Assessment of the Diversity of Large Tree Species in Rapidly Urbanizing Areas along the Chao Phraya River Rim, Central Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection of Large Tree Data
2.3. Data Analyses
3. Results and Discussion
3.1. Species Composition of Large Trees
3.2. Species Diversity by City
3.3. Unique Species
3.4. Implications for Management
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Livesley, S.J.; Escobedo, F.J.; Morgenroth, J. The Biodiversity of Urban and Peri-Urban Forests and the Diverse Ecosystem Services They Provide as Socio-Ecological Systems. Forest 2016, 7, 291. [Google Scholar] [CrossRef]
- Lepczyk, C.A.; Aronson, M.F.J.; Evans, K.L.; Goddard, M.; Lerman, S.B.; MacIvor, J.S. Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation. Bioscience 2017, 67, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Tubby, K.V.; Webber, J.F. Pests and diseases threatening urban trees under a changing climate. Forestry 2010, 83, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Sandoval, M.; Ortego, M.I.; Roca, E. Tree Ecosystem Services, for Everyone? A Compositional Analysis Approach to Assess the Distribution of Urban Trees as an Indicator of Environmental Justice. Sustainability 2020, 12, 1215. [Google Scholar] [CrossRef] [Green Version]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Turner-Skoff, J.B.; Cavender, N. The benefits of trees for livable and sustainable communities. Plants People Planet 2019, 1, 323–335. [Google Scholar] [CrossRef]
- Pataki, D.E.; Alberti, M.; Cadenasso, M.L.; Felson, A.J.; McDonnell, M.J.; Pincetl, S.; Pouyat, R.V.; Setälä, H.; Whitlow, T.H. The Benefits and Limits of Urban Tree Planting for Environmental and Human Health. Front. Ecol. Evol. 2021, 9, 603757. [Google Scholar] [CrossRef]
- Ballinas, M.; Barradas, V.L. The Urban Tree as a Tool to Mitigate the Urban Heat Island in Mexico City: A Simple Phenomenological Model. J. Environ. Qual. 2016, 45, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Akbari, H. Shade trees reduce building energy use and CO2 emissions from power plants. Environ. Pollut. 2002, 116 (Suppl. 1), S119–S126. [Google Scholar] [CrossRef]
- Wolf, K.L.; Lam, S.T.; McKeen, J.K.; Richardson, G.R.; Bosch, M.V.D.; Bardekjian, A.C. Urban Trees and Human Health: A Scoping Review. Int. J. Environ. Res. Public Health 2020, 17, 4371. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Duarte, S.; Gómez-Valenzuela, V.; Vargas-de la Mora, A.-L.; García-García, A. Urban Forest Sustainability in Residential Areas in the City of Santo Domingo. Forests 2021, 12, 884. [Google Scholar] [CrossRef]
- Nock, C.A.; Paquette, A.; Follett, M.; Nowak, D.J.; Messier, C. Effects of Urbanization on Tree Species Functional Diversity in Eastern North America. Ecosystems 2013, 16, 1487–1497. [Google Scholar] [CrossRef]
- Asanok, L.; Kamyo, T.; Norsaengsri, M.; Salinla-Um, P.; Rodrungruang, K.; Karnasuta, N.; Navakam, S.; Pattanakiat, S.; Marod, D.; Duengkae, P.; et al. Vegetation community and factors that affect the woody species composition of riparian forests growing in an urbanizing landscape along the Chao Phraya River, central Thailand. Urban For. Urban Green. 2017, 28, 138–149. [Google Scholar] [CrossRef]
- Melliger, R.L.; Braschler, B.; Rusterholz, H.-P.; Baur, B. Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders. PLoS ONE 2018, 13, e0199245. [Google Scholar] [CrossRef]
