Efficiency Maximization of Grid-Connected Tidal Stream Turbine System: A Supervisory Energy-Based Speed Control Approach with Processor in the Loop Experiment
Abstract
:1. Introduction
2. Methods and Materials
2.1. Marine Current Conversion System Modeling
2.1.1. Tidal Turbine Model
2.1.2. Permanent Magnet Synchronous Generator Modeling
2.2. Verification of the Proposed Control’s Applicability
2.2.1. PMSG Dq-Model Decomposition into Two Sub-Systems Interconnected with Passive Feedback
2.2.2. PMSG Passivity Property
2.2.3. Workless Forces Identification
2.3. Proposed Passivity-Based Speed-Control Design
2.4. Desired Voltage and Desired Current Computation
2.5. Grid-Side Converter (GSC) Proposed Control
3. Simulation and Experimental Results
3.1. Performance Analysis under Fixed Parameters
3.2. Robustness Analysis
3.3. Processor in the Loop (PIL) Experimental Validation
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belkhier, Y.; Achour, A. Passivity-based Voltage Controller for Tidal Energy Conversion System with Permanent Magnet Synchronous Generator. Int. J. Control Autom. Syst. 2021, 19, 988–998. [Google Scholar] [CrossRef]
- Mohammadi, E.; Fadaeinedjad, R.; Nadji, H.R. Design, electromechanical simulation, and control of a variable speed stall-regulated PMSG-based wind turbine. Int. J. Green Energy 2019, 16, 890–900. [Google Scholar] [CrossRef]
- Wang, S. Wang Adaptive fuzzy robust control of PMSM with smooth inverse based dead-zone compensation. Int. J. Control Autom. Syst. 2020, 14, 378–388. [Google Scholar] [CrossRef]
- Chen, H.; Tang, S.; Han, J.; Tang, T.; Ait-Ahmed, N.; Zhou, Z.; Benbouzid, M. High-order sliding mode control of a doubly salient permanent magnet machine driving marine current turbine. J. Ocean Eng. Sci. 2020, 16, 12–20. [Google Scholar] [CrossRef]
- Othman, A.M. Enhancement of tidal generators by superconducting energy storage jaya-based sliding-mode controller. Int. J. Energy Res. 2020, 44, 11658–11675. [Google Scholar] [CrossRef]
- Yin, X.; Zhao, X. ADV Preview based nonlinear predictive control for maximizing power generation of a tidal turbine with hydrostatic transmission. IEEE Trans. Energy Convers. 2019, 34, 1781–1791. [Google Scholar] [CrossRef]
- Yin, X.; Zhao, X. Optimal power extraction of a two-stage tidal turbine system based on backstepping disturbance rejection control. Int. J. Electr. Power Energy Syst. 2021, 132, 107158. [Google Scholar] [CrossRef]
- Zhou, Z.; Elghali, B.S.; Benbouzid, M.E.H.; Amirat, Y.; Elbouchikhi, E.; Feld, G. Tidal stream turbine control: An active disturbance rejection control approach. Ocean Eng. 2020, 202, 107190. [Google Scholar] [CrossRef]
- Sahu, P.C.; Baliarsingh, R.; Prusty, R.C.; Panda, S. Novel DQN optimized tilt fuzzy cascade controller for frequency stability of a tidal energy based AC Microgrid. Int. J. Ambient Energy 2020, 1–13. [Google Scholar] [CrossRef]
- Toumi, S.; Elbouchikhi, E.; Amirat, Y.; Benbouzid, M.; Feld, G. Magnet failure-resilient control of a direct-drive tidal turbine. Ocean Eng. 2019, 187, 106207. [Google Scholar] [CrossRef]
