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Abstract: The impacts of future climate changes on watershed hydrochemical processes were as-
sessed based on the newest Shared Socioeconomic Pathways (SSP) scenarios in Coupled Model
Intercomparison Project Phase 6 (CMIP6) in the Tianhe River in the middle area of China. The
monthly spatial downscaled outputs of General Circulation Models (GCMs) were used, and a new
Python procedure was developed to batch pick up site-scale climate change information. A combined
modeling approach was proposed to estimate the responses of the streamflow and Total Dissolved
Nitrogen (TDN) fluxes to four climate change scenarios during four future periods. The Long Ash-
ton Research Station Weather Generator (LARS-WG) was used to generate synthetic daily weather
series, which were further used in the Regional Nutrient Management (ReNuMa) model for scenario
analyses of watershed hydrochemical process responses. The results showed that there would be
2–3% decreases in annual streamflow by the end of this century for most scenarios except SSP 1-26.
More streamflow is expected in the summer months, responding to most climate change scenarios.
The annual TDN fluxes would continue to increase in the future under the uncontrolled climate
scenarios, with more non-point source contributions during the high-flow periods in the summer.
The intensities of the TDN flux increasing under the emission-controlled climate scenarios would be
relatively moderate, with a turning point around the 2070s, indicating that positive climate policies
could be effective for mitigating the impacts of future climate changes on watershed hydrochemical
processes.

Keywords: climate change; CMIP6; watershed modeling; ReNuMa; LARS-WG; GWLF

1. Introduction

Global climate change has affected the Earth system [1–3], and it will continue to do
so, judging from current trends [4,5]. Among its significant impacts are those on watershed
hydrochemical processes [6–8]. The expected temperature changes are likely to alter the
water cycle across global to regional scales and modify watershed hydrology by increasing
evapotranspiration [9] and evaporation [10], lowering soil moisture [11], reducing snow
cover and generating earlier snowmelt [12]. In addition, watershed hydrochemical pro-
cesses could also be altered by changes in precipitation, both in terms of absolute yields and
temporal and spatial distributions, which are directly related to streamflow and non-point
source flux [13,14]. Understanding the response of watershed streamflow and pollution
load to climate change has important implications for the local management of water
security, water quality, and ecosystem sustainability [15,16]. A modeling approach is often
considered to be a useful tool to quantitatively estimate the impacts of projected climate
changes on watershed hydrochemical processes based on scenario analyses [17,18]. The
main subject of the article is to apply a multi-model approach to estimate the impacts of
climate changes on watershed streamflow and non-point source flux.
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Downscaled outputs of General Circulation Models (GCMs) have been widely used to
drive watershed models to estimate the responses of watershed hydrological or hydrochem-
ical processes to projections of climate change [19,20]. The Coupled Model Intercomparison
Project (CMIP) was organized by the Working Group on Coupled Modeling (WGCM) in
1995 and developed in phases with numerous collaborations. The most important of these
collaborations was with the US Department of Energy (DOE) Program for Climate Model
Diagnosis and Intercomparison (PCMDI). The CMIP is a collaborative framework to make
the model intercomparison data available to other scientists as the standard experimental
protocol of climate change scenarios for international scientists to analyze different GCMs
in an equivalent way and facilitate further applications. Since 2016, a new set of emissions
scenarios driven by different socioeconomic assumptions, called Shared Socioeconomic
Pathways (SSPs), has been developed by the energy modeling community and selected as
new scenarios in CMIP6 to drive GCMs for further analysis [21,22], such as the upcoming
2021 Intergovernmental Panel on Climate Change (IPCC) sixth assessment report (AR6).
Datasets from the new generation of GCMs based on CMIP6 scenarios are gradually being
released [23], representing new characteristics in the frequency and intensity of climate
change [24–26]. It is of great interest to both researchers and decision makers to estimate
how the watershed streamflow and water quality will change under the new emission
scenarios in the future. However, previous studies were mainly carried out based on
CMIP5 scenarios [27,28], and studies based on the state-of-the-art scenarios of CMIP6 are
pending [29,30]. In this subject, we hope to establish a feasible technical framework to
provide insight into climate change impacts on the watershed hydrochemical processes
under CMIP6 scenarios with a multi-model approach.

The resolutions of global raster maps from GCM outputs are generally too low to
be directly used in watershed models, which often require at least daily weather data at
the site-scale resolution. However, as a critical issue for CMIP6 scenario application [31],
reanalysis of the original GCM outputs for resolution refinement is pending and still not
available for most GCMs’ daily outputs in the most areas due to its high computational
complexity. It is a great challenge to bridge the gap between GCM outputs and water-
shed model demands [32,33], and practical downscaling analysis is an effective technical
approach to address this issue [34,35]. There are generally two technical paths to down-
scale the GCM outputs: dynamic downscaling and statistical downscaling. The dynamic
downscaling methods mainly use Regional Climate Models (RCMs) driven based on GCM
outputs for detailed re-analyses [36,37], which need remarkable computational resources.
Statistical downscaling methods mainly use various Markov chains, spatial interpolation,
and machine learning methods, such as Convolutional Neural Networks (CNNs) for spa-
tial downscaling and the Weather Generator (WG) model for time downscaling [38–40].
The WG model has relatively simple operation and low computational cost to generate
site scale synthetic daily weather series suitable for watershed model applications. It has
been widely used in estimating the responses of watershed hydrological or hydrochemical
processes to various climate changes of CMIP5 scenarios by estimating watershed-scale
climate variables consistent with the GCM outputs [41–43]. It is a feasible approach to
estimate watershed responses to CMIP6 scenarios by developing a framework based on a
suitable WG model combined with a watershed hydrology model.