- Bai, X.; McPhearson, T.; Cleugh, H.; Nagendra, H.; Tong, X.; Zhu, T.; Zhu, Y.-G. Linking Urbanization and the Environment: Conceptual and Empirical Advances. Annu. Rev. Environ. Resour. 2017, 42, 215–240. [Google Scholar] [CrossRef] [Green Version]
- Jim, C.Y. Urban Heritage Trees: Natural-Cultural Significance Informing Management and Conservation. In E-Democracy for Smart Cities; Springer: Berlin/Heidelberg, Germany, 2017; pp. 279–305. [Google Scholar]
- Jim, C.; Zhang, H. Defect-disorder and risk assessment of heritage trees in urban Hong Kong. Urban For. Urban Green. 2013, 12, 585–596. [Google Scholar] [CrossRef]
- Wen, L.; Kenworthy, J.; Marinova, D. Higher Density Environments and the Critical Role of City Streets as Public Open Spaces. Sustainability 2020, 12, 8896. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, K.; Theodosiou, T.; Bikas, D. Urban Warming and Cities’ Microclimates: Investigation Methods and Mitigation Strategies—A Review. Energies 2020, 13, 1414. [Google Scholar] [CrossRef] [Green Version]
- Czaja, M.; Kołton, A.; Muras, P. The Complex Issue of Urban Trees—Stress Factor Accumulation and Ecological Service Possibilities. Forests 2020, 11, 932. [Google Scholar] [CrossRef]
- Jim, C. Outstanding remnants of nature in compact cities: Patterns and preservation of heritage trees in Guangzhou city (China). Geoforum 2005, 36, 371–385. [Google Scholar] [CrossRef]
- Yaacob, W.N.A.H.W.A.; Hassan, N.; Hassan, K.; Nayan, N.M. The Morphology of Heritage Trees in Colonial Town: Taiping Lake Garden, Perak, Malaysia. Procedia Soc. Behav. Sci. 2016, 222, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Jim, C.Y. Multipurpose census methodology to assess urban forest structure in Hong Kong. Arboric. Urban For. 2008, 34, 366–378. [Google Scholar]
- Lin, H.-W.; Chuang, Y.-C.; Liu, W.-Y. Assessing the economic value of an iconic urban heritage tree. For. Policy Econ. 2020, 118, 102216. [Google Scholar] [CrossRef]
- Mundoli, S.; Harini, N. Heritage Trees of Urban India: Importance and Their Protection; Azim Premji University: Bengaluru, India, 2020. [Google Scholar]
- Department of National Parks, Wildlife and Plant Conservation. Pracharat Forest Park for the Happiness of Thai People; Ministry of Natural Resources and Environment: Bangkok, Thailand, 2018.
- Department of Cultural Promotion. Trees of Siam: Treasures of the Land under the Royal Benevolence of His Majesty the King; Ministry of Culture: Bangkok, Thailand, 2018.
- Sommeechai, M.; Wachrinrat, C.; Dell, B.; Thangtam, N.; Srichaichana, J. Ecological Structure of a Tropical Urban Forest in the Bang Kachao Peninsula, Bangkok. Forests 2018, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Thaiutsa, B.; Puangchit, L.; Kjelgren, R.; Arunpraparut, W. Urban green space, street tree and heritage large tree assessment in Bangkok, Thailand. Urban For. Urban Green. 2008, 7, 219–229. [Google Scholar] [CrossRef]
- Meteorological Department. The Climate of Thailand; Meteorological Development Bureau: Bangkok, Thailand, 2020.
- Chirathivat, S.; Cheewatrakoolpong, K. Thailand’s Economic Integration with Neighboring Countries and Possible Connectivity with South Asia; Asian Development Bank Institute: Tokyo, Japan, 2015. [Google Scholar]
- Jim, C.; Zhang, H. Species diversity and spatial differentiation of old-valuable trees in urban Hong Kong. Urban For. Urban Green. 2013, 12, 171–182. [Google Scholar] [CrossRef]
- Marine Department. Regulations: Rules for Caution and Signing of Land Boundaries; Ministry of Transport: Bangkok, Thailand, 2015.