- Gaamouche, R.; Redouane, A.; El Harraki, I.; Belhorma, B.; El Hasnaoui, A. Optimal feedback control of nonlinear variable-speed marine current turbine using a Two-Mass model. J. Mar. Sci. Appl. 2020, 19, 83–95. [Google Scholar] [CrossRef]
- Moon, S.H.; Park, B.G.; Kim, J.W.; Kim, J.M. Maximum power-point tracking control using perturb and observe algorithm for tidal current generation system. Int. J. Precis. Eng. Manuf.-Green Technol. 2020, 7, 849–858. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Alamri, S.; Ellahi, R.; Abdelsalam, S.I. Intra-uterine particle–fluid motion through a compliant asymmetric tapered channel with heat transfer. J. Therm. Anal. Calorim. 2020, 144, 2259–2267. [Google Scholar] [CrossRef]
- Tamalouzt, S.; Belkhier, Y.; Sahri, Y.; Bajaj, M.; Ullah, N.; Chowdhury, M.S.; Titseesang, T.; Techato, K. Enhanced Direct Reactive Power Control-Based Multi-Level Inverter for DFIG Wind System under Variable Speeds. Sustainability 2021, 13, 9060. [Google Scholar] [CrossRef]
- Sadaf, H.; Abdelsalam, S.I. Adverse effects of a hybrid nanofluid in a wavy non-uniform annulus with convective boundary conditions. RSC Adv. 2020, 10, 15035–15043. [Google Scholar] [CrossRef]
- Yang, B.; Wu, Q.H.; Tiang, L.; Smith, J.S. Adaptive passivity-based control of a TCSC for the power system damping improvement of a PMSG based offshore wind farm. In Proceedings of the IEEE International Conference on Renewable Energy Research and Applications ICRERA, Madrid, Spain, 20–23 October 2013; pp. 1–5. [Google Scholar]
- Belkhier, Y.; Achour, A.Y. Fuzzy passivity-based linear feedback current controller approach for PMSG-based tidal turbine. Ocean Eng. 2020, 218, 108156. [Google Scholar] [CrossRef]
- Achour, A.Y.; Mendil, B.; Bacha, S.; Munteanu, I. Passivity-based current controller design for a permanent-magnet synchronous motor. ISA Trans. 2009, 48, 336–346. [Google Scholar] [CrossRef]
- Yang, B.; Yu, H.; Zhang, Y.; Chen, J.; Sang, Y.; Jing, L. Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine. Renew. Energy 2018, 119, 577–589. [Google Scholar] [CrossRef]
- Subramaniam, R.; Joo, Y.H. Passivity-based fuzzy ISMC for wind energy conversion systems with PMSG. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 2212–2220. [Google Scholar] [CrossRef]
- Yang, B.; Yu, T.; Shu, H.; Qiu, D.; Zhang, Y.; Cao, P.; Jiang, L. Passivity-based linear feedback control of permanent magnetic synchronous generator-based wind energy conversion system: Design and analysis. IET Renew. Power Gener. 2018, 12, 981–991. [Google Scholar] [CrossRef] [Green Version]
- Khanchoul, M.; Hilairet, M.; Normand-Cyrot, D. A passivity-based controller under low sampling for speed control of PMSM. Control Eng. Pract. 2014, 26, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yu, H.; Yu, J.; Zhao, Y. A novel speed control method based on port-controlled hamiltonian and disturbance observer for PMSM drives. IEEE Access 2019, 7, 111115–111123. [Google Scholar] [CrossRef]
- RWang, L.; Lu, B.C.; Hou, Y.L.; Gao, Q. Passivity-based control for rocket launcher position servo system based on ADRC optimized by IPSO-BP Algorithm. Shock. Vibr. 2018, 2018, 5801573. [Google Scholar]