In this study, we propose a combined modeling approach to estimate climate change
impacts on a watershed under CMIP6 scenarios. As a tributary of the Hanjiang River in
China, the Tianhe River was used as a study case. The changes of streamflow and total
dissolved nitrogen (TDN) fluxes at the estuary of the Tianhe River as the watershed outlet
were estimated. The results show that both watershed hydrological and hydrochemical
processes would be changed under SSP scenarios in the future, including more TDN yields,
different monthly load distributions and source apportionment, and increasing risks of
extreme events. More response estimations based on SSP scenarios of CMIP6 in other
watersheds with different weather conditions are expected, and the modeling approach
proposed in this study can be adopted as an alternative.
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2. Materials and Methods
2.1. Study Area and Data Source

This study was conducted in the Tianhe River watershed, located in the middle area
of China (Figure 1). The Tianhe River originates from the eastern side of Taiping Mountain
in Shaanxi Province and drains into the Hanjiang River in Hubei Province. The Hanjiang
River is the main water source of Danjiangkou Reservoir. Danjiangkou Reservoir is the
source of water for extraction by China’s South-to-North Water Diversion Project. It has a
290.5 × 108 m3 maximum storage capacity and 394.8 × 108 m3 mean annual inflow,
indicating great socioeconomic value. The Tianhe River is the last large tributary of the
Hanjiang River before being injected into the Danjiangkou Reservoir. Due to the active
agricultural planting behavior in the upstream and the septic system discharge from
residents in the downstream town, the TDN concentration of the Tianhe River is generally
at a relatively high level, leading to the risk of eutrophication in the Danjiangkou Reservoir.
In addition, residents living in the downstream town face the risk of flooding during the
summer. Thus, it is of significance to estimate the possible changes of the streamflow and
TDN fluxes in the Tianhe River caused by climate change in the future.
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Figure 1. Location of the study area.

The watershed area located above the estuary of the Tianhe River was set as the study
area, approximately 1702 km2. It is dominated by natural land with 63.4% forest and 24.3%
grassland cover, mainly distributed in the upstream area. There is considerable cultivated
land in the downstream area, accounting for 11.2% of the total watershed area. Elevations
range from 147 m to 1590 m, and the average annual precipitation and temperature of
this area are 810.2 mm and 12.5 ◦C, respectively (Figure 2). Yunxi town is located in the
downstream area of the study’s watershed, with a population of about 505,000. There is
one water quality monitoring station, one hydrological station, and one meteorological
station lying in the study’s watershed. The historical data from the meteorological station
provide weather data for GCM downscaling and watershed hydrochemical modeling.
The historical data from the hydrological station provide streamflow data for transport
parameter estimation of the ReNuMa model. The historical data from the water quality
monitoring station provide TDN data for nutrient parameter estimation of the ReNuMa
model. The sources of the original data used in this study are summarized in Table 1.



Sustainability 2021, 13, 10102 4 of 19

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 19 
 

data for transport parameter estimation of the ReNuMa model. The historical data from 
the water quality monitoring station provide TDN data for nutrient parameter estima-
tion of the ReNuMa model. The sources of the original data used in this study are sum-
marized in Table 1. 

 
Figure 2. Spatial attributes of the study area (statistics since 1980). (a) The spatial distribution of elevation. (b) The spatial 
distribution of temperature. (c) The spatial distribution of precipitation. 

Table 1. Summary of the original input data source. 

Name Source and Description Resolution Remark 

Digital Elevation 
Model 

Geospatial Data Cloud site, Computer Network 
Information Center, Chinese Academy of Sciences 

(http://www.gscloud.cn, 1 July 2021) 
30 m × 30 m raster ASTER GDEM V2 

Land Use Maps 
Data Center for Resources and Environmental 

Sciences, Chinese Academy of Sciences (RESDC) 
(http://www.resdc.cn, 1 July 2021) 

30 m × 30 m raster Period of 2015 

Pollution Emission 
Data 

The Second State Pollution Source Survey of China 
(http://www.mee.gov.cn, 1 July 2021) 

City and Town Base Year of 2017 

Population Data 
Kilometer Grid Dataset of Chinese Population 

Spatial Distribution (https://www.resdc.cn, 1 July 
2021; doi:10.12078/2017121101) 

1 km × 1 km Period of 2015 

Historical Weather 
Records 

Climatic Data Center, National Meteorological In-
formation Center, China Meteorological Admin-

istration (http://data.cma.cn, 1 July 2021) 
Daily 1957–2019 

Historical Hydro-
logical Data 

Annual Hydrological Report P. R. China, Volume 
6(15), borrowed from National Library of China 

Monthly 2009–2015 

Historical Water 
Quality Data 

National surface water quality report of China and 
Local Environmental Monitoring Station 

(http://106.37.208.243:8068/GJZ/Business/Publish/
Main.html, 1 July 2021) 

Monthly 2009–2016, 2018 

Future Climate Data 
Global Historical and Future Climate Grid Dataset 

Downscaled Based on GCM Outputs 
(www.worldclim.org, 1 July 2021) 

2.5 min 4.65 km × 4.65 km 

2.2. Overview of Methodology 
In this study, we propose a combined modeling approach to estimate climate change 

impacts on a watershed under CMIP6 scenarios. The WG model of the Long Ashton Re-
search Station Weather Generator (LARS-WG) was employed to provide site-scale daily 

Figure 2. Spatial attributes of the study area (statistics since 1980). (a) The spatial distribution of elevation. (b) The spatial
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Table 1. Summary of the original input data source.

