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Abstract: In semi-arid tropics, sugarcane yield and quality are affected by deficiencies in soil nutrients,
including potassium and calcium. We examined the effects of two different potassium fertilizers,
a traditional muriate of potash (MOP) and polyhalite (which contains potassium and calcium), on
sugarcane growth, yield, and quality. Experimental treatments compared a control 0 kg K ha−1 (T1) to
potassium applied as MOP only at 80 kg K ha−1 (T2) and at 120 kg K ha−1 (T3), and potassium applied
as an equal split of MOP and polyhalite at 80 kg K ha−1 (T4) and at 120 kg K ha−1 (T5). Relative
to the control the potassium-enhanced treatments had improved rates of key growth parameters,
and of cane yields, which were 4.4, 6.2, 8.2, and 9.9% higher in T2, T3, T4,, and T5, respectively, than
in T1. Regardless of fertilizer used, potassium applied at 80 kg K ha−1 achieved the highest sugar
purity and commercial cane sugar content. All potassium fertilizer treatments had reduced (although
non-significant) incidences of three key sugarcane insect pests. The economic benefits of polyhalite
were reduced due to its higher cost relative to MOP. Combining MOP and polyhalite equally to
achieve an application rate of 80 kg K ha−1 is recommended to enhance sugarcane growth and yield.

Keywords: muriate of potash; polyhalite; sugarcane; potassium fertilizer; B:C ratio

1. Introduction

Sugarcane (Saccharum spp.) is an important industrial crop, grown in tropical to
sub-tropical climates, between 36.7◦ north and 31.0◦ south of the Equator [1–3]. Sugarcane
is grown for both sugar extraction (meeting 75% of global sugar requirements) and for
ethanol production [4–6]. In the Indian Punjab, sugarcane is cultivated on 91,000 hectares,
with an average cane yield of 80 tons per hectare and a sugar recovery of 9.59% [7]. Factors
that limit yield and quality in this region are the poor use of nutrients, water stress,
incidences of insect pests and disease, and poor-quality seed [8]. Of these, the unbalanced
use of nutrients, and in particular of fertilizer potassium (potash), is a key challenge to
achieving the potential yield of high-quality sugarcane [9]. Estimates suggest that for every
100 tons of sugarcane produced, inputs of 208 kg ha−1 nitrogen, 53 kg ha−1 phosphorus,
280 kg ha−1 potassium, and 30 kg ha−1 sulfur are required, along with smaller amounts of
other elements [10].

Sugarcane grown in the Indian Punjab is produced with low applications of potassium
(K) fertilizers on soils that are already inherently low in potassium, and also in calcium,
magnesium, and sulfur. These deficiencies result in reductions in both sugarcane yield and
quality. Potassium is necessary for the lignification of vascular bundles, reducing the risk of
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lodging and susceptibility to disease. In soil, potassium exists in four different pools: soil-
soluble K (0.1–0.2% of total in-soil K), exchangeable K (1–2%), non-exchangeable K (1–10%),
and mineral K (90–98%). When the equilibrium between these pools is disturbed by the
removal or addition of potassium, potassium ions flow from one pool to another [11].
Equilibration of the soil-soluble and exchangeable potassium pools is quick, usually taking
only a few hours. Some soils lose a large amount of potassium by leaching after being
displaced from the clay exchange sites during flooding. In soils with low cation exchange
capability, K leaching is a major issue [12,13]

To meet crop potassium requirements, muriate of potash (MOP) has traditionally
been used in agriculture [6]. In sugarcane cultivation, the optimal dose of MOP has
not been standardized [6,9]. Soils under continuous sugarcane production are often de-
ficient in other nutrients as well as potassium. A multi-nutrient fertilizer, “polyhalite”
(K2Ca2Mg(SO4)4·2H2O) contains potassium (14% K2O), calcium (17% CaO), magnesium
(6% MgO) and sulfur (48% SO3) [14]. Polyhalite is mined 1200 m below the Earth’s sur-
face, in the North Sea, along the northeastern coast of the United Kingdom [15], and has
lower environmental impacts than other fertilizers [16]. Polyhalite releases nutrients more
slowly than traditional fertilizers [17], which may contribute to increased fertilizer use
efficiency [18].