- Khefifi, N.; Houari, A.; Machmoum, M.; Ghanes, M.; Ait-Ahmed, M. Control of grid forming inverter based on robust IDA-PBC for power quality enhancement. Sustain. Energy Grids Netw. 2019, 20, 100276. [Google Scholar] [CrossRef]
- Belkhier, Y.; Achour, A.Y. An intelligent passivity-based backstepping approach for optimal control for grid-connecting permanent magnet synchronous generator-based tidal conversion system. Int. J. Energy Res. 2020, 45, 5433–5448. [Google Scholar] [CrossRef]
- Espinosa-Perez, G.; Godoy-Alcantar, M.; Guerrero-Ramfrez, G. Passivity-based control of synchronous generators. In Proceedings of the ISIE’97 IEEE International Symposium on Industrial Electronics, Guimaraes, Portugal, 7–11 July 1997; Volume 1, pp. SS101–SS106. [Google Scholar] [CrossRef]
- Nicklasson, P.J.; Ortega, R.; Espinosa-Perez, G. Passivity-based control of the general rotating electrical machine. In Proceedings of the 1994 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, USA, 14–16 December 1994; Volume 4, pp. 4018–4023. [Google Scholar] [CrossRef]
- Lee, M.A.; Takagi, H. Dynamic control of genetic algorithms using fuzzy logic techniques. In Proceedings of the International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA, 1 June 1993; pp. 76–83. [Google Scholar]
- Yubazaki, N.; Otami, M.; Ashid, T.; Hirota, K. Dynamic fuzzy control method and its application to positioning of induction motor. In Proceedings of the Fourth IEEE International Conference on Fuzzy Systems, Yokohama, Japan, 20–24 March 1995; pp. 1095–1102. [Google Scholar]
- Belkhier, Y.; Achour, A.; Shaw, R.N.; Ullah, N.; Chowdhury, M.S.; Techato, K. Fuzzy Supervisory Passivity-Based High Order-Sliding Mode Control Approach for Tidal Turbine-Based Permanent Magnet Synchronous Generator Conversion System. Actuators 2021, 10, 92. [Google Scholar] [CrossRef]
- Ullah, N.; Farooq, Z.; Sami, I.; Chowdhury, M.S.; Techato, K.; Alkhammash, H.I. Industrial Grade Adaptive Control Scheme for a Micro-Grid Integrated Dual Active Bridge Driven Battery Storage System. IEEE Access 2020, 8, 210435–210451. [Google Scholar] [CrossRef]
- Ullah, N.; Sami, I.; Chowdhury, M.S.; Techato, K.; Alkhammash, H.I. Artificial Intelligence Integrated Fractional Order Control of Doubly Fed Induction Generator-Based Wind Energy System. IEEE Access 2021, 9, 5734–5748. [Google Scholar] [CrossRef]
- Ullah, N.; Ullah, A.; Ibeas, A.; Herrera, J. Improving the Hardware Complexity by Exploiting the Reduced Dynamics-Based Fractional Order Systems. IEEE Access 2017, 5, 7714–7723. [Google Scholar] [CrossRef]
Δεi | NB | NS | Z | PS | PB | |
---|---|---|---|---|---|---|
εi | ||||||
NB | NB | NB | NS | NS | Z | |
NS | NB | NB | NS | Z | PS | |
Z | NS | NS | Z | PS | PS | |
PS | NS | Z | PS | PB | PB | |
PB | Z | PS | PS | PB | PB |
PMSG Parameter | Value |
---|---|
Tidal density () | 1024 kg/m2 |
Tidal turbine radius (R) | 10 m |
Stator inductance () | 0.3 mH |
Stator resistance () | 0.006 |
Stator inductance () | 0.3 mH |
Pole pairs number (p) | 48 |
Flux linkage () | 1.48 Wb |
Total inertia (J) ) | 35,000 kg.m3 1150 V |
DC-link capacitor (C) | 2.9 F |
Grid-filter resistance () | 0.3 pu |