Name Source and Description Resolution Remark

Digital Elevation Model
Geospatial Data Cloud site, Computer Network

Information Center, Chinese Academy of Sciences
(http://www.gscloud.cn, 1 July 2021)

30 m × 30 m raster ASTER GDEM V2

Land Use Maps
Data Center for Resources and Environmental

Sciences, Chinese Academy of Sciences (RESDC)
(http://www.resdc.cn, 1 July 2021)

30 m × 30 m raster Period of 2015

Pollution Emission Data The Second State Pollution Source Survey of China
(http://www.mee.gov.cn, 1 July 2021) City and Town Base Year of 2017

Population Data
Kilometer Grid Dataset of Chinese Population

Spatial Distribution (https://www.resdc.cn, 1 July
2021; doi:10.12078/2017121101)

1 km × 1 km Period of 2015

Historical Weather
Records

Climatic Data Center, National Meteorological
Information Center, China Meteorological

Administration (http://data.cma.cn, 1 July 2021)
Daily 1957–2019

Historical Hydrological
Data

Annual Hydrological Report P. R. China, Volume
6(15), borrowed from National Library of China Monthly 2009–2015

Historical Water Quality
Data

National surface water quality report of China and
Local Environmental Monitoring Station

(http://106.37.208.243:
8068/GJZ/Business/Publish/Main.html, 1 July

2021)

Monthly 2009–2016, 2018

Future Climate Data
Global Historical and Future Climate Grid Dataset

Downscaled Based on GCM Outputs
(www.worldclim.org, 1 July 2021)

2.5 min 4.65 km × 4.65 km

2.2. Overview of Methodology

In this study, we propose a combined modeling approach to estimate climate change
impacts on a watershed under CMIP6 scenarios. The WG model of the Long Ashton
Research Station Weather Generator (LARS-WG) was employed to provide site-scale daily
temperatures and precipitations suitable for watershed model application. LARS-WG is an
effective time downscaling tool that can generate synthetic daily weather series based on
monthly climate change estimations. This means that just monthly downscaling analysis
of the original GCM outputs can satisfy the modeling demand of LARS-WG to address the
time disaster caused by complex computation. The monthly downscaled dataset is already
available in some public databases. Global monthly 2.5-min raster maps, downscaled
with WorldClim v2.1 based on the original GCM outputs, were used to provide high-
resolution future climate data under various SSP-CMIP6 scenarios in different periods [44].

http://www.gscloud.cn
http://www.resdc.cn
http://www.mee.gov.cn
https://www.resdc.cn
http://data.cma.cn
http://106.37.208.243:8068/GJZ/Business/Publish/Main.html
http://106.37.208.243:8068/GJZ/Business/Publish/Main.html
www.worldclim.org
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A Python procedure was developed to extract site-specific climate variables for the target
watershed in batch mode for four future periods under four different SSP scenarios from
seven available GCMs. An ensemble approach was adopted by averaging the values of the
estimated climate variables from multi-GCM outputs to avoid uncertainty from one single
GCM. The changes in the monthly climate variables in different SSP scenarios and future
periods were calculated to build several user-defined scenario files, which were used to
update the parameters of LARS-WG to generate synthetic daily weather data representing
various scenarios and periods for further application in the watershed model. Regional
Nutrient Management (ReNuMa) was employed as a watershed model tool to estimate
the watershed hydrological and hydrochemical processes, including the current status and
various possible responses to climate changes by using LARS-WG outputs. The general
methodology diagram is shown in Figure 3.

Sustainability 2021, 13, x FOR PEER REVIEW 5 of 19 
 

temperatures and precipitations suitable for watershed model application. LARS-WG is 

an effective time downscaling tool that can generate synthetic daily weather series based 

on monthly climate change estimations. This means that just monthly downscaling 

analysis of the original GCM outputs can satisfy the modeling demand of LARS-WG to 

address the time disaster caused by complex computation. The monthly downscaled 

dataset is already available in some public databases. Global monthly 2.5-min raster 

maps, downscaled with WorldClim v2.1 based on the original GCM outputs, were used 

to provide high-resolution future climate data under various SSP-CMIP6 scenarios in 

different periods [44]. A Python procedure was developed to extract site-specific climate 

variables for the target watershed in batch mode for four future periods under four dif-

ferent SSP scenarios from seven available GCMs. An ensemble approach was adopted by 

averaging the values of the estimated climate variables from multi-GCM outputs to avoid 

uncertainty from one single GCM. The changes in the monthly climate variables in dif-

ferent SSP scenarios and future periods were calculated to build several user-defined 

scenario files, which were used to update the parameters of LARS-WG to generate syn-

thetic daily weather data representing various scenarios and periods for further applica-

tion in the watershed model. Regional Nutrient Management (ReNuMa) was employed 

as a watershed model tool to estimate the watershed hydrological and hydrochemical 

processes, including the current status and various possible responses to climate changes 

by using LARS-WG outputs. The general methodology diagram is shown in Figure 3. 