The efficacy of polyhalite has been examined for maize (Zea mays, L.) [19,20]; sorghum
(Sorghum bicolor, L.) [21]; kiwifruit (Actinidia deliciosa) [22]; potato (Solanum tuberosum) [15];
tomato (Solanum lycopersicum) [23]; cabbage (Brassica oleracea var. capitata) [24]; and mus-
tard (Brassica) [25]. Relative to fertilizer potassium in other forms, e.g., potassium chloride
(KCl), polyhalite has been shown to increase the duration over which soil potassium is
available to plants [26]. The effectiveness of polyhalite relative to conventional MOP has
not, until now, been evaluated for semi-arid tropical sugarcane (Saccharum officinarum)
cultivation in India [27].

Polyhalite supplies calcium (Ca), which is required for plant membrane stability,
cell integrity, cell division, and elongation [28–30], as well as various signal transduction
pathways and activation [28–31]. Further, as Ca be moved in plants through xylem sap,
canes cannot remobilize calcium from older tissues and therefore the importance of a
source of calcium fertilizer, such as polyhalite, is high in the Ca-deficient soils on which
sugarcane is grown in the Indian Punjab. Magnesium (Mg), which is also supplied by
polyhalite, is required for plant photosynthesis and glucose partitioning [32–34] which is
also reported being significantly higher SPAD readings. Sulfur (S) contributes to increased
crop yields [35,36] by improving the effectiveness of nitrogen fertilizers [37].

To sustainably increase sugarcane yield and quality, a balanced use of nutrients is
necessary; ignorance of the appropriate nutrient balance is likely to reduce crop yields and
deplete soil health [3,6]. Potassium fertilizer is important for the metabolic and physiologi-
cal activity within sugarcane plants: potassium acts as a catalyst of many enzymes, controls
stomatal openings, translocates plant resources throughout the entire plant, reduces the
incidence and severity of attacks by insect pests, promotes root growth, and improves
the nutrient-, pesticide- and water-use efficiencies while reducing the inputs required to
produce a crop [8,9]. When potassium is deficient, translocation of photosynthates [38] and
their movement throughout the whole sugarcane plant are severely affected [39].

This research compared the performance of sugarcane plants under MOP and the
multi-nutrient fertilizer polyhalite on a potassium- and calcium-deficient soil in the Indian
Punjab. Field experiments were conducted at the experimental farm of the Punjab Agricul-
tural University Regional Research Station at Kapurthala, Punjab. We examined different
applications of MOP and polyhalite to determine: (1) the optimal fertilizer potassium
doses for improved sugarcane performance; (2) the incidence of insect-pest attacks under
different fertilizer treatments; and (3) the benefit-to-cost (B:C) ratio under each treatment.
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2. Material and Methods
2.1. Experimental Site

Experiments were conducted from March 2020 to March 2021 at the experimental farm
of the Punjab Agricultural University Regional Research Station at Kapurthala, Punjab,
31◦23.032′ N, and 75◦21.647′ E, and altitude of 225 m above mean sea level (Figure 1).
The sugarcane crop was established in March 2020.
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Figure 1. The experimental location is in Kapurthala, Punjab (Source: Google Earth, Alphabet Company).

Daily climate data including maximum and minimum temperatures, rainfall, and
pan evaporation were measured at the meteorological station near the experimental site.
Annual class A pan evaporation was 1320.5 mm, average maximum air temperatures
ranged between 19.2–37.5 ◦C, and average minimum air temperatures between 7.0–27.6 ◦C
(Figure 2A,B). Maximum rainfall (969.5 mm) was received on 46 rainy days in July and
August 2020, while least rainfall (0 mm) occurred in October 2020. During the dry season
(December 2020 to February 2021), a total of 88 mm rainfall was recorded (Figure 2C).
During the sugarcane growing season, the average pan evaporation was 102 mm, with a
maximum (183 mm) in June 2020 and a minimum (30 mm) in January 2021 (Figure 2D).

2.2. Soil Characteristics

Representative, replicated soil samples were collected from the site using standard
procedures [40]. Soil analysis showed that the experimental site was a sandy loam (sand
65–68%, clay 11–3%), neutral to slightly alkaline, non-saline, and with the topsoil (0–15 cm
depth) low in potassium, calcium, and soil organic carbon, and high in phosphorus and
magnesium (Table 1) Magnesium and sulfur (other nutrients within polyhalite fertilizer)
are not limiting to sugarcane in the soil of the experimental site. There was no significant
difference in soil properties across the experimental site.
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Figure 2. Minimum temperature (◦C; (A)), maximum temperature (◦C; (B)), rainfall (mm; (C)) and class A pan evaporation
(mm; (D)) during the experimental period.

