholar]
- Du, X.L.; Ma, S.Y.; Chu, C.J.; Ma, J.H. Spatial distribution and its cause of arsenic (As) in urban soils of zhengzhou. Soils 2008, 40, 635–639. (In Chinese) [Google Scholar]
- Wang, X.; Qin, Y. Accumulation, distribution and environmental risk of heavy metals in xuzhou urban topsoil. Environ. Monit. Chin. 2006, 22, 70. (In Chinese) [Google Scholar]
- Yuan, G.L.; Sun, T.H.; Han, P.; Li, J.; Lang, X.X. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping, Typical urban renewal area in Beijing, China. J. Geochem. Explor. 2014, 136, 40–47. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Zhou, A.; Liu, C.; Cai, H.; Liu, Y. Application of hydrochemistry and stable isotopes (δ34S, δ18O and δ37Cl) to trace natural and anthropogenic influences on the quality of groundwater in the piedmont region, Shijiazhuang, China. Appl. Geochem. 2016, 71, 63–72. [Google Scholar] [CrossRef]
- Tang, C.; Chen, J.; Shindo, S.; Sakura, Y.; Zhang, W.; Shen, Y. Assessment of groundwater contamination by nitrates associated with wastewater irrigation, a case study in Shijiazhuang region, China. Hydrol. Process. 2004, 18, 2303–2312. [Google Scholar] [CrossRef]
- Chen, J.; Tang, C.; Yu, J. Use of 18O, 2H and 15N to identify nitrate contamination of groundwater in a wastewater irrigated field near the city of Shijiazhuang, China. J. Hydrol. 2006, 326, 367–378. [Google Scholar] [CrossRef]
- Sun, X.; Yin, Y.; Sun, Y.; Sun, Y.; Liu, W.; Han, Y. Seasonal and vertical variations in aerosol distribution over Shijiazhuang, China. Atmos. Environ. 2013, 81, 245–252. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc. Urban Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- Li, C.X. Hebei Soil; Shijiazhuang, Hebei Science and Technology Press: Shijiazhuang, China, 1990; pp. 1–500. (In Chinese) [Google Scholar]
- Liu, B.; Cheng, Y.; Zhou, M.; Liang, D.; Dai, Q.; Wang, L.; Jin, W.; Zhang, L.; Ren, Y.; Zhou, J.; et al. Effectiveness evaluation of temporary emission control action in 2016 in winter in Shijiazhuang, China. Atmos. Chem. Phys. 2018, 18, 7019–7039. [Google Scholar] [CrossRef] [Green Version]
- Yue, Q.D.; Deng, N.C.; Zou, Y.C. The Investigation and Evaluation on Current Traffic Problems of the Center Area in Shijiazhuang City. J. Shijiazhuang Railw. Inst. 2000, 3, 100–102. (In Chinese) [Google Scholar]
- Chi, Q.; Yan, M. Handbook of Elemental Abundance for Applied Geochemistry; Geological Publishing House: Beijing, China, 2007. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Yang, P.G.; Drohan, P.J.; Yang, M.; Li, H.J. Spatial variability of heavy metal ecological risk in urban soils from Linfen, China. Catena 2020, 190, 104554. [Google Scholar] [CrossRef]
- Martín, J.R.; De Arana, C.; Ramos-Miras, J.J.; Gil, C.; Boluda, R. Impact of 70 years urban growth associated with heavy metal pollution. Environ. Pollut. 2015, 196, 156–163. [Google Scholar] [CrossRef]
- Sutkowska, K.; Czech, T.; Teper, L.; Krzykawski, T. Heavy metals soil contamination induced by historical zinc smelting in Jaworzno. Ecol. Chem. Eng. A 2013, 20, 1441–1450. [Google Scholar]