 

Figure 3. The general flow chart of the methodology. The abbreviation ReNuMa stands for the Regional Nutrient Man-

agement model. The abbreviation LARS-WG 6 means the Long Ashton Research Station Weather Generator Version 6. 

2.3. Watershed Hydrochemical Modeling 

Regional Nutrient Management (ReNuMa) was used to model the watershed hy-

drochemical process for streamflow and TDN flux estimations. ReNuMa is a 

semi-distributed watershed model as a derivative of the Generalized Watershed Loading 

Function (GWLF) [45] with the Net Anthropogenic Nitrogen Inputs (NANI) framework, 

which is an accounting methodology for calculating the nitrogen concentrations of the 

discharge from different land use areas based on the estimations of the net anthropogenic 

nitrogen inputs across watershed boundaries [46]. It has been widely applied to estimate 

Climate Change

Hydrochemical

Processes

Current 

Precipitation

Current 

Temperature

Weather 

Conditions

GCMs Outputs

CMIP6 

Scenarios

LarsWG6 Model

ReNuMa Model

Statistical 

Downscale

Current Status

Hydrochemical

Response

Future Status

Now

Future
Future 

Precipitation

Future 

Temperature
ReNuMa

Scenarios

Analysis

SSP1-26

SSP2-45

SSP3-70

SSP5-85

Python batch 

data extraction

Streamflow
Total Dissolved 

Nitrogen

Streamflow
Total Dissolved 

Nitrogen

Figure 3. The general flow chart of the methodology. The abbreviation ReNuMa stands for the Regional Nutrient
Management model. The abbreviation LARS-WG 6 means the Long Ashton Research Station Weather Generator Version 6.

2.3. Watershed Hydrochemical Modeling

Regional Nutrient Management (ReNuMa) was used to model the watershed hy-
drochemical process for streamflow and TDN flux estimations. ReNuMa is a semi-
distributed watershed model as a derivative of the Generalized Watershed Loading Func-
tion (GWLF) [45] with the Net Anthropogenic Nitrogen Inputs (NANI) framework, which
is an accounting methodology for calculating the nitrogen concentrations of the discharge
from different land use areas based on the estimations of the net anthropogenic nitrogen in-
puts across watershed boundaries [46]. It has been widely applied to estimate the yields and
source apportionments of watershed streamflows and pollution fluxes [47], as well as for
various scenario analyses of watershed responses to a changed environment, such as best
management practice implementation [48,49] and climate or land use cover changes [18,50].
The ReNuMa model can provide reliable monthly to annual estimations in several hundred
to a thousand square kilometer watersheds with moderate data requirements, which is
suitable for the modeling demands of this study.

ReNuMa applications generally include parameter estimation and scenario analy-
sis. Due to the limitations of available historical data, the periods of observed data of
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streamflow and water quality for parameter estimation do not overlap. It conforms to the
model application specifications, as the transport parameters and nutrient parameters were
estimated sequentially. The nutrient-related parameters of ReNuMa are estimated only
after the hydrological parameters are established by calibration. The historical hydrological
data of the observed monthly streamflow at the Jia-Jia-Fang Hydrological Station from
2009 to 2012 were used to calibrate the transport parameters for streamflow estimation, and
historical data from 2013 to 2015 were reserved for testing the validity of the model with
the calibrated parameters. The nutrient parameters for TDN estimation were calibrated
based on the historical monthly water quality data at Tianhe-Estuary Monitoring Point
from 2012 to 2015 and validated with observed data in 2016 and 2018. The Nash–Sutcliff
coefficient (R2

NS) and coefficient of determination (r2) are used as statistics to measure
the model’s accuracy. The nonlinear least square method was used for model calibration
with the Solver macro add-in procedure embedded in ReNuMa’s Excel platform [51]. Two
additional algorithms of the segment function and leakage transport approach based on
the previous study [52] were used. The former used variable recession and seepage co-
efficients based on saturated zone soil moistures instead of the original fixed coefficients
for better specification of the proportions of groundwater added to the stream and lost
to the deep aquifer. The latter establishes an additional pathway for water infiltration
from an unsaturated zone to a saturated zone, regardless of whether the unsaturated zone
soil moistures exceed the moisture storage capacity or not. These new algorithms could
refine the model groundwater framework and achieve better estimations of groundwater
yields during low-flow periods. The calibrated ReNuMa was then used to estimate the
watershed responses to alternative climate scenarios by updating the weather input data
with downscaled synthetic daily series, as described below.

2.4. Downscaling Analysis

The Long Ashton Research Station Weather Generator (LARS-WG) was used as the
time-downscaling tool for future climate changes in this study. It is a stochastic weather
generator that can generate synthetic daily weather data based on the lengths of wet and
dry day series and the semi-empirical distributions of weather factor values to represent
current and various projected future climate statuses [53]. The LARS-WG has been widely
used for watershed response estimations to climate changes by linking its output to various
watershed hydrochemical models [54,55].