- British Columbia Ministry of Forest. Techniques and Procedures for Collecting Preserving Processing and Storing Botanical Specimens; Province of British Columbia, Ministry of Forests Research Program: Victoria, BC, Canada, 1996.
- Forest Herbarium. Thai Plant Names: Tem Smitinand; Department of National Parks, Wldlife and Plant Conservation: Bangkok, Thailand, 2014. [Google Scholar]
- Omayio, D.; Mzungu, E. Modification of Shannon-Wiener Diversity Index towards Quantitative Estimation of Environmental Wellness and Biodiversity Levels under a Non-comparative Scenario. J. Environ. Earth Sci. 2019, 9, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Lai, P.Y.; Jim, C.; Da Tang, G.; Hong, W.J.; Zhang, H. Spatial differentiation of heritage trees in the rapidly-urbanizing city of Shenzhen, China. Landsc. Urban Plan. 2018, 181, 148–156. [Google Scholar] [CrossRef]
- Hill, M.O.; Gauch, H.G. Detrended Correspondence Analysis: An Improved Ordination Technique. Classif. Ordination 1980, 42, 47–58. [Google Scholar] [CrossRef]
- Eilertsen, O.; Okland, R.H.; Okland, T.; Pedersen, O. Data manipulation and gradient length estimation in DCA ordination. J. Veg. Sci. 1990, 1, 261–270. [Google Scholar] [CrossRef]
- Parnell, J.; Waldren, S. Detrended correspondence analysis in the ordination of data for phenetics and cladistics. TAXON 1996, 45, 71–84. [Google Scholar] [CrossRef]
- Jakubínský, J.; Prokopová, M.; Raška, P.; Salvati, L.; Bezak, N.; Cudlín, O.; Cudlín, P.; Purkyt, J.; Vezza, P.; Camporeale, C. Managing floodplains using nature-based solutions to support multiple ecosystem functions and services. WIREs Water 2021, 8, e1545. [Google Scholar] [CrossRef]
- Durr, P. The biology, ecology and agroforestry potential of the raintree, Samanea saman (Jacq.) Merr. Agrofor. Syst. 2001, 51, 223–237. [Google Scholar] [CrossRef]
- Kamyo, T.; Asanok, L. Modeling habitat suitability of Dipterocarpus alatus (Dipterocarpaceae) using MaxEnt along the Chao Phraya River in Central Thailand. For. Sci. Technol. 2019, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Asanok, L.; Kamyo, T.; Marod, D. Maximum entropy modeling for the conservation of Hopea odorata in riparian forests, central Thailand. Biodiversitas J. Biol. Divers. 2020, 21, 4663–4670. [Google Scholar] [CrossRef]
- Imai, N.; Furukawa, T.; Tsujino, R.; Kitamura, S.; Yumoto, T. Factors affecting forest area change in Southeast Asia during 1980–2010. PLoS ONE 2018, 13, e0197391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royal Forest Department. Royal Decree on Restricted Timber Species B.E. 1987; Chatuchak: Bangkok, Thailand, 1987.