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotox. Environ. Safe. 2015, 120, 377–385. [Google Scholar] [CrossRef]
- Yuswir, N.S.; Praveena, S.M.; Aris, A.Z.; Ismail, S.N.S.; Hashim, Z. Health Risk assessment of heavy metal in urban surface soil (klang district, malaysia). Bull. Environ. Contam. Tox. 2015, 95, 80–89. [Google Scholar] [CrossRef]
- Lee, C.S.L.; Li, X.; Shi, W.; Cheung, S.C.-N.; Thornton, I. Metal contamination in urban, suburban, and country park soils of Hong Kong, a study based on GIS and multivariate statistics. Sci. Total Environ. 2006, 356, 45–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Lu, W.; Long, Y.; Bao, X.; Yang, Q. Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J. Geochem. Explor. 2011, 108, 27–38. [Google Scholar] [CrossRef]
- Luo, X.-S.; Xue, Y.; Wang, Y.-L.; Cang, L.; Xu, B.; Ding, J. Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere 2015, 127, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Nezhad, M.T.K.; Tabatabaii, S.M.; Gholami, A. Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran. J. Geochem. Explor. 2015, 152, 91–109. [Google Scholar] [CrossRef]
- Yadav, I.C.; Devi, N.L.; Singh, V.K.; Li, J.; Zhang, G. Spatial distribution, source analysis, and health risk assessment of heavy metals contamination in house dust and surface soil from four major cities of Nepal. Chemosphere 2019, 218, 1100–1113. [Google Scholar] [CrossRef]
- Cheng, H.; Li, M.; Zhao, C.; Li, K.; Peng, M.; Qin, A.; Cheng, X. Overview of trace metals in the urban soil of 31 metropolises in China. J. Geochem.l Explor. 2014, 139, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.F.; Luan, W.L.; Cui, X.T.; Li, S.M.; Wang, W.; Li, W. An analysis of the sources of heavy metals in soils of eastern Hebei plain. Geol. Chin. 2010, 37, 1530–1538. [Google Scholar]
- Pan, L.B.; Ma, J.; Wang, X.L.; Hou, H. Heavy metals in soils from a typical county in shanxi province, china: Levels, sources and spatial distribution. Chemosphere 2016, 148, 248–254. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, E.; Iribarren, I.; Chacon, E.; Ordonez, A.; Charlesworth, S. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 2007, 66, 505–513. [Google Scholar] [CrossRef] [PubMed]
Cr | Ni | Cd | Pb | Cu | Zn | As | Hg | Al2O3 | |
---|---|---|---|---|---|---|---|---|---|
Min. | 54.9 | 20.2 | 0.13 | 16.7 | 18.7 | 54.0 | 5.2 | 0.019 | 10.59 |
Max. | 457.7 | 99.0 | 5.22 | 85.1 | 55.4 | 813.9 | 23.3 | 1.598 | 14.31 |
Median | 68.9 | 27.4 | 0.200 | 27.6 | 26.7 | 88.5 | 9.1 | 0.092 | 12.7 |
Average | 71.8 | 28.2 | 0.27 | 31.0 | 27.4 | 104.5 | 9.4 | 0.113 | 12.66 |
CV% | 38.9 | 20.2 | 135.06 | 35.4 | 19.5 | 66.8 | 23.5 | 106.661 | 4.43 |
SD | 28.0 | 5.7 | 0.37 | 11.0 | 5.3 | 69.8 | 2.2 | 0.120 | 0.56 |
CF | 1.09 | 0.88 | 2.43 | 1.41 | 1.19 | 1.69 | 0.86 | 5.64 | 0.99 |
North China Plain background [32] | 66 | 32 | 0.113 | 22 | 23 | 62 | 11 | 0.020 | 12.84 |
Proportion above the background | 69.5% | 7.3% | 100.0% | 87.7% | 82.7% | 98.2% | 8.2% | 99.5% | 39.1% |
Concentration | Pb | Cd | Cr | Cu | Zn | Ni | As | Hg | Reference |
---|---|---|---|---|---|---|---|---|---|