In this study, the newest version of LARS-WG6 was used, and 63 years of observed
daily weather data from 1957 to 2019 from the Meteorological Station of Xun-Xi were ana-
lyzed to assess the statistical characteristics of critical weather factors in the study area in
order to calibrate the model parameters. Then, 63 years of synthetic daily weather data were
generated based on the calibrated parameters and compared with the observed data to vali-
date the parameters. Three statistical tests were conducted to test the consistencies between
the modeled and observed data for different weather factors. The Kolmogorov–Smirnov
(K–S) test was performed for the significance test of the daily minimum temperature distri-
butions, daily maximum temperature distributions, seasonal wet/dry series distributions,
and daily precipitation distributions. In addition, the consistencies of the monthly mean of
precipitation, monthly mean of the daily maximum temperature, and monthly mean of
the daily minimum temperature were tested by the t-test, and the monthly variances of
precipitation were tested by the F-test. After the model performance has been approved,
synthetic daily weather data that represent various changed climatic statues can be gener-
ated by updating the calibrated and validated model parameters based on scenario files.
However, the scenario analysis module in the current LARS-WG6 was developed based on
CMIP5 so that it does not reflect changes in the statistical characteristics of weather factors
under CMIP6 SSP scenarios to update the model parameters. Thus, a series of user-defined
scenario files for LARS-WG6 were built to update the model parameters to reflect the
responses of critical weather factors to climate changes in different future periods under
different CMIP6 SSP scenarios.
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The global 2.5-min raster maps in the WorldClim dataset were used as climatic input
data to build the LARS-WG6 scenario files, which were downscaled from the original
GCM outputs to present averages of the monthly temperature and precipitation values
over 20-year periods for various CMIP6 SSP scenarios. Seven available GCM outputs were
considered, including BCC-CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1, CanESM5, IPSL-
CM6A-LR, MIROC-ES2L, and MIROC6. A Python batch procedure was developed to select
the raster values of the study area for each of the GCMs included. An ensemble approach
was achieved based on the averages of multiple GCM outputs to account for the scenario
files [56]. More details about the GCMs and ensembles are provided in the Supplementary
Materials. Based on these scenario files, various synthetic daily weather series were
generated by using LARS-WG6 for further applications in ReNuMa to estimate the impacts
of future climate changes on watershed hydrochemical processes, as described below.

2.5. Scenario Descriptions

The impacts of future climate changes under four climate change scenarios in four fu-
ture periods were estimated. The state-of-the-art climate change scenarios of the Shared So-
cioeconomic Pathways (SSPs) proposed by the energy modeling community for CMIP6 [22]
have been used by many modeling groups to drive different climate models to estimate
how the global climate may change under various future emission scenarios. Four SSP
scenarios available in the WorldClim dataset were considered in this subject, including
SSP1-26, SSP 2-45, SSP 3-70, and SSP 5-85. The scenarios of SSP1-26, SSP 2-45, and SSP 5-85
can be seen as new versions of the scenarios of RCP26, RCP45, and RCP85 in AR5/CMIP5,
which have similar end-of-century radiative forcing levels but different emissions pathways
and mixes of CO2 and non-CO2 emissions. SSP 3-70 is a new scenario added in CMIP6. It
lies in the middle of the range of baseline outcomes produced by energy system models.
Generally speaking, SSP1-26 and SSP 2-45 represent a controlled world that rapidly reduces
emissions for the situations of limited warming to below 2 ◦C and around 3 ◦C by 2100,
respectively. SSP5-8.5 and SSP3-7.0 represent a world that fails to enact any climate policies
for the situations of the worst case and the middle of the road, respectively.

The possible climate changes in four future periods were considered, including the
2030s (2021–2040), 2050s (2041–2060), 2070s (2061–2080), and 2090s (2081–2100). Each future
period climate raster dataset was based on the time averages of 20 years of downscaled
GCM outputs. For each month in each future period under each SSP scenario, the changes
in monthly temperature and precipitation in the study area from each GCM output were
averaged and used to update the model parameters to construct the respective scenario files
for LARS-WG6 to generate 20 years of synthetic daily weather data, which were further
used in ReNuMa for scenario analyses of the watershed hydrochemical process. All the
parameters of ReNuMa are constant, based on the assumption that there is no change
in the inputs of pollution to the watershed resulting from local human activities so that
only the impacts of climate changes are estimated. The annual and monthly streamflow
and TDN fluxes at the watershed outlet were estimated for each scenario and future
period, which were further compared with the results in the current status for response
estimation. The impacts of climate changes on the watershed hydrochemical processes
were discussed for local decision-making support, including possible water source yields,
extreme event probabilities of flood and eutrophication risks, and changes in pollution
source apportionment, as described in Section 3 below.