Grid-filter inductance () | 0.3 pu |
Control | Proposed | FPBLFC | PBCC | HSMC | PBC-HSMC |
---|---|---|---|---|---|
Variation | and | and | and | and | and |
(V) | ±1150.002 | ±1150.02 | ±1150.03 | ±1150.2 | ±1150.006 |
(MW) | ±1.5 × 10−5 | ±4 × 10−5 | ±5 × 10−5 | ±7 × 10−5 | ±1.5 × 10−5 |
ε () | ±0.002 | ±0.02 | ±0.03 | ±0.2 | ±0.006 |
ε () | ±0.000015 | ±0.00004 | ±0.00004 | ±0.00007 | ±0.000015 |
Controls | Proposed | FPBLFC | PBCC | HSMC | PBC-HSMC |
---|---|---|---|---|---|
Response speed | Extremely fast (0.8 × 10−3 s) | Very fast (1 × 10−3 s) | Fast (1.2 × 10−3 s) | Slow (2 × 10−3 s) | Extremely fast (0.8 × 10−3 s) |
Stability | highly stable (fluctuations free) | Very stable (fluctuations free) | Stable (with fluctuations) | Poor stability (with fluctuations) | highly stable (fluctuations free) |
Robustness | High robustness | Very Robust | Robust | Not robust | High robustness |
Complexity | Extremely Low (with Zero Fixed Gains) | Low (with three Fixed Gains) | Low (with five Fixed gains) | Low (with six Fixed Gains) | Very Low (with Zero Fixed Gains) |
Performance | Higher | Very Good | Good | low | Higher |
Control | Proposed | FPBLFC | PBCC | HSMC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Change | 1.5 Rs | 1.5 J | 1.5 Rs and 1.5 | 1.5 Rs | 1.5 J | 1.5 Rs and 1.5J | 1.5 Rs | 1.5 J | 1.5 Rs and 1.5J | 1.5 Rs | 1.5 J | 1.5 Rs and 1.5J |
Vdc (V) | ±1150.002 | ±1150.002 | ±1150.002 | ±1150.06 | ±1150.04 | ±1150.04 | ±1150.08 | ±1150.07 | ±1150.08 | ±1150.9 | ±1150.9 | ±1151 |
Qg (MW) | ±2 × 10−5 | ±1.5 × 10−5 | ±1.5 × 10−5 | ±5 × 10−5 | ±4.5 × 10−5 | ±5 × 10−5 | ±6 × 10−5 | ±5.5 × 10−5 | ±6 × 10−5 | ±7.5 × 10−5 | ±8 × 10−5 | ±8 × 10−5 |
ε (Vdc) | ±0.002 | ±0.002 | ±0.002 | ±0.06 | ±0.04 | ±0.04 | ±0.08 | ±0.07 | ±0.08 | ±0.9 | ±0.9 | ±0.95 |
ε (Qg) | ±0.00002 | ±0.000015 | ±0.000015 | ±0.000055 | ±0.00005 | ±0.00005 | ±0.00006 | ±0.00005 | ±0.00006 | ±0.0009 | ±0.0001 | ±0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belkhier, Y.; Ullah, N.; Al Alahmadi, A.A. Efficiency Maximization of Grid-Connected Tidal Stream Turbine System: A Supervisory Energy-Based Speed Control Approach with Processor in the Loop Experiment. Sustainability 2021, 13, 10216. https://doi.org/10.3390/su131810216
Belkhier Y, Ullah N, Al Alahmadi AA. Efficiency Maximization of Grid-Connected Tidal Stream Turbine System: A Supervisory Energy-Based Speed Control Approach with Processor in the Loop Experiment. Sustainability. 2021; 13(18):10216. https://doi.org/10.3390/su131810216
Chicago/Turabian StyleBelkhier, Youcef, Nasim Ullah, and Ahmad Aziz Al Alahmadi. 2021. "Efficiency Maximization of Grid-Connected Tidal Stream Turbine System: A Supervisory Energy-Based Speed Control Approach with Processor in the Loop Experiment" Sustainability 13, no. 18: 10216. https://doi.org/10.3390/su131810216
APA StyleBelkhier, Y., Ullah, N., & Al Alahmadi, A. A. (2021). Efficiency Maximization of Grid-Connected Tidal Stream Turbine System: A Supervisory Energy-Based Speed Control Approach with Processor in the Loop Experiment. Sustainability, 13(18), 10216. https://doi.org/10.3390/su131810216