- Chantarasuwan, B.; Berg, C.C.; Van Welzen, P.C. A Revision of Ficus Subsection Urostigma (Moraceae). Syst. Bot. 2013, 38, 653–686. [Google Scholar] [CrossRef]
- Sitaramam, V.; Jog, S.R.; Tetali, P. Ecology of Ficus religiosa accounts for its association with religion. Curr. Sci. 2009, 97, 637–640. [Google Scholar]
- Yotapakdee, T.; Asanok, L.; Kamyo, T.; Norsangsri, M.; Karnasuta, N.; Navakam, S.; Kaewborisut, C. Benefits and Value of Big Trees in Urban Area: A Study in Bang Kachao Green Space, Thailand. Environ. Nat. Resour. J. 2018, 17, 33–43. [Google Scholar] [CrossRef]
- Larsen, K.; Larsen, S.S. Additions to the Leguminosae of Thailand; Department of National Parks, Wldlife and Plant Conservation: Bangkok, Thailand, 1995. [Google Scholar]
- Chamchumroon, V.; Suphuntee, N.; Tetsana, N.; Poopath, M.; Tanikkool, S. Threatened Plants in Thailand; Department of National Parks, Wldlife and Plant Conservation: Bangkok, Thailand, 2017. [Google Scholar]
- Kowarik, I.; Fischer, L.K.; Kendal, D. Biodiversity Conservation and Sustainable Urban Development. Sustainability 2020, 12, 4964. [Google Scholar] [CrossRef]
- McKinney, M.L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 2008, 11, 161–176. [Google Scholar] [CrossRef]
- Dafni, A. On the typology and the worship status of sacred trees with a special reference to the Middle East. J. Ethnobiol. Ethnomed. 2006, 2, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darlington, S.M. The Ordination of a Tree: The Buddhist Ecology Movement in Thailand. Ethnology 1998, 37. [Google Scholar] [CrossRef]
- Kolimenakis, A.; Solomou, A.; Proutsos, N.; Avramidou, E.; Korakaki, E.; Karetsos, G.; Maroulis, G.; Papagiannis, E.; Tsagkari, K. The Socioeconomic Welfare of Urban Green Areas and Parks; A Literature Review of Available Evidence. Sustainability 2021, 13, 7863. [Google Scholar] [CrossRef]
- Wajchman-Świtalska, S.; Zajadacz, A.; Lubarska, A. Therapeutic Functions of Forests and Green Areas with Regard to the Universal Potential of Sensory Gardens. Environ. Sci. Proc. 2020, 3, 8. [Google Scholar] [CrossRef]
- Krzeptowska-Moszkowicz, I.; Moszkowicz, Łukasz; Porada, K. Evolution of the Concept of Sensory Gardens in the Generally Accessible Space of a Large City: Analysis of Multiple Cases from Kraków (Poland) Using the Therapeutic Space Attribute Rating Method. Sustainability 2021, 13, 5904. [Google Scholar] [CrossRef]
- Brookes, A. Preventing death and serious injury from falling trees and branches. J. Outdoor Environ. Educ. 2007, 11, 50–59. [Google Scholar] [CrossRef]
- Badrulhisham, N.; Othman, N. Knowledge in Tree Pruning for Sustainable Practices in Urban Setting: Improving Our Quality of Life. Procedia Soc. Behav. Sci. 2016, 234, 210–217. [Google Scholar] [CrossRef] [Green Version]