3. Results and Discussion
3.1. Results of the LARS-WG

The outputs of the LARS-WG compared with the observed values are shown in
Figure 4. There was generally great similarity between the observed and modeled values
of the monthly means of the daily maximum and minimum temperatures and monthly
precipitation totals. The results were much better for temperature than precipitation, which
is consistent with the results of other similar studies [57,58]. The temperature was more
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regularity affected by the season, but the occurrence of precipitation behavior was more
uncertain and hard to be totally simulated. The results of the K-S tests show that there was
no significant difference between the distributions of the daily observed and modeled series
for all weather factors. The t-test and F-test results show that the means and variances of
the monthly observed series and synthetic series were in good agreement, if a little poorer
than the corresponding daily outputs, and comparable with the level of agreement in other
model applications [56,59,60]. Most monthly results had no significant differences between
the observed and modeled values at the 5% significance level, except the F-test of monthly
precipitation variance in September. The modeling performance file and parameter file of
the LARS-WG are provided in the Supplementary Materials. The calibrated and validated
LARS-WG model was thus judged to be acceptable to generate synthetic weather series
based on projected climate scenarios.
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Figure 4. Comparisons of observed and modeled values of precipitation and temperature from the Long Ashton Research
Station Weather Generator (LARS-WG). (a) The mean daily maximum temperature for each month. (b) The mean daily
minimum temperature for each month. (c) The monthly precipitation for each month. (d) The deviation of monthly
precipitation for each month.

The scenario files of the LARS-WG contained a series of user-defined parameters based
on the ensembles of downscaled GCM outputs. For each SSP scenario in each future period,
the changes in precipitation and maximum and minimum temperatures in each month
were summarized with the Python batch procedure to create the corresponding scenario
file of the LARS-WG. For each scenario file, 20 years of daily synthetic weather series of
the precipitation, maximum temperature, and minimum temperature were generated by
the LARS-WG model. All the scenario files and corresponding synthetic weather data can
be found in the Supplementary Materials. These synthetic daily series were used as the
input weather data of the ReNuMa model for scenario analyses. The average of the daily
maximum and minimum temperatures was used as the input of the daily temperature data
for ReNuMa.

3.2. Results of ReNuMa for Streamflow and TDN Flux: Calibration and Validation

The time series of the monthly modeling streamflow and TDN compared with the
observed data are shown in Figures 5 and 6. The results showed relatively good agreement,
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based on the goodness of fit of the observed and modeled streamflow and TDN flux in
this study area. The observed TDN in 2017 is missing due to available data limitations.
However, benefiting from the flexible data demands of ReNuMa, it was feasible to use
discontinuous observation for calibration and verification. The R2

NS and r2 of the stream-
flow estimation were 0.800 and 0.828 in the calibration period and 0.753 and 0.796 in the
validation period, respectively. The modeling accuracy for TDN flux was somewhat lower
than that for the streamflow, which is consistent with previous studies [48,49]; the R2

NS and
r2 values for TDN flux estimation for the calibration period were 0.748 and 0.751, respec-
tively. For the validation period, the R2

NS was 0.716, and the r2 was 0.735. These statistics
are in the same range as other watershed model applications for monthly hydrochemical
process estimations [47,61], indicating that the calibrated ReNuMa model is acceptable for
further scenario analysis of climate change impacts. Details of the main calibrated ReNuMa
transport and nutrient parameters are summarized in the Supplementary Materials. A
series of scenario analyses were achieved by using the ReNuMa model based on the syn-
thetic daily series generated by the LARS-WG to estimate the impacts of climate changes
on the watershed streamflow and TDN, which were discussed in Section 3.3, Section 3.4,
Section 3.5.
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Figure 5. Comparisons of monthly observed and modeling streamflows of Regional Nutrient Man-
agement (ReNuMa).
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Figure 6. Comparisons of monthly observed and modeling total dissolved nitrogen of Regional
Nutrient Management (ReNuMa).

3.3. Changes of Streamflow

The estimates of the annual streamflow under various SSP scenarios in different future
periods are illustrated in Figure 7. There were generally decreasing trends in the annual
streamflow yields for most scenarios except SSP 1-26. For the two emission-controlled
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scenarios of SSP 1-26 and SSP 2-45, the annual streamflow initially decreased around
the 2030s and then increased with a peak around the 2070s. The annual streamflow
increased 7.83% in the 2070s under the strictly controlled scenario of SSP 1-26. For the
two uncontrolled scenarios of SSP3-7.0 and SSP5-8.5, there was a relative peak in annual
streamflow around the 2050s and then a decrease to a minimum around the 2070s. The
annual streamflow decreased 3.27% in the 2070s under the moderate uncontrolled scenario
of SSP 3-70. It was expected that there would be 2–3% decreases in annual streamflow
by the end of this century for most scenarios except SSP 1-26, which assumed a strict
limitation of warming below 2 ◦C. These results indicate that the warming trends of climate
changes would result in lower water flows in the river channel, which probably result from
the severe evapotranspiration that offsets the additional precipitation. Positive climate
policies in controlling greenhouse gas emissions to mitigate global warming trends are
effective in stabilizing the changes of watershed annual streamflow and benefit local water
resource security.
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Figure 7. Annual streamflow under various climate change scenarios in the future.

