Integrating Ecosystem Service Values and Economic Benefits for Sustainable Land Use Management in Semi-Arid Regions in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Optimization of the Land Use Pattern
2.3.1. Scenario Development
2.3.2. Optimization of the Land Use Quantity Demands
2.3.3. Spatial Allocation for Land Use Quantity Demands
2.4. Ecological, Economic, and Comprehensive Benefit Evaluations
2.4.1. Ecological Benefit Evaluation
2.4.2. Economic Benefit Evaluation
2.4.3. Comprehensive Benefit Evaluation
3. Results
3.1. The Optimization Results of Land Use
3.2. The Ecological Benefits and Spatial Patterns under the Five Scenarios
3.3. The Economic Benefits and Spatial Patterns under the Five Scenarios
3.4. The Comprehensive Benefits and Spatial Patterns under the Five Scenarios
4. Discussion
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Geist, H.J. (Eds.) Land Use and Land-Cover Change: Local Processes and Global Impacts; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Lu, D.D.; Guo, L.X. Man-earth areal system—The core of geographical study—On the geographical thoughts and academic contributions of academician Wu Chuanjun. Acta Geogr. Sin. 1998, 2, 97–105. [Google Scholar]
- Tang, H.J.; Wu, W.B.; Yang, P.; Chen, Y.Q.; Verburg, P.H. Recent progresses of land use and land cover change (LUCC) models. Acta Geogr. Sin. 2009, 64, 456–468. [Google Scholar]
- Lambin, E.F.; Baulies, X.; Bockstael, N.; Fischer, G.; Krug, T. Land use and land-cover change (LUCC): Implementation strategy, International Geosph-Biosph. In Program, International Human Dimensions Programme on Global Environmental Change (IHDP); IGBP Secretariat: Stockholm/Bonn, Sweden, 1999. [Google Scholar]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Blaikie, P.; Brookfield, H. (Eds.) Land Degradation and Society; Routledge: London, UK, 2015. [Google Scholar]
- Barrow, C.J. Land Degradation: Development and Breakdown of Terrestrial Environments; Cambridge University Press: New York, NY, USA, 1991. [Google Scholar]
- Jin, S.Q.; Fang, Z. Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges. J. Resour. Ecol. 2018, 9, 50–58. [Google Scholar]
- Wang, J.A.; Xu, X.; Liu, P.F. Landuse and land carrying capacity in ecotone between agriculture and animal husbandry in northern China. Resour. Sci. 1999, 21, 19–24. [Google Scholar]
- Jiang, H.; Xu, X.; Guan, M.; Wang, L.; Huang, Y.; Jiang, Y. Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015. Sci. Total Environ. 2020, 718, 134871. [Google Scholar] [CrossRef]
- Guo, L.; Shan, N.; Zhang, Y.; Sun, F.; Liu, W.; Shi, Z.; Zhang, Q. Separating the effects of climate change and human activity on water use efficiency over the Beijing-Tianjin Sand Source Region of China. Sci. Total Environ. 2019, 690, 584–595. [Google Scholar] [CrossRef]
- Zhang, P.; Shao, G.; Zhao, G.; Le Master, D.C.; Parker, G.R.; Dunning, J.B.; Li, Q. China’s forest policy for the 21st century. Science 2000, 288, 2135–2136. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Jin, X.; Xu, W.; Gu, Z.; Yang, X.; Ren, J.; Fan, Y.T.; Zhou, Y. A new framework of land use efficiency for the coordination among food, economy and ecology in regional development. Sci. Total Environ. 2020, 710, 135670. [Google Scholar] [CrossRef]