Table 1. Major soil properties at 0–15 cm depth at the experimental site.

Soil Properties Values

Sand (%) 64.9
Clay (%) 11.5
pH (2:1) 8.64

EC (ds m−1) 0.20
◦C (%) 0.34

Available nitrogen (Kg ha−1) 34.6
Available phosphorus (Kg ha−1) 54.2
Available potassium (Kg ha−1) 135.5

Available magnesium (ppm) 553.5
Available calcium (ppm) 140.0
Bulk density (Mg m−3) 1.65

2.3. Irrigation Water quality

Groundwater at the experimental site was at a depth of 26 m. Replicates of the
irrigation water used on the crop were analyzed to determine their quality, with the results
shown in Table 2. The water used for irrigating the canes was of good quality.

Table 2. Parameters of irrigation water quality at the experimental site.

Replications
Ca2+ + Mg2+ Cl−1 Residual EC CO3−2 HCO3−

(meq L−1) (meq L−1) NaHCO3 (ds m−1) (meq L−1) (meq L−1)

R1 3.6 0.6 0 0.48 0 3.6
R2 3.7 0.7 0 0.5 0 3.8
R3 3.6 0.9 0 0.52 0 3.7

Mean 3.6 0.7 0 0.5 0.0 3.7
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2.4. Treatments and Experimental Design

All the plots received the locally recommended dose (RDF) of non-potassium fertilizers [7].
Potassium fertilizer was applied as muriate of potash (MOP), or as a combination of
MOP and the commercial preparation polyhalite (K2Ca2Mg(SO4)4·2H2O) according to the
following treatments:

T1: RDF non-K fertilizers + 0 kg K2O ha−1;
T2: RDF non-K fertilizers + 80 kg K2O ha−1 as MOP;
T3: RDF non-K fertilizers + 120 kg K2O ha−1 as MOP;
T4: RDF non-K fertilizers + 80 K2O ha−1 half applied as MOP and half as polyhalite;
T5: RDF non-K fertilizers + 120 K2O ha−1 half applied as MOP and half as polyhalite.

The treatments are summarized in Table 3.

Table 3. Fertilizer used in each experimental treatment.

Treatment Major Non-K
Fertilizer (%)

Potassium Fertilizer

Polyhalite (%) Polyhalite (kg
K2O ha−1) MOP (%) MOP

(kg K2O ha−1)

T1 100 0 0 0 0
T2 100 0 0 66 80
T3 100 0 0 100 120
T4 100 33 40 33 40
T5 100 50 60 50 60

Treatments were laid out in a randomized block design in plots 6 m × 4.5 m (i.e.,
27 m2), with three replicates in each treatment. The mid-long duration sugarcane culti-
var CoPb 93, which is a common variety grown in the Indian Punjab, was sown at 75
cm row spacing on 6 April 2020 in soils that were deficient in potassium and calcium.
Best agronomic practices for sugarcane cultivation and insect-pest control were followed,
using recommendations from Punjab Agricultural University, Ludhiana [7].

2.5. Data Collection and Calculations

The germination percentage of the sown setts was counted in each plot 45 days after
sowing (DAS) the crop, following the recommended approach [6,9].

The number of tillers was assessed at 200 and 329 DAS by counting the total number
of single plant tillers in a randomly selected 5 m2 area within each treatment plot [6].

The number of millable sugarcane stalks was recorded at 334 DAS. Well-matured
canes fit for milling were visually assessed and counted from within the total plot area, and
expressed as thousands per hectare [6,9].

Five randomly selected sugarcane stalks were tagged in each plot. Of these stalks, the
shoot length from the soil surface top the top growing point was measured at 113, 127, 152,
and 198 DAS using a long rule.

The cane diameter of the five randomly selected sugarcane stalks was measured at 99,
152, 179, and 262 DAS using Vernier calipers. The mean value of the stalk diameter at the
top, middle, and bottom was calculated to determine average cane stalk diameter [6,9].

