Timber Based Integrated Techniques to Improve Energy Efficiency and Seismic Behaviour of Existing Masonry Buildings
Abstract
:1. Introduction
2. Integrated Seismic and Energy Retrofit Solutions
3. Numerical Analyses
3.1. Energy Performance Analyses
3.2. Mechanical Pushover Analyses
4. Results
4.1. Energy Performance
4.2. Mechanical Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission EU Buildings Factsheets. Available online: https://ec.europa.eu/energy/eu-buildings-factsheets_en (accessed on 19 July 2021).
- International Energy Agency (IEA). Net Zero by 2050-A Roadmap for the Global Energy Sector. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 19 July 2021).
- Sbrogiò, L.; Bevilacqua, C.; De Sordi, G.; Michelotto, I.; Sbrogiò, M.; Toniolo, A.; Tosato, C. Strategies for Structural and Energy Improvement in Mid-Rise Unreinforced Masonry Apartment Buildings. A Case Study in Mestre (Northeast Italy). Sustainability 2021, 13, 8819. [Google Scholar] [CrossRef]
- Pertile, V.; Stella, A.; De Stefani, L.; Scotta, R. Seismic and Energy Integrated Retrofitting of Existing Buildings with an Innovative ICF-Based System: Design Principles and Case Studies. Sustainability 2021, 13, 9363. [Google Scholar] [CrossRef]
- Giongo, I.; Schiro, G.; Piazza, M. On the Use of Timber-Based Panels for the Seismic Retrofit of Masonry Structures. In Proceedings of the 3rd International Conference on Protection of Historical Constructions, Lisbon, Portugal, 12 July 2017. [Google Scholar]
- Riccadonna, D.; Giongo, I.; Schiro, G.; Rizzi, E.; Parisi, M.A. Experimental Shear Testing of Timber-Masonry Dry Connections for the Seismic Retrofit of Unreinforced Masonry Shear Walls. Constr. Build. Mater. 2019, 211, 52–72. [Google Scholar] [CrossRef]
- Rizzi, E.; Giongo, I.; Riccadonna, D.; Piazza, M. Testing of irregular stone masonry strengthened with cross-laminated timber. In Proceedings of the 4th International Conference on Protection of Historical Constructions, Athens, Greece, 25–27 October 2021. [Google Scholar]
- Giongo, I.; Rizzi, E.; Riccadonna, D.; Piazza, M. On-Site Testing of Masonry Shear Walls Strengthened with Timber Panels. Proc. Inst. Civ. Eng.-Struct. Build. 2021, 174, 389–402. [Google Scholar] [CrossRef]
- Cassol, D.; Giongo, I.; Piazza, M. Numerical Study on Seismic Retrofit of URM Walls Using Timber Panels. In Proceedings of the 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Athens, Greece, 27 June 2021. [Google Scholar]
- Borri, A.; Sisti, R.; Corradi, M. Combined Reinforcement of Rubble Stone Walls with CLT Panels and Steel Cords. Struct. Build. 2021, 175, 359–371. [Google Scholar] [CrossRef]
- Pozza, L.; Marchi, L.; Trutalli, D.; Scotta, R. In-Plane Strengthening of Masonry Buildings with Timber Panels. Proc. Inst. Civ. Eng.-Struct. Build. 2021, 174, 345–358. [Google Scholar] [CrossRef]
- Lucchini, A.; Mazzucchelli, E.; Mangialardo, S.; Persello, M. Façadism and CLT Technology: An Innovative System for Masonry Construction Refurbishment. In Proceedings of the 4th IAHS World Congress on Housing—Sustainable Housing Construction, Funchal, Portugal, 16 December 2014. [Google Scholar]
- Iuorio, O.; Dauda, J.A. Retrofitting Masonry Walls against Out-Of-Plane Loading with Timber Based Panels. Appl. Sci. 2021, 11, 5443. [Google Scholar] [CrossRef]
- Sustersic, I.; Dujic, B. Seismic Strengthening of Existing Buildings with Cross Laminated Timber Panels. World 2012, 15, 19. [Google Scholar]