- Shi, T.; Yang, S.; Zhang, W.; Zhou, Q. Coupling coordination degree measurement and spatiotemporal heterogeneity between economic development and ecological environment—Empirical evidence from tropical and subtropical regions of China. J. Clean. Prod. 2020, 244, 118739. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, X.; Guan, M.; Wang, L.; Huang, Y.; Liu, Y. Simulation of spatiotemporal land use changes for integrated model of socioeconomic and ecological processes in China. Sustainability 2019, 11, 3627. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Liu, J.; Zhan, J.; Zhao, T. Dynamic simulation on the spatio-temporal patterns of land use change in taibus county. Geogr. Res. 2004, 23, 147–156. [Google Scholar]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Jin, G.; Deng, X.; Chu, X.; Li, Z.; Wang, Y. Optimization of land-use management for ecosystem service improvement: A review. Phys. Chem. Earth 2017, 101, 70–77. [Google Scholar] [CrossRef]
- Liu, X.; Ou, J.; Li, X.; Ai, B. Combining system dynamics and hybrid particle swarm optimization for land use allocation. Ecol. Model. 2013, 257, 11–24. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, H.; Wang, L.; Guan, M.; Zhang, T.; Qiao, S. Major consequences of land-use changes for ecosystems in the future in the agro-pastoral transitional zone of Northern China. Appl. Sci. 2020, 10, 6714. [Google Scholar] [CrossRef]
- Ullman, E. A Theory of location for cities. Am. J. Sociol. 1941, 46, 853–864. [Google Scholar] [CrossRef]
- North, D.C. Location theory and regional economic growth. J. Political Econ. 1955, 63, 243–258. [Google Scholar] [CrossRef]
- Christaller, W. Die Zentralen Orte in Suddeutschland: Eine Okonomisch-Geographische Untersuchung Uber die GE-setzmaBigkeit der Verbreitung der Siedlungen mit Stadtischen Funktionen. Ph.D. Thesis, Erlangen, Gustav Fischer, Jena, Germany, 1933. [Google Scholar]
- George, H. An Overview of Land Evaluation and Land Use Planning at FAO; FAO: Rome, Italy, 2005. [Google Scholar]
- FAO. A Framework for Land Evaluation Rome; Food and Agriculture Organization of the United Nation: Rome, Italy, 1976. [Google Scholar]
- Purnell, M.F. Application of the FAO framework for land evaluation for conservation and land use planning in sloping areas: Potentials and constraints. In Land Evaluation for Land Use Planning and Conservation on Sloping Areas; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1986; Volume 40, pp. 17–31. [Google Scholar]
- Ahlqvist, O. In search of classification that supports the dynamics of science: The FAO land cover classification system and proposed modifications. Environ. Plan. B Plan. Des. 2008, 35, 169–186. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, S.; Jalili, K.; Nikkami, D. Land use optimization in watershed scale. Land Use Policy 2009, 26, 186–193. [Google Scholar] [CrossRef]
- Wu, J.; Hobbs, R. Key issues and research priorities in landscape ecology: An idiosyncratic synthesis. Landsc. Ecol. 2002, 17, 355–365. [Google Scholar] [CrossRef]
- Liu, Y.S. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Wang, D. Optimization of county-level land resource allocation through the improvement of allocation efficiency from the perspective of sustainable development. Int. J. Environ. Res. Public Health 2018, 15, 2638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligmann-Zielinska, A.; Church, R.L.; Jankowski, P. Spatial optimization as a generative technique for sustainable multiobjective land-use allocation. Int. J. Geogr. Inf. Sci. 2008, 22, 601–622. [Google Scholar] [CrossRef]
- Aerts, J.C.J.H.; Eisinger, E.; Heuvelink, G.B.M.; Stewart, T.J. Using linear integer programming for multi-site land-use allocation. Geogr. Anal. 2003, 35, 148–169. [Google Scholar] [CrossRef]
- Cao, K.; Huang, B.; Wang, S.; Lin, H. Sustainable land use optimization using boundary-based fast genetic algorithm. Comput. Environ. Urban Syst. 2012, 36, 257–269. [Google Scholar] [CrossRef]
- He, C.; Shi, P.; Chen, J.; Li, X.; Pan, Y.; Li, J.; Li, Y. Research on land use scenario model based on system dynamics model and cellular automata model. Sci. China D Earth Sci. 2005, 35, 464–473. [Google Scholar]