- Roman, L.; Catton, I.; Greenfield, E.; Pearsall, H.; Eisenman, T.; Henning, J. Linking Urban Tree Cover Change and Local History in a Post-Industrial City. Land 2021, 10, 403. [Google Scholar] [CrossRef]
- Santisuk, T. Forest of Thailand; Department of National Parks, Wldlife and Plant Conservation: Bangkok, Thailand, 2006. [Google Scholar]
- Marcotullio, P. Asian urban sustainability in the era of globalization. Habitat Int. 2001, 25, 577–598. [Google Scholar] [CrossRef]
- Koodsela, W.; Dong, H.; Sukpatch, K. A Holistic Conceptual Framework into Practice-Based on Urban Tourism Toward Sustainable Development in Thailand. Sustainability 2019, 11, 7152. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Farooq, T.H.; Aslam, A.; Shakoor, A.; Chen, X.; Yan, W. Non-targeted metabolomics reveal the impact of phenanthrene stress on root exudates of ten urban greening tree species. Environ. Res. 2021, 196, 110370. [Google Scholar] [CrossRef]
- Ortega-Álvarez, R.; Rodríguez-Correa, H.A.; Fors, I.M.G. Trees and the City: Diversity and Composition along a Neotropical Gradient of Urbanization. Int. J. Ecol. 2011, 2011, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lindenmayer, D.B.; Laurance, W.F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. 2016, 92, 1434–1458. [Google Scholar] [CrossRef]
- Vogt, J.; Hauer, R.; Fischer, B. The Costs of Maintaining and Not Maintaining the Urban Forest: A Review of the Urban Forestry and Arboriculture Literature. Arboric. Urban For. 2015, 41, 293–323. [Google Scholar] [CrossRef]
- Han, Z.-Y.; Chang, Y.Y. Beijing Resident’s Preferences of Ecosystem Services of Urban Forests. Forests 2020, 12, 14. [Google Scholar] [CrossRef]
Species | Code | LD | NS | BA | FC | RA | RD | IV |
---|---|---|---|---|---|---|---|---|
Dipterocarpus alatus | DIPALA | D | 430 | 596.37 | D | 43.57 | 35.22 | 78.79 |
Hopea odorata | HOPOD | E | 153 | 160.99 | D | 15.50 | 9.51 | 25.01 |
Ficus religiosa | FICRE | E | 68 | 220.92 | C | 6.89 | 14.80 | 21.69 |
Crudia chrysantha | CRUCH | D | 78 | 139.13 | C | 7.90 | 8.22 | 16.12 |
Diospyros decandra | DIODE | E | 42 | 38.04 | C | 4.26 | 2.25 | 6.50 |
Mimusops elengi | MIMEL | E | 30 | 22.68 | C | 3.04 | 1.34 | 4.38 |
Ficus microcarpa | FICMI | E | 6 | 44.72 | R | 0.61 | 2.64 | 3.25 |
Terminalia bellirica | TERBE | D | 19 | 21.70 | C | 1.93 | 1.28 | 3.21 |
Diospyros castanea | DIOCA | E | 18 | 15.88 | C | 1.82 | 0.94 | 2.76 |
Syzygium cumini | SYZCU | E | 15 | 19.28 | C | 1.52 | 1.14 | 2.66 |
Ficus concinna | FICCO | E | 7 | 32.43 | R | 0.71 | 1.92 | 2.62 |
Ficus altissima | FICAL | E | 2 | 28.37 | R | 0.20 | 1.68 | 1.88 |
Sterculia foetida | STEFO | D | 8 | 13.88 | R | 0.81 | 0.82 | 1.63 |
Pterocarpus macrocarpus | PTEMA | D | 11 | 8.06 | C | 1.11 | 0.48 | 1.59 |