- Sustersic, I.; Dujic, B. Seismic Shaking Table Testing of a Reinforced Concrete Frame with Masonry Infill Strengthened with Cross Laminated Timber Panels. In Proceedings of the World Conference on Timber Engineering, WCTE 2014, Quebec, QC, Canada, 10 August 2014. [Google Scholar]
- Smiroldo, F.; Giongo, I.; Piazza, M. Seismic Retrofit of Masonry Infilled Frames by Using Timber Panel. In Proceedings of the 17th Word Conference on Earthquake Engineering, Sendai, Japan, 27 September 2021. [Google Scholar]
- Smiroldo, F.; Giongo, I.; Piazza, M. Use of Timber Panels to Reduce the Seismic Vulnerability of Concrete Frame Structures. Eng. Struct. 2021, 244, 112797. [Google Scholar] [CrossRef]
- Giaretton, M.; Ingham, J.; Dizhur, D. Timber Strong-Backs as Cost-Effective Seismic Retrofit Method for URM Buildings. In Proceedings of the NZSEE Conference, Wellington, New Zealand, 27 April 2017. [Google Scholar]
- Dizhur, D.Y.; Giaretton, M.; Giongo, I.; Ingham, J.M. Seismic Retrofit of Masonry Walls Using Timber Strong-Backs. SESOC J. 2017, 30, 30–44. [Google Scholar]
- Cassol, D.; Giongo, I.; Ingham, J.; Dizhur, D. Seismic Out-of-Plane Retrofit of URM Walls Using Timber Strong-Backs. Constr. Build. Mater. 2021, 269, 121237. [Google Scholar] [CrossRef]
- Guerrini, G.; Damiani, N.; Miglietta, M.; Graziotti, F. Cyclic Response of Masonry Piers Retrofitted with Timber Frames and Boards. Proc. Inst. Civ. Eng.-Struct. Build. 2021, 174, 372–388. [Google Scholar] [CrossRef]
- Valluzzi, M.R.; Saler, E.; Vignato, A.; Salvalaggio, M.; Croatto, G.; Dorigatti, G.; Turrini, U. Nested Buildings: An Innovative Strategy for the Integrated Seismic and Energy Retrofit of Existing Masonry Buildings with CLT Panels. Sustainability 2021, 13, 1188. [Google Scholar] [CrossRef]
- EN 338. Structural Timber–Strength Classes; European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- UNI 11470:2015. Discontinuous Roof-Synthetic, Breathable Membrane and Vapour Control Layer-Definition, Field of Application and Laying on Site; Italian National Unification Body: Milan, Italy, 2015. [Google Scholar]
- EN ISO 13788:2013. Hygrothermal Performance of Building Components and Building Elements-Internal Surface Temperature to Avoid Critical Surface Humidity and Interstitial Condensation-Calculation Methods; European Committee for Standardization: Brussels, Belgium, 2013. [Google Scholar]
- UNI 10349:2016. Heating and Cooling of Buildings-Climatic Data; Italian National Unification Body: Milan, Italy, 2016. [Google Scholar]
- UNI/TR 11552:2014. Opaque Envelope Components of Buildings-Thermo-Physical Parameters; Italian National Unification Body: Milan, Italy, 2014. [Google Scholar]
- Borri, A.; De Maria, A. WP1_1-1_2015UNIPG-Indice Di Qualità Muraria (IQM) e Correlazione Con Le Caratteristiche Meccaniche-Allegato 1-Linee Guida per La Compilazione Della Scheda IQM; ReLuis: Naples, Italy, 2017. [Google Scholar]
- EN ISO 6946:2018. Building Components and Building Elements-Thermal Resistance and Thermal Transmittance-Calculation Methods; European Committee for Standardization: Brussels, Belgium, 2018. [Google Scholar]
- EN ISO 13786:2017. Thermal Performance of Building Components-Dynamic Thermal Characteristics-Calculation Methods (ISO 13786:2017); European Committee for Standardization: Brussels, Belgium, 2017. [Google Scholar]
- EN ISO 10211:2018. Thermal Bridges in Building Construction-Heat Flows and Surface Temperatures-Detailed Calculations; European Committee for Standardization: Brussels, Belgium, 2018. [Google Scholar]
- THERM and User’s Manual; Lawrence Berkeley National Laboratory (LBNL): Berkeley, CA, USA, 2017.