- Wu, J.; Tu, J.; Yan, X.; Zhou, Y. Study on the coupling mechanism between urban land use benefits and urbanization in China. Urban Stud. 2011, 8, 155. [Google Scholar] [CrossRef]
- Pannell, D.J. Public benefits, private benefits, and policy mechanism choice for land-use change for environmental benefits. Land Econ. 2008, 84, 225–240. [Google Scholar] [CrossRef]
- Murdiyarso, D.; van Noordwijk, M.; Wasrin, U.; Tomich, T.; Gillison, A. Environmental benefits and sustainable land-use options in the jambi transect, Sumatra. J. Veg. Sci. 2002, 13, 429–438. [Google Scholar] [CrossRef]
- Bertaud, A.; Malpezzi, S. Measuring the costs and benefits of urban land use regulation: A simple model with an application to Malaysia. J. Hous. Econ. 2011, 10, 393–418. [Google Scholar] [CrossRef] [Green Version]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Zurek, M.B. Millennium Ecosystem Assessment, Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Millennium Ecosystem Assessment Board. Ecosystems and Human Well-Being: Current State and Trends. In Millennium Ecosystem Assessment; Global Assessment Reports; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Jing, X.; He, J. The relationship between biodiversity, ecosystem multi functionality and multi service ability: Literature overview and research advances. Chin. J. Plant. Ecol. 2021, 45. [Google Scholar]
- Zhang, K.; Gao, J.; Zou, C.; Lin, N.; Yu, D.; Cao, B.; Wang, Y. Expansion of protected area networks integrating eco-system service and social-ecological coordination. Glob. Ecol. Conserv. 2020, 24, e01298. [Google Scholar] [CrossRef]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.-E.; et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Van Den Belt, M. The value of the world’s ecosystem services and natural capital. Nature 1998, 25, 3–15. [Google Scholar]
- Costanza, R.; De Groot, R.; Sutton, P.; Van Der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 189–196. [Google Scholar]
- Yang, J.; Wang, L. Means of eco-benefit evaluation of returning farmland to woodland. China Land Sci. 2003, 17, 54–58. [Google Scholar]
- Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Nelson, E.; Ennaanay, D.; Wolny, S.; Sharp, R. Invest 2.1 Beta User’s Guide. In The Natural Capital Project; The Natural Capital Project: Stanford, CA, USA, 2011. [Google Scholar]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Alonso, W. Location and land use toward a general theory of land rent. Location and land use. In Toward a General Theory of Land Rent; Harvard University: Cambridge, MA, USA, 1964. [Google Scholar]
- Liu, Y.S. Analysis on relativity of land location and land benefit in city. J. Shaanxi Norm. Univ. Nat. Sci. Ed. 1995, 23, 95–100. [Google Scholar]
- Jiao, Y.F. Probing into the estimation of the economic benefit of urban land of chongqing. J. Chongqing Norm. Univ. Nat. Sci. Ed. 2006, 23, 76–96. [Google Scholar]
- Gong, J.; Liu, Y.; Zhang, L. The optimal allocation of land use and its potential appraisal in guangzhou city. Acta Geogr. Sin. 2010, 65, 1391–1400. [Google Scholar]
- Zhang, Z.G.; Gao, J. Analysis of the economic efficiency and ecological efficiencyof landuse and discussion of landuse model. China Popul. Resour. Environ. 2002, 14, 104–107. [Google Scholar]
- Wang, R.; Zhang, G.L. The evaluation of urban land use efficiency in Harbin city. Nat. Resour. J. Harbin Norm. Univ. 2010, 26, 105–109. [Google Scholar]
- Ouyang, Z.; Song, C.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.; Ruckelshaus, M.; Shi, F.; Xiao, Y.; et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Liu, Y.; Yu, Z.; Verburg, P.H. Progress in spatial simulation of land use change-CLUE-s model and its application. Progress Geogr. 2004, 23, 63–71. [Google Scholar]