Industrial based cities | |||||||||
Shenyang | 11,700 | 1.1 | 67.9 | 92.45 | 235 | – | 22.7 | 0.39 | [4] |
Anshan | 45.1 | 0.86 | 69.9 | 52.3 | 213 | 33.5 | – | – | [37] |
Dongguan | 160 | 0.25 | 74.9 | 66.6 | 150.8 | 44.5 | 13.3 | 0.15 | [4] |
Qingdao | 250 | 0.29 | 82.15 | 62.0 | 209.07 | 83.8 | – | – | [4] |
Baoji | 25,400 | – | 102.4 | 112 | 1960 | 72.1 | – | – | [4] |
More developed cities | |||||||||
Hangzhou | 84.3 | 1.2 | – | 46.1 | 203 | – | – | – | [4] |
Lishui | 63.1 | 0.53 | 34.7 | 35.8 | 192 | 12.7 | 8.81 | – | [4] |
Metropoles | |||||||||
Beijing | 33.7 | 0.17 | 60.3 | 31.3 | 83.8 | 23.3 | 8.55 | 0.32 | [23] |
Shanghai | 70.7 | 0.52 | 108 | 59.3 | 301 | 31.14 | – | – | [4] |
Shenzhen | 53.59 | 0.39 | – | 28.33 | 72.68 | – | – | – | [4] |
Tianjin (Tanggu) | 45 | 0.18 | 81 | 33 | 148 | 39 | 11 | 0.43 | [18] |
Guangzhou | 65.4 | 0.23 | 22.4 | 41.6 | 277 | 11.1 | – | – | [4] |
Shijiazhuang | 31 | 0.27 | 71.9 | 27.4 | 105 | 28.2 | 9.42 | 0.113 | This study |
Underdeveloped cities | |||||||||
Lhasa | 31 | 0.12 | 42 | 21.6 | 65 | 21 | 20.5 | 0.092 | [44] |
Xining | 24.1 | 0.15 | 74 | 24.5 | 64 | 26.1 | 11.6 | 0.077 | [44] |
Urumqi | 18.2 | 0.14 | 58 | 30.1 | 72 | 27.5 | 13.3 | 0.041 | [4] |
County and Agricultural area | |||||||||
Shunyi | 20 | 0.14 | – | 22 | 70 | – | 7.9 | 0.07 | [4] |
Xiangfen | 23 | 0.2 | 71 | 30 | 82 | 32 | 14 | 0.13 | [46] |
Ecological demonstration zone | |||||||||
Wulian | 32 | 0.13 | 56 | 22 | 73 | 24 | – | – | [46] |
Concentration | Pb | Cd | Cr | Cu | Zn | Ni | As | Hg | Reference |
---|---|---|---|---|---|---|---|---|---|
Beijing | 33.7 | 0.17 | 60.3 | 31.3 | 83.8 | 23.3 | 8.55 | 0.32 | [23] |
Tianjin (Tanggu) | 45 | 0.18 | 81 | 33 | 148 | 39 | 11 | 0.43 | [18] |
Qingdao | 250.17 | 0.29 | 82.15 | 62.04 | 209.07 | 83.76 | – | – | [4] |
Xuzhou | 37 | 0.58 | 73 | 34 | 169 | 34 | 39.88 | 0.29 | [22] |
Luoyang | 65.92 | 1.71 | 71.42 | 85.4 | 215.75 | - | - | - | [4] |
Zhengzhou | 51.2 | 59.8 | 65.4 | 34.3 | [19] | ||||
Shijiazhuang | 31 | 0.27 | 71.9 | 27.4 | 104.5 | 28.2 | 9.42 | 0.113 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Song, Z.; Cai, K. Source Apportionment of Topsoil Heavy Metals and Associated Health and Ecological Risk Assessments in a Typical Hazy City of the North China Plain. Sustainability 2021, 13, 10046. https://doi.org/10.3390/su131810046
Zou J, Song Z, Cai K. Source Apportionment of Topsoil Heavy Metals and Associated Health and Ecological Risk Assessments in a Typical Hazy City of the North China Plain. Sustainability. 2021; 13(18):10046. https://doi.org/10.3390/su131810046
Chicago/Turabian StyleZou, Junyu, Zefeng Song, and Kui Cai. 2021. "Source Apportionment of Topsoil Heavy Metals and Associated Health and Ecological Risk Assessments in a Typical Hazy City of the North China Plain" Sustainability 13, no. 18: 10046. https://doi.org/10.3390/su131810046
APA StyleZou, J., Song, Z., & Cai, K. (2021). Source Apportionment of Topsoil Heavy Metals and Associated Health and Ecological Risk Assessments in a Typical Hazy City of the North China Plain. Sustainability, 13(18), 10046. https://doi.org/10.3390/su131810046