- ABAQUS Computer Software and User’s Manual; Simulia; Dassault Systèmes: Providence, RI, USA, 2017.
- Lubliner, J.; Oliver, S.; Oñate, E. A Plastic-Damage Model for Concrete. Int. J. Solid Struct. 1989, 25, 299–326. [Google Scholar] [CrossRef]
- Lee, J.; Fenves, G.L. Plastic-Damage Model for Cyclic Loading of Concrete Structures. J. Eng. Mech. 1998, 124, 892–900. [Google Scholar] [CrossRef]
- Ministero delle Infrastrutture e dei Trasporti DECRETO 17 Gennaio 2018 Aggiornamento delle. In Norme Tecniche per le Costruzioni; Ministero delle Infrastrutture e dei Trasporti: Rome, Italy, 2018.
- Ministero delle Infrastrutture e dei Trasporti CIRCOLARE 21 Gennaio 2019, Istruzioni per l’applicazione dell’. Aggiornamento delle “Norme Tecniche per le Costruzioni”; Di cui al Decreto Ministeriale 17 Gennaio 2018; Ministero delle Infrastrutture e dei Trasporti: Rome, Italy, 2019.
- Lourenço, P.B.; João, M.P. Seismic Retrofitting Project: Recommendations for Advanced Modeling of Historic Earthen Sites; Getty Conservation Institute: Los Angeles, CA, USA; TecMinho–University of Minho: Guimarães, Portugal, 2018. [Google Scholar]
- EN 14279:2009. Laminated Veneer Lumber (LVL)-Definitions, Classification and Specifications; European Committee for Standardization: Brussels, Belgium, 2009. [Google Scholar]
- Johansen, K.W. Theory of Timber Connections. Int. Assoc. Bridge Struct. Eng. 1949, 9, 249–262. [Google Scholar]
- EN 1995-1-1:2014. Eurocode 5-Design of Timber Structures-Part 1-1: General-Common Rules and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- Hossain, A.; Danzig, I.; Tannert, T. Cross-Laminated Timber Shear Connections with Double-Angled Self-Tapping Screw Assemblies. J. Struct. Eng. 2016, 142, 04016099. [Google Scholar] [CrossRef]
- Piazza, M.; Sartori, T. Caratterizzazione Meccanica Attraverso Prove Monotone e Cicliche Dei Principali Dispositivi Di Connessione Utilizzati Negli Edifici Multipiano in Legno; ReLUIS 2015-PR4_Allegato_01-UR_UNITN; ReLuis: Naples, Italy, 2015. [Google Scholar]
Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.9 | 2.1 | 7.0 | 11.6 | 16.8 | 19.2 | 22.2 | 21.6 | 17.1 | 11.5 | 5.4 | 0.4 | |
20.0 | 20.0 | 20.0 | 20.8 | 23.4 | 24.6 | 25.0 | 25.0 | 23.5 | 20.7 | 20.0 | 20.0 |
Labelling Example | Terms | Description |
---|---|---|
CLT | CLT panel | |
LVL | LVL-X panel | |
SB | Strong-back | |
HY | Hybrid solution | |
c | Fibre-cement board | |
i | Insulation | |
a | Air cavity | |
v | Vapour control layer (internal solution) | |