Ficus drupacea | FICDR | E | 3 | 15.89 | R | 0.30 | 0.94 | 1.24 |
Shorea roxburghii | SHORO | D | 7 | 5.40 | R | 0.71 | 0.32 | 1.03 |
Bombax ceiba | BOMCE | D | 5 | 8.46 | R | 0.51 | 0.50 | 1.01 |
Saraca thaipingensis | SARTH | E | 7 | 4.48 | R | 0.71 | 0.26 | 0.97 |
Mangifera caloneura | MANCA | E | 7 | 3.76 | R | 0.71 | 0.22 | 0.93 |
Ficus insignis | FICIN | E | 1 | 12.26 | S | 0.10 | 0.72 | 0.83 |
Ficus rumphiin | FICRU | E | 3 | 7.15 | R | 0.30 | 0.42 | 0.73 |
Ficus benjamina | FICBE | E | 2 | 8.10 | R | 0.20 | 0.48 | 0.68 |
Hydnocarpus castanea | HYDCA | E | 5 | 2.70 | R | 0.51 | 0.16 | 0.67 |
Pterocarpus indicus | PTEIN | D | 2 | 7.78 | R | 0.20 | 0.46 | 0.66 |
Bombax anceps | BOMAN | D | 2 | 5.65 | R | 0.20 | 0.33 | 0.54 |
Xanthophyllum lanceatum | XANLA | E | 3 | 3.68 | R | 0.30 | 0.22 | 0.52 |
Ficus racemosa | FICRA | E | 1 | 6.25 | S | 0.10 | 0.37 | 0.47 |
Nauclea orientalis | NAUOR | D | 2 | 4.38 | R | 0.20 | 0.26 | 0.46 |
Schleichera oleosa | SCHOL | D | 3 | 2.08 | R | 0.30 | 0.12 | 0.43 |
Maerua siamensis | MAESI | E | 2 | 2.14 | R | 0.20 | 0.13 | 0.33 |
Manilkara hexandra | MANHE | E | 2 | 1.80 | R | 0.20 | 0.11 | 0.31 |
Diospyros mollis | DIOMO | D | 2 | 1.70 | R | 0.20 | 0.10 | 0.30 |
Beilschmiedia roxburghiana | BEIRO | D | 2 | 1.60 | R | 0.20 | 0.09 | 0.30 |
Dalbergia nigrescens | DALNI | D | 2 | 1.35 | R | 0.20 | 0.08 | 0.28 |
Aphanamixis polystachya | APHPO | E | 2 | 1.19 | R | 0.20 | 0.07 | 0.27 |
Mammea siamensis | MAMSI | E | 2 | 1.00 | R | 0.20 | 0.06 | 0.26 |
Calophyllum inophyllum | CALIN | E | 2 | 0.73 | R | 0.20 | 0.04 | 0.25 |
Terminalia chebula | TERCH | D | 2 | 0.71 | R | 0.20 | 0.04 | 0.24 |
Bauhinia malabarica | BAUMA | D | 1 | 2.31 | S | 0.10 | 0.14 | 0.24 |
Putranliva roxburghii | PUTRO | E | 2 | 0.56 | R | 0.20 | 0.03 | 0.24 |
Alstonia scholaris | ALSSC | E | 1 | 2.27 | S | 0.10 | 0.13 | 0.24 |
Strychnos nux-blanda | STRNU | D | 1 | 2.14 | S | 0.10 | 0.13 | 0.23 |
Terminalia citrina | TERCI | E | 2 | 0.38 | R | 0.20 | 0.02 | 0.22 |
Pterospermum diversifolium | PTEDI | D | 1 | 1.53 | S | 0.10 | 0.09 | 0.19 |
Erythrina fusca | ERYFU | E | 1 | 1.51 | S | 0.10 | 0.09 | 0.19 |
Adenanthera pavonina | ADEPA | E | 1 | 0.95 | S | 0.10 | 0.06 | 0.16 |
Persea kurzii | PERKU | E | 1 | 0.77 | S | 0.10 | 0.05 | 0.15 |
Diospyros rhodocalyx | DIORH | E | 1 | 0.76 | S | 0.10 | 0.05 | 0.15 |
Alangium salviifolium | ALASA | E | 1 | 0.68 | S | 0.10 | 0.04 | 0.14 |
Amherstia nobilis | AMHNO | E | 1 | 0.62 | S | 0.10 | 0.04 | 0.14 |
Dillenia indica | DILIN | E | 1 | 0.59 | S | 0.10 | 0.03 | 0.14 |
Vatica diospyroides | VATDI | E | 1 | 0.57 | S | 0.10 | 0.03 | 0.13 |
Madhuca pierrei | MADPI | E | 1 | 0.56 | S | 0.10 | 0.03 | 0.13 |
Mesua ferrea | MESFE | E | 1 | 0.53 | S | 0.10 | 0.03 | 0.13 |