- Verburg, P.H.; Dearing, J.A.; Dyke, J.G.; Van Der Leeuw, S.; Seitzinger, S.; Steffen, W.; Syvitski, J. Methods and approaches to modelling the Anthropocene. Glob. Environ. Chang. 2016, 39, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, L.; He, L.; Men, M. Multi-scenario simulation of land use structure based on dual combined models. Acta Ecol. Sin. 2016, 36, 5391–5400. [Google Scholar]
- Xu, X.; Li, X.; Xiao, C.; Ou, M. Land use layout optimization under different scenarios by using the CLUE-S model. Acta Ecol. Sin. 2016, 36, 5401–5410. [Google Scholar]
- Zhang, Y.; Zhao, S.; Verburg, P.H. CLUE-S and its application for simulating temporal and spatial change of land use in Naiman Banner. J. Nat. Resour. 2013, 18, 310–318. [Google Scholar] [CrossRef]
- Wang, A.; Zhu, W.; Jing, L.I.; Chen, Y. Measurement of ecosystem service value based on remote sensing—A case study in inner Mongolia, China. Sci. Geogr. Sin. 2007, 27, 325–330. [Google Scholar]
- Li, Y. Spatial Optimization for Land Use in North China under Settlement Constraint—A Case Study in Taips County in Inner Mongolia. Master’s Thesis, Beijing Normal University, Beijing, China, 2011. [Google Scholar]
- Jiang, L.; Xia, X.U.; Liu, Y.; Li, X.U.; Tian, Y. Evaluation of Ecosystem Service Value based on Land Use-Terrestrial Eco-System Coupled Model. In A Case Study from the Farming-Grazing Transitional Zone of Northern China; Tianjin Agricultural Sciences: Tianjin, China, 2014; Volume 20, pp. 74–81. [Google Scholar]
- Xia, X.U.; Liu, H.; Gao, Q. Dynamic simulation on the optimal patterns of land use change for the farming-pastoral zone in North China. Prog. Geogr. 2008, 27, 80–85. [Google Scholar]
- Hu, Y. Responces of Ecosystem NPP and SOC to Climate and Land Use Changes in Taipusi County. Master’s Thesis, Beijing Normal University, Beijing, China, 2012. [Google Scholar]
- Zhang, K.X. Evaluation on the comprehensive benefits of cultivated land use of counties in harbin. J. Anhui Agric. Sci. 2012, 40. [Google Scholar]
- Daly, H.E. On wilfred beckerman’ s critique of sustainable development. Env. Values 1995, 4, 49–55. [Google Scholar] [CrossRef]
- Holland, A. Substitutability: Or, why strong sustainability is weak and absurdly strong sustainability is not absurd. In Valuing Nature? Ethics, Economics and the Environment; Foster, J., Ed.; Routledge: London, UK, 1997; pp. 119–134. [Google Scholar]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Xu, X.; Gao, Q.; Peng, C.; Cui, X.; Liu, Y. State key laboratory of earth face and resource ecology, Integrating global socioeconomic influence into regional land use change model for China. Front. Earth Sci. 2014, 8, 81–92. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, P.; Song, H. Impact of urban morphology on outdoor air temperature and microclimate optimization strategy base on Pareto optimality in Northeast China. Build. Environ. 2020, 180, 107035. [Google Scholar] [CrossRef]
- Verstegen, J.A.; Jonker, J.G.G.; Karssenberg, D.; van der Hilst, F.; Schmitz, O.; de Jong, S.; Faaijd, A. How a Pareto frontier complements scenario projections in land use change impact assessment. Environ. Model. Softw. 2017, 97, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.Y.; Huang, J.; Li, S.C. Optimal allocation of land use types in the Beijing-Tianjin-Hebei urban agglomeration based on ecological and economic benefits trade-offs. Prog. Geogr. 2019, 38, 26–37. [Google Scholar]
- Hu, X.; Liu, L.Y.; Yan, P.; Meng, X.L. The effect of different soil surface on wind erosion in Taipusi County, Inner Mongolia. Res. Soil Water Conserv. 2006, 13, 116–119. [Google Scholar]