t | Breathable and reflective membrane (external solution) |
CLT or LVL-X Panels | Strong-Back (80 × 45 mm) | Hybrid Solutions |
---|---|---|
ID Solution. | Elements - | N° Panel - | Panel THK [mm] | Insulation THK [mm] | Air Cavity THK [mm] | Plasterboard THK [mm] | +ΔTHK [mm] |
---|---|---|---|---|---|---|---|
CLT_1v | CLT | 1 | 60 | 0 | - | 12 | 73 |
CLT_1iv | CLT | 1 | 60 | 30 | - | 24 | 115 |
CLT_i1v | CLT | 1 | 60 | 30 | - | 12 | 103 |
CLT_1iav | CLT | 1 | 60 | 20 | 20 | 24 | 125 |
CLT_ia1v | CLT | 1 | 60 | 20 | 20 | 12 | 113 |
LVL_1v | LVL-X | 1 | 54 | - | - | 12 | 67 |
LVL_1iv | LVL-X | 1 | 54 | 30 | - | 24 | 109 |
LVL_i1v | LVL-X | 1 | 54 | 30 | - | 12 | 97 |
LVL_1iav | LVL-X | 1 | 54 | 20 | 20 | 24 | 119 |
LVL_ia1v | LVL-X | 1 | 54 | 20 | 20 | 12 | 107 |
LVL_1iv1 | LVL-X | 2 | 27 | 30 | - | 12 | 97 |
LVL_1ia1v | LVL-X | 2 | 27 | 20 | 20 | 12 | 107 |
SB_80v | LVL 45 × 80 | - | - | - | 80 | 24 | 105 |
SB_80iav | LVL 45 × 80 | - | - | 60 | 20 | 24 | 105 |
HY_1iav | LVL-X+80 × 45 | 1 | 54 | 30 | 15 | 24 | 124 |
HY_ia1v | LVL-X+80 × 45 | 1 | 54 | 30 | 15 | 12 | 112 |
HY_1ia1v | LVL-X+80 × 45 | 2 | 27 | 30 | 15 | 12 | 112 |
HY_1iavc | LVL-X+80 × 45 | 1 | 27 | 30 | 15 | 30 | 103 |
Materials | ρ [kg/m3] 1 | λ [W/(mK)] 2 | cp [J/(kgK)] 3 | μ [-] 4 | Sd [m] 5 |
---|---|---|---|---|---|
CLT panel | 420 | 0.120 | 1600 | 60 | - |
LVL panel | 530 | 0.130 | 2720 | 60 | - |
Aerogel panel | 230 | 0.015 | 1000 | 5 | - |
Wood fibre panel | 265 | 0.048 | 2100 | 5 | - |
EPS80 | 15 | 0.037 | 1450 | 30 | - |
EPS100 Graphite | 17 | 0.031 | 1450 | 50 | - |
Clay brick masonry | 1800 | 0.800 | 840 | 6 | - |
Limestone masonry | 2200 | 1.700 | 1000 | 200 | - |
Tuff masonry | 1600 | 0.550 | 1000 | 20 | - |
Plasterboard | 1000 | 0.250 | 2000 | 10 | - |
Fibre-cement board | 950 | 0.300 | 1000 | 40 | - |
Skim-coating | 950 | 0.310 | 950 | 13 | - |
Plaster | 1800 | 0.900 | 910 | 10 | - |
Vapour barrier | 1330 | 0.390 | 1700 | 3900 | |
Breathable membrane | 250 | 0.300 | 1800 | 67 | 0.02 |
Breathable and reflective membrane | 300 | 0.300 | 1800 | 100 | 0.05 |
Masonry | fc [MPa] | ft [MPa] | E [MPa] | G [MPa] | Gc [N/mm] | Gt [N/mm] |
---|---|---|---|---|---|---|
Clay brick | 2.600 | 0.075 | 1040 | 400 | 6.604 | 0.020 |
Limestone | 2.000 | 0.053 | 800 | 340 | 5.200 | 0.020 |
Tuff | 1.400 | 0.042 | 560 | 300 | 3.724 | 0.020 |
Connection | Ø [mm] | dy [mm] 1 | Kser [N/mm] 2 | dmax [mm] 3 | Fmax [kN] | du [mm] 4 | Fu [kN] |
---|---|---|---|---|---|---|---|