Another perspective on the changes in the monthly streamflows under various climate
change scenarios in different future periods is shown in Figure 8, together with the changes
in monthly temperatures and precipitation. General decreases in the streamflow were
seen in most months, but remarkable increases of the monthly streamflow were observed
during the summer for most scenarios in the future. The streamflow in July and August
would increase for most SSP scenarios, and significant increases could be found in July.
The expected monthly streamflow in July would increase 20.65% (10.11 mm) in the 2070s
for the emission-controlled scenario of SSP 1-26 and 22.65% (11.08 mm) in the 2090s for
the uncontrolled scenario of SSP 5-85, which integrated a great flood risk. In addition,
there were significant decreases in the streamflow at the beginning and end of the winter
in the future, especially for the uncontrolled scenarios. The expected monthly streamflow
in December and February would decrease 18.86% (2.59 mm) and 18.64% (1.15 mm),
respectively, in the 2090s under the SSP 5-85 scenario. In general, under the background of
annual streamflow reduction, there would be significant changes in the time distribution
characteristics of the water resources, with intensive humid trends in the summer months
during the high-flow period but overall arid trends in other months, particularly during
the low-flow period in winter. These changes should be of great concern for local water
management to design effective projects for better water allocations to ensure the safety
of residents’ lives from flood threats and to satisfy production needs, such as industrial
consumption and agricultural irrigation.
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3.4. Changes of Dissolved Nitrogen Fluxes

The annual TDN fluxes in the future under different SSP scenarios are shown in
Figure 9. It is evident that for all climate change scenarios in CMIP6, the annual TDN flux
increased in the future. Continuous increases of the annual TDN flux were observed for the
two uncontrolled scenarios of SSP3-7.0 and SSP5-8.5, which led to increases of 5.56% and
7.96% of the annual TDN flux in the study area around the 2090s. The changes in the annual
TDN flux under the two emission-controlled scenarios of SSP 1-26 and SSP 2-45 gradually
rose first and then fell, with peaks appearing around 2070s. The annual TDN flux in the
2070s increased 7.31% under the strictly controlled scenario of SSP 1-26 and 3.93% under
the moderately controlled scenario of SSP 2-45. The annual TDN flux in the 2090s under
SSP 1-26 and SSP 2-45 would decrease from the values around the 2070s, indicating positive
effects of emission management on TDN flux control. The increased TDN fluxes mainly
resulted from the additional non-point source pollution due to the increased transport
of TDN associated with increases in the streamflow. More detailed measures concerning
non-point pollution control are needed for local environmental management.

The changes in the monthly TDN fluxes in the future were similar to the changes in the
monthly streamflow, which are illustrated in Figure 10. Against the increasing background
of annual TDN fluxes, most changes in the monthly TDN fluxes were negative during the
low-flow period in the winter. The increases in the monthly TDN fluxes in the summer
were remarkable in the future. The peak of monthly TDN flux for the emission-controlled
scenario of SSP 1-26 would occur in July around the 2070s, with an increase of 17.13%
related to the current level. For the worst uncontrolled scenario of SSP 5-85, the peak of the
monthly TDN fluxes during the research period could be found in July at the end of this
century around the 2090s, with continuously increasing trends implying a worse situation
in the next century. In general, the critical issues of TDN flux control in the summer were
related to high summertime flows. The main pollution source under the changed climate
status should be identified, and efficient measures should be projected to implement the
best management practice, as discussed below in Section 3.5.
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Figure 9. Annual total dissolved nitrogen fluxes under various climate change scenarios in the future.
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3.5. Changes in Pollution Source Apportionments

The current source apportionments of TDN in the study’s watershed estimated by
ReNuMa are illustrated in Figure 11. There are generally four main routes for TDN loading:
surface runoff, groundwater, septic system discharges, and point source discharges. The
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contributions of the point sources, which are discharged from the municipal sewage
treatment plant of Yunxi town in the downstream area, comprised 24.6% of the total. The
point source loads mainly include the domestic sewage of urban residents and industrial
waste of the factories in Yunxi town. In addition, 21.2% TDN flux came from the septic
systems of rural residents distributed in the upstream area. In addition, 8.0% of the
TDN flux was contributed from groundwater, mainly resulting from the infiltration of
polluted water and dissolutions of soil organic matter. Surface runoff contributed 46.2%
of the TDN fluxes, mainly resulting from agricultural activities; 56.8% of the TDN in
the runoff was from paddy fields, and 33.7% came from cultivated land, which mainly
resulted from fertilizer and manure N in the runoff. A total of 9.5% of the TDN in the
runoff came from forested land, grassland, water surfaces, and urban areas, which mainly
resulted from atmospheric nitrogen deposition. Generally speaking, it is a mixed polluted
watershed with significant non-point sources that may be sensitive to changes in the
regional weather features.
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Figure 11. Source apportionments of total dissolved nitrogen in the study area.

The changes in the source apportionments of TDN under various SSP scenarios
in different future periods are shown in Figure 12. The proportions of the TDN loads
contributed from natural land would increase, including those of paddy fields, cultivated
land, forest land, and grassland. The relative contribution of TDN from the septic system
(rural resident livings), point source, and groundwater would decrease. Because the
absolute amounts of the point source contributions were assumed to be constant, decreases
in their proportional contribution resulted from the increases in the total fluxes of TDN in
the future. The impacts of climate changes on the TDN proportions due to groundwater
and septic systems were negative. The absolute TDN yields from the septic system were
generally steady, and the absolute TDN yields from groundwater were decreasing, which
was more remarkable under the uncontrolled scenarios of SSP 3-70 and SSP 5-85 at the
end of the 21st century. The changes in the contributing ratios of TDN from other land use
areas in the future were negligible.
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Figure 12. The changes in pollution source apportionments of the total dissolved nitrogen fluxes
relative to the current levels under various climate change scenarios in the future.