Afzelia xylocarpa | AFZXY | D | 1 | 0.48 | S | 0.10 | 0.03 | 0.13 |
Sindora siamensis | SINSI | D | 1 | 0.43 | S | 0.10 | 0.03 | 0.13 |
Manilkara kauki | MANKA | E | 1 | 0.41 | S | 0.10 | 0.02 | 0.13 |
Suregada multiflora | SURMU | E | 1 | 0.37 | S | 0.10 | 0.02 | 0.12 |
Casearia grewiifolia | CASGR | E | 1 | 0.37 | S | 0.10 | 0.02 | 0.12 |
Phyllocarpus septentrionalis | PHYSE | E | 1 | 0.35 | S | 0.10 | 0.02 | 0.12 |
Mangifera indica | MANIN | E | 1 | 0.32 | S | 0.10 | 0.02 | 0.12 |
Carallia brachiata | CARBR | E | 1 | 0.31 | S | 0.10 | 0.02 | 0.12 |
Barringtonia asiatica | BARAS | E | 1 | 0.25 | S | 0.10 | 0.01 | 0.12 |
Vitex glabrata | VITGL | D | 1 | 0.22 | S | 0.10 | 0.01 | 0.11 |
Parkia timoriana | PARTI | E | 1 | 0.22 | S | 0.10 | 0.01 | 0.11 |
Total | 987 | 1693.12 | 100 | 100 | 200 | |||
Average | 1.54 | 1.54 | 3.08 |
Province | No. Sp. | No. S | MHt | BA | ACC | H’ | J |
---|---|---|---|---|---|---|---|
NS | 14 | 47 | 23.02 | 67.64 | 6992.96 | 2.12 | 0.80 |
CN | 19 | 99 | 22.99 | 232.35 | 14,283.11 | 2.27 | 0.77 |
LP | 14 | 74 | 29.62 | 121.47 | 16,359.80 | 1.79 | 0.68 |
SB | 21 | 258 | 29.21 | 474.25 | 40,064.33 | 1.30 | 0.43 |
AT | 12 | 97 | 27.22 | 133.42 | 39,137.90 | 1.28 | 0.51 |
AY | 30 | 222 | 26.66 | 358.17 | 64,339.10 | 2.24 | 0.66 |
PT | 14 | 54 | 23.67 | 77.98 | 13,662.54 | 1.97 | 0.75 |
NT | 11 | 46 | 21.13 | 77.05 | 12,344.55 | 1.96 | 0.82 |
BK | 27 | 90 | 14.52 | 150.77 | 29,947.30 | 2.64 | 0.80 |
Total | 65 | 987 | 218.04 | 1693.12 | 237,131.59 | 17.56 | 6.21 |
Average | 18 | 110 | 24.23 | 188.12 | 26,347.95 | 1.95 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asanok, L.; Kamyo, T.; Norsaengsri, M.; Yotapakdee, T.; Navakam, S. Assessment of the Diversity of Large Tree Species in Rapidly Urbanizing Areas along the Chao Phraya River Rim, Central Thailand. Sustainability 2021, 13, 10342. https://doi.org/10.3390/su131810342
Asanok L, Kamyo T, Norsaengsri M, Yotapakdee T, Navakam S. Assessment of the Diversity of Large Tree Species in Rapidly Urbanizing Areas along the Chao Phraya River Rim, Central Thailand. Sustainability. 2021; 13(18):10342. https://doi.org/10.3390/su131810342
Chicago/Turabian StyleAsanok, Lamthai, Torlarp Kamyo, Monthon Norsaengsri, Teeka Yotapakdee, and Suwit Navakam. 2021. "Assessment of the Diversity of Large Tree Species in Rapidly Urbanizing Areas along the Chao Phraya River Rim, Central Thailand" Sustainability 13, no. 18: 10342. https://doi.org/10.3390/su131810342
APA StyleAsanok, L., Kamyo, T., Norsaengsri, M., Yotapakdee, T., & Navakam, S. (2021). Assessment of the Diversity of Large Tree Species in Rapidly Urbanizing Areas along the Chao Phraya River Rim, Central Thailand. Sustainability, 13(18), 10342. https://doi.org/10.3390/su131810342