Hold-down | - | 8.92 | 5705 | 17.84 | 60.19 | 21.21 | 48.15 |
Angle bracket | - | 4.23 | 8479 | 6.89 | 41.03 | 7.40 | 32.83 |
Timber-to-timber (hybrid solutions) | 6 | 3.80 | 753 | 30.00 | 5.60 | - | - |
Panel-to-panel | 8 | 2.00 | 5100 | 14.00 | 6.00 | 16.00 | 0.10 |
Clay Brick | Tuff | Limestone | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
U [W/(m2K)] | Yie [W/(m2K)] | fd [-] | ΔT [h] | U [W/(m2K)] | Yie [W/(m2K)] | fd [-] | ΔT [h] | U [W/(m2K)] | Yie [W/(m2K)] | fd [-] | ΔT [h] | |
URM400 | 1.41 | 0.196 | 0.139 | 13.22 | 1.07 | 0.086 | 0.081 | 16.09 | 2.25 | 0.332 | 0.147 | 11.69 |
CLT_1v | 0.81 | 0.054 | 0.067 | 16.14 | 0.68 | 0.025 | 0.036 | 19.08 | 1.02 | 0.081 | 0.080 | 14.37 |
CLT_1iv | 0.30 | 0.011 | 0.035 | 19.60 | 0.28 | 0.005 | 0.017 | 22.57 | 0.33 | 0.016 | 0.048 | 17.71 |
CLT_i1v | 0.31 | 0.012 | 0.038 | 19.03 | 0.29 | 0.005 | 0.019 | 21.97 | 0.34 | 0.017 | 0.049 | 17.24 |
CLT_1iav | 0.36 | 0.013 | 0.037 | 19.09 | 0.33 | 0.006 | 0.019 | 22.07 | 0.40 | 0.020 | 0.051 | 17.21 |
CLT_ia1v | 0.37 | 0.015 | 0.041 | 18.49 | 0.34 | 0.007 | 0.021 | 21.43 | 0.41 | 0.021 | 0.053 | 16.72 |
LVL_1v | 0.86 | 0.052 | 0.060 | 17.07 | 0.72 | 0.024 | 0.033 | 20.02 | 1.12 | 0.082 | 0.073 | 15.26 |
LVL_1iv | 0.31 | 0.008 | 0.026 | 20.69 | 0.29 | 0.004 | 0.013 | 23.66 | 0.34 | 0.013 | 0.038 | 18.82 |
LVL_i1v | 0.32 | 0.009 | 0.027 | 20.37 | 0.30 | 0.004 | 0.014 | 23.31 | 0.35 | 0.012 | 0.035 | 18.58 |
LVL_1iav | 0.37 | 0.011 | 0.029 | 20.21 | 0.34 | 0.005 | 0.014 | 23.18 | 0.41 | 0.017 | 0.041 | 18.33 |
LVL_ia1v | 0.38 | 0.011 | 0.030 | 19.88 | 0.35 | 0.005 | 0.015 | 22.82 | 0.42 | 0.016 | 0.038 | 18.11 |
LVL_1iv1 | 0.32 | 0.011 | 0.033 | 19.62 | 0.30 | 0.005 | 0.016 | 22.62 | 0.35 | 0.016 | 0.047 | 17.67 |
LVL_1ia1v | 0.38 | 0.014 | 0.036 | 19.13 | 0.35 | 0.006 | 0.018 | 22.12 | 0.41 | 0.017 | 0.042 | 18.19 |
SB_80v | 1.05 | 0.094 | 0.089 | 14.85 | 0.85 | 0.043 | 0.051 | 17.74 | 1.46 | 0.145 | 0.099 | 13.21 |
SB_80iav | 0.18 | 0.006 | 0.036 | 19.85 | 0.17 | 0.003 | 0.018 | 22.80 | 0.19 | 0.009 | 0.049 | 18.03 |
HY_1iav | 0.30 | 0.008 | 0.026 | 20.80 | 0.28 | 0.003 | 0.012 | 23.78 | 0.32 | 0.012 | 0.038 | 18.93 |
HY_ia1v | 0.30 | 0.008 | 0.027 | 20.48 | 0.28 | 0.004 | 0.013 | 23.42 | 0.33 | 0.011 | 0.035 | 18.69 |
HY_1ia1v | 0.30 | 0.010 | 0.033 | 19.73 | 0.28 | 0.005 | 0.016 | 22.73 | 0.33 | 0.015 | 0.047 | 17.77 |
HY_1iavc | 0.32 | 0.013 | 0.041 | 17.78 | 0.30 | 0.006 | 0.020 | 20.78 | 0.35 | 0.020 | 0.058 | 15.83 |