The critical changes in the source apportionments of the TDN under various climate
change scenarios in the future focused on the natural land. There were generally increasing
trends in the relative contributions of the TDN from the paddy fields, cultivated land,
forest land, and grassland, implying significant increases in non-point source contributions
in the future. The pollution contributed from the agricultural land use area of the paddy
fields and cultivated lands were the main source of TDN loads in the study area in the
future. The increases in relative contributions from agricultural land use area under the
emission-controlled scenarios of SSP 1-26 and SSP 2-45 were smaller than those under the
uncontrolled scenarios of SSP 3-70 and SSP 5-85. Both the absolute amounts and relative
ratios would continue to grow under the two uncontrolled scenarios, with peaks at the end
of the 21st century under the scenario of SSP 5-85. The changes in source contributions from
the agricultural land use area were similar, with the changes in streamflow under the two
emission-controlled scenarios, representing rising at first and then falling tends with peaks
around the 2070s. It is obvious that the increasing TDN loads from the agricultural land
use area mostly resulted from the more non-point source contributions due to the increases
in streamflow in the future. These indicate that more non-point source control practices
should be implemented by local watershed management in the future. To sum up, positive
climate policies to address greenhouse gas emission controls are important to mitigate
increases in TDN fluxes in the future, and more strict management of agricultural land for
non-point source control will likely be needed, particularly during the high-flow periods
in the summer, to avoid extreme events. It is necessary to project flexible strategies facing
the changing climate status in the future to realize a dynamic best management practice
including integrated measures [62,63], such as limits on crop fertilization, matching of the
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timing of fertilizer-to-crop demand, conservation tillage, terraces, and diversions to reduce
soil and organic N loss, plant buffer structures, constructed wetlands, and so on.

3.6. Limitations

The first limitation of this combined modeling approach is the potential uncertainty
in synthetic weather series generation. The local weather model is based on more than
60 years of historical data. These data are not nearly long enough, and potentially extreme
weather conditions may be ignored. In addition, the LARS-WG model assumes that
the site-scale climate feature is stable. However, in fact, climate change has been and
is occurring, which will introduce some uncertainty in the parameter estimations of the
weather generator.

The second limitation is the limited GCM outputs. As an ongoing project, the global
GCMs experiment based on CMIP6 has not yet been completed. Many GCM outputs
are not complete yet, with limited scenarios or periods which are difficult to use for the
ensemble. In addition, the estimations of these GCM outputs are still in progress, and some
outputs may have potential uncertainties in some areas.

The third limitation is the relatively long time step of ReNuMa, which led us to only
get monthly streamflow and TDN results at most. We can estimate that there will be
extreme situations in a certain month. However, it is difficult to judge whether these
changes occur concentrated in a few days and what the state of the extreme day is, which
is more important for risk management.

The existing assessment results provided in this article can provide us a perspective
on the impacts of future climate change on the watershed. It can help us to understand
the changes of future streamflow and the TDN in different situations and periods and to
prove the rationality of proactive environmental policies. Future research is expected to
focus on more refined simulations and detailed management suggestions. More detailed
watershed scale downscaling with selected GCM outputs based on a complete dataset of
CMIP 6 GCM experiments would greatly reduce the uncertainty caused by the data factors.
More detailed modeling for the watershed hydrochemical processes would provide short-
term extreme status estimations and more accurately reflect the effects of management
measures and carry out scenario analysis for Best Management Practices (BMPs).

4. Conclusions

The changes in the watershed streamflow and TDN in the Tianhe River in China were
estimated based on CMIP6-SSP scenarios. Four main conclusions can be drawn from the
results of the present study:

1. Based on the agreement between the observations and modeling results, the proposed
approach of the combined application of the LARS-WG and ReNuMa model appears
to be a valid approach to estimate climate change impacts on a watershed hydrochem-
ical process using CMIP6-SSP scenarios. It can be used as an alternative approach in
other similar areas for climate change impact estimations.

2. There were generally decreasing trends for the annual streamflow responding to the
climate changes in the future. However, monthly distributions of the annual stream-
flow will change from the historical patterns in the study area, with large increases
in streamflow occurring in the summer months, resulting in flood risk. Generally,
decreases in streamflow occurred during the low-flow periods, resulting in drought
risk. Climate policies to control greenhouse gas emissions will be needed to mitigate
the impacts of climate changes on the watershed’s hydrological characteristics.

3. Increasing trends in annual TDN fluxes occurred in response to the climate changes
in the future. The increases in monthly TDN fluxes mainly focused on the summer
during the high-flow periods due to the additional non-point source contributions
from agricultural lands. Policies to control the impact of human activities on climate
changes would also mitigate predicted changes in the TDN fluxes, and more strict
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measures concerning non-point source control should be implemented in the summer
for local water management in the future.

4. The main limitation of this study is the uncertainty caused by the limited data and
modeling tools. The GCM experiments based on CMIP 6 are ongoing, with limited
outputs published. Site-scale weather downscaling is limited in presenting watershed
spatial variation. The monthly watershed hydrological modeling is limited in provid-
ing detailed short-term extreme information. Future research is expected to provide
more detailed estimations and focus on more practical uses in management for the
BMPs.
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