- Hao, H.; Li, X. Agricultural land use intensity and its determinants in ecologically-vulnerable areas in North China: A case study of Taipusi County, Inner Mongolia autonomous region. J. Resour. Ecol. 2011, 2, 117–125. [Google Scholar]
- Li, C.; Zhang, F.R.; Song, N.P.; Kong, X.B.; Chen, H.W. Discussion on theory and method of optimal regional allocation of land use structure. Geogr. Geo-Inf. Sci. 2003, 19, 52–55. [Google Scholar]
- Dang, A.N.; Kawasaki, A. Integrating biophysical and socio-economic factors for land-use and land-cover change projection in agricultural economic regions. Ecol. Model. 2017, 344, 29–37. [Google Scholar] [CrossRef]
- Lindberg, K. Policies for Maximizing Nature Tourism’s Ecological and Economic Benefits; World Resources Institute: Washington, DC, USA, 1991. [Google Scholar]
- Münier, B.; Birr-Pedersen, K.; Schou, J. Combined ecological and economic modelling in agricultural land use scenarios. Ecol. Model. 2004, 174, 5–18. [Google Scholar] [CrossRef]
Benefit Coefficients (Cj,k) | Cropland (j = 1) (CNY/ha) | Woodland (j = 2) (CNY/ha) | Grassland (j = 3) (CNY/ha) |
---|---|---|---|
Ecological benefit coefficients (k = 1 or k = 3) | 1119 | 2981.2 | 1258.38 |
Economic benefit coefficients (k = 2 or k = 3) | 3056.5 | 791.97 | 1809.82 |
Comprehensive benefit coefficients (k = 3) | 2087.75 | 1887 | 1534 |
Land Use Types | Constraint Condition | Area Interval (%) | Description |
---|---|---|---|
Cropland | Cropland land retention | (26.73, 30.34) | In accordance with the provisions of basic farmland protection. |
Woodland | Political constraint | (18.02, 22.91) | According to the policy of returning farmland to forestland/grassland in the Taipusi Banner. |
Grassland | Political constraint | (35.33, 47.82) | According to the policy of returning farmland to forestland/grassland in the Taipusi Banner. |
- | Mathematical model rule | ≥0 | The figure of the land use area cannot be negative. |
- | Total agricultural land area | 100 | The sum of all types of land area is equal to the current land use area. |
Description | Proportion of Land Use Types (%) | Structure | ||||
---|---|---|---|---|---|---|
Cropland | Forestland | Grassland | Other Use (Bare Land) | |||
Sc1 | Ecologically optimal scenario | 26.73 | 22.91 | 37.87 | 12.49 | 1.17:1:1.65:0.55 |
Sc2 | Economically optimal scenario | 30.34 | 18.02 | 39.15 | 12.49 | 1.68:1:2.17:0.69 |
Sc3 | Comprehensively optimal scenario | 30.34 | 21.86 | 35.33 | 12.48 | 1.39:1:1.62:0.57 |
Sc4 | Status quo | 27.80 | 18.38 | 39.17 | 14.65 | 1.51:1:2.13:0.80 |
Sc5 | Projected scenario | 26.73 | 22.91 | 35.33 | 15.03 | 1.17:1:1.54:0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Xu, X.; Wang, L.; Zhang, T. Integrating Ecosystem Service Values and Economic Benefits for Sustainable Land Use Management in Semi-Arid Regions in Northern China. Sustainability 2021, 13, 10431. https://doi.org/10.3390/su131810431
Jiang H, Xu X, Wang L, Zhang T. Integrating Ecosystem Service Values and Economic Benefits for Sustainable Land Use Management in Semi-Arid Regions in Northern China. Sustainability. 2021; 13(18):10431. https://doi.org/10.3390/su131810431
Chicago/Turabian StyleJiang, Honglei, Xia Xu, Lingfei Wang, and Tong Zhang. 2021. "Integrating Ecosystem Service Values and Economic Benefits for Sustainable Land Use Management in Semi-Arid Regions in Northern China" Sustainability 13, no. 18: 10431. https://doi.org/10.3390/su131810431
APA StyleJiang, H., Xu, X., Wang, L., & Zhang, T. (2021). Integrating Ecosystem Service Values and Economic Benefits for Sustainable Land Use Management in Semi-Arid Regions in Northern China. Sustainability, 13(18), 10431. https://doi.org/10.3390/su131810431