Wood Fibre Panel | EPS 80 | EPS 100 Graphite | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
U [W/(m2K)] | Yie [W/(m2K)] | fd [-] | ΔT [h] | U [W/(m2K)] | Yie [W/(m2K)] | fd [-] | ΔT [h] | U [W/(m2K)] | Yie [W/(m2K)] | fd [-] | ΔT [h] | |
URM400 | 1.41 | 0.196 | 0.139 | 13.22 | 1.41 | 0.196 | 0.139 | 13.22 | 1.41 | 0.196 | 0.139 | 13.22 |
CLT_1iv | 0.52 | 0.021 | 0.041 | 19.23 | 0.48 | 0.021 | 0.043 | 18.30 | 0.44 | 0.018 | 0.042 | 18.41 |
CLT_i1v | 0.54 | 0.024 | 0.045 | 18.45 | 0.49 | 0.023 | 0.048 | 17.70 | 0.45 | 0.021 | 0.046 | 17.82 |
CLT_1iav | 0.54 | 0.023 | 0.043 | 18.86 | 0.50 | 0.022 | 0.044 | 18.20 | 0.48 | 0.021 | 0.043 | 18.29 |
CLT_ia1v | 0.55 | 0.027 | 0.048 | 18.01 | 0.52 | 0.025 | 0.049 | 17.59 | 0.49 | 0.023 | 0.048 | 17.68 |
LVL_1iv | 0.55 | 0.018 | 0.033 | 20.25 | 0.50 | 0.017 | 0.034 | 19.46 | 0.46 | 0.015 | 0.032 | 19.56 |
LVL_i1v | 0.56 | 0.020 | 0.035 | 19.74 | 0.51 | 0.018 | 0.036 | 19.12 | 0.47 | 0.016 | 0.034 | 19.25 |
LVL_1iav | 0.56 | 0.019 | 0.034 | 19.89 | 0.53 | 0.018 | 0.035 | 19.36 | 0.50 | 0.017 | 0.034 | 19.44 |
LVL_ia1v | 0.58 | 0.022 | 0.038 | 19.36 | 0.54 | 0.020 | 0.038 | 19.00 | 0.51 | 0.018 | 0.036 | 19.10 |
LVL_1iv1 | 0.56 | 0.022 | 0.040 | 19.25 | 0.51 | 0.021 | 0.042 | 18.38 | 0.47 | 0.019 | 0.040 | 18.48 |
LVL_1ia1v | 0.54 | 0.023 | 0.043 | 18.29 | 0.54 | 0.023 | 0.043 | 18.29 | 0.51 | 0.021 | 0.042 | 18.37 |
SB_80iav | 0.46 | 0.020 | 0.044 | 18.65 | 0.39 | 0.020 | 0.052 | 16.11 | 0.31 | 0.015 | 0.050 | 16.28 |
HY_1iav | 0.50 | 0.015 | 0.030 | 20.56 | 0.46 | 0.015 | 0.032 | 19.56 | 0.43 | 0.013 | 0.031 | 19.65 |
HY_ia1v | 0.52 | 0.017 | 0.033 | 20.02 | 0.47 | 0.016 | 0.034 | 19.24 | 0.44 | 0.014 | 0.033 | 19.35 |
HY_1ia1v | 0.52 | 0.019 | 0.038 | 19.51 | 0.47 | 0.019 | 0.040 | 18.48 | 0.44 | 0.017 | 0.039 | 18.56 |
HY_1iavc | 0.56 | 0.027 | 0.048 | 17.70 | 0.51 | 0.025 | 0.050 | 16.65 | 0.47 | 0.023 | 0.048 | 16.71 |
U [W/(m2K)] | Yie [W/(m2K)] | fd [-] | ΔT [h] | |
---|---|---|---|---|
URM250 | 3.26 | 0.575 | 0.176 | 9.71 |
CLT_1v | 0.95 | 0.186 | 0.196 | 11.41 |
CLT_1iv | 0.32 | 0.036 | 0.113 | 14.86 |
CLT_i1v | 0.33 | 0.040 | 0.123 | 14.30 |
CLT_1iav | 0.39 | 0.046 | 0.120 | 14.36 |
CLT_ia1v | 0.39 | 0.052 | 0.132 | 13.77 |
LVL_1v | 1.03 | 0.180 | 0.175 | 12.34 |
LVL_1iv | 0.33 | 0.028 | 0.086 | 15.95 |
LVL_i1v | 0.34 | 0.030 | 0.088 | 15.64 |
LVL_1iav | 0.40 | 0.037 | 0.092 | 15.47 |
LVL_ia1v | 0.41 | 0.039 | 0.096 | 15.16 |
LVL_1iv1 | 0.34 | 0.037 | 0.109 | 14.88 |
LVL_1ia1v | 0.41 | 0.047 | 0.116 | 14.39 |
SB_80v | 1.31 | 0.326 | 0.249 | 10.11 |
SB_80iav | 0.18 | 0.022 | 0.121 | 15.12 |
HY_1iav | 0.32 | 0.027 | 0.084 | 16.07 |
HY_ia1v | 0.32 | 0.028 | 0.087 | 15.75 |
HY_1ia1v | 0.32 | 0.034 | 0.108 | 14.99 |
HY_1iavc | 0.34 | 0.045 | 0.135 | 13.05 |
Installation Position | U [W/(m2K)] | ψ [W/(mK)] | Yie [W/(m2K)] | fd [-] | ΔT [h] | |||
---|---|---|---|---|---|---|---|---|
URM400 | - | 16.5 | 13.3 | 1.41 | 0.412 | 0.196 | 0.139 | 13.22 |
CLT_1v | inside | 17.8 | 15.4 | 0.81 | 0.229 | 0.054 | 0.067 | 16.14 |
CLT_1iv | inside | 19.2 | 18.3 | 0.30 | 0.150 | 0.011 | 0.035 | 19.60 |
CLT_i1v | inside | 19.2 | 17.4 | 0.31 | 0.176 | 0.012 | 0.038 | 19.03 |
LVL_1iv | inside | 19.2 | 18.3 | 0.32 | 0.146 | 0.008 | 0.026 | 20.69 |
LVL_i1v | inside | 19.2 | 17.4 | 0.32 | 0.189 | 0.009 | 0.027 | 20.37 |
SB_80iav | inside | 19.5 | 18.5 | 0.18 | 0.256 | 0.006 | 0.036 | 19.85 |
HY_1iav | inside | 19.2 | 18.3 | 0.30 | 0.232 | 0.010 | 0.026 | 20.80 |
HY_ia1v | inside | 19.2 | 17.9 | 0.30 | 0.246 | 0.008 | 0.027 | 20.48 |
HY_1ia1v | inside | 19.2 | 18.1 | 0.30 | 0.241 | 0.010 | 0.033 | 19.73 |
CLT_t1 | outside | 17.8 | 15.4 | 0.80 | 0.398 | 0.041 | 0.051 | 16.25 |
CLT_ti1 | outside | 19.0 | 17.7 | 0.30 | 0.324 | 0.008 | 0.026 | 19.12 |
LVL_ti1 | outside | 19.0 | 17.7 | 0.31 | 0.324 | 0.006 | 0.020 | 20.22 |
SB_t80ai | outside | 19.2 | 18.1 | 0.20 | 0.360 | 0.006 | 0.029 | 18.65 |
HY_tai1 | outside | 18.9 | 17.5 | 0.32 | 0.416 | 0.009 | 0.030 | 17.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busselli, M.; Cassol, D.; Prada, A.; Giongo, I. Timber Based Integrated Techniques to Improve Energy Efficiency and Seismic Behaviour of Existing Masonry Buildings. Sustainability 2021, 13, 10379. https://doi.org/10.3390/su131810379
Busselli M, Cassol D, Prada A, Giongo I. Timber Based Integrated Techniques to Improve Energy Efficiency and Seismic Behaviour of Existing Masonry Buildings. Sustainability. 2021; 13(18):10379. https://doi.org/10.3390/su131810379
Chicago/Turabian StyleBusselli, Matteo, Davide Cassol, Alessandro Prada, and Ivan Giongo. 2021. "Timber Based Integrated Techniques to Improve Energy Efficiency and Seismic Behaviour of Existing Masonry Buildings" Sustainability 13, no. 18: 10379. https://doi.org/10.3390/su131810379
APA StyleBusselli, M., Cassol, D., Prada, A., & Giongo, I. (2021). Timber Based Integrated Techniques to Improve Energy Efficiency and Seismic Behaviour of Existing Masonry Buildings. Sustainability, 13(18), 10379. https://doi.org/10.3390/su131810379