The total number of internodes on each of the five randomly selected sugarcane stalks
was counted at 152, 200, 261, and 297 DAS in each plot and averaged for a value in each
treatment plot.

Leaf chlorophyll concentration was measured at 219, 267, and 298 DAS using a
SPAD-502+ chlorophyll meter.

The weight of all sugarcane stalks in each treatment plot was measured at harvest and
expressed as cane yield in tons per hectare.
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2.6. Sugarcane Quality Parameters

Five randomly selected sugarcane stalks were harvested from each experimental plot
in the 10th and 12th months after planting. A cane-crusher was used to extract juice, which
was analyzed for quality following standard methods [41].

Brix and the percentage of sucrose in the cane juice were measured using a digital
refractometer following the procedure outlined in [41]. The percentage commercial cane
sugar (CCS) content was calculated using the equation:

CCS (%) = [Sucrose % − (Brix % − Sucrose %) × 0.4] × 0.74 (1)

In Equation (1), 0.4 and 0.74 are the multiplication and crusher factors, respectively.
Using the cane yield and percentage CCS content, the CCS content in tons per hectare

was calculated as follows:

CCS (t ha−1) = [CCS (%) × sugarcane yield (t ha−1)]/100 (2)

2.7. Incidence of Insect-Pests

Three key sugarcane insect pests which adversely affect yield quality and quantity
were visually monitored: early shoot borer (Chilo infuscatellus), top borer (Scirpophaga
excerptalis) and stalk borer (Chilo auricilius). The top borer and early shoot borer populations
in each treatment plot were recorded in June, 60 DAS. At harvesting, the population of
stalk borer in 100 plants in each plot was recorded.

2.8. Benefit-to-Cost Ratio of Additional Fertilizer

The calculation of the benefit-to-cost (B:C) ratio used the costs of the applied MOP
and polyhalite, and the minimum support price (MSP) of sugarcane cane [6,9,42]. The B:C
ratio was calculated using the equation:

B:C ratio = Economic benefit from additional K (INR ha−1)/Cost of additional K (INR ha−1) (3)

2.9. Statistical Analysis

The online OPSTAT program developed by Chaudhary Charan Singh of Haryana
Agricultural University, Hisar, India, was used to analyze cane yield and quality data.
Statistical significance was inferred when p ≤ 0.05. R was used to analyze correlations
between different quality parameters in the experimental treatments [43].

3. Results
3.1. Growth and Yield Parameters

Germination, cane height, cane width, the number of internodes per plant, the number
of millable canes, the number of tillers per plant, the leaf-chlorophyll concentration, and the
cane yield were all higher in experimental treatments which received potassium fertilizer
(T2–T5) than in the control (T1), regardless of the type of potassium fertilizer applied
(Tables 4 and 5).

Table 4. Germination, sugarcane stalk height, and sugarcane stalk diameter under fertilizer treatments.

Treatment

Germination Sugarcane Stalk Height (cm) Sugarcane Stalk Diameter (cm)

35 DAS 113 DAS 127
DAS 152 DAS 198 DAS 99 DAS 152 DAS 179 DAS 262

DAS

T1 40.9d 101.6a 115.4c 175.2b 206.4a 2.27b 2.47c 2.51d 2.75c
T2 46.1c 103.8a 119.9bc 176.5b 211.5a 2.34b 2.53bc 2.54c 2.79bc
T3 50.8b 106.7a 122.4ab 179.1b 212.1a 2.39b 2.56ab 2.57b 2.81b
T4 54.4a 107.9a 127.0a 182.1ab 216.2a 2.56a 2.63a 2.61a 2.88a
T5 55.2a 111.9a 127.4a 187.4a 217.3a 2.58a 2.60ab 2.62a 2.89a

F-test (p ≤ 0.05) 2.36 NS 6.48 7.69 NS 0.18 0.78 0.02 0.05
SE (±) 0.71 2.22 1.96 2.32 2.96 0.053 0.005 0.005 0.015
CV (%) 2.48 3.61 2.80 2.20 2.41 3.78 1.60 0.33 0.90

DAS = days after sowing. In all treatments, the recommended dose of non-K fertilizers was applied. T1: 0 kg K2O ha−1; T2: 80 kg K2O ha−1

as MOP; T3: 120 kg K2O ha−1 as MOP; T4: 80 K2O ha−1 as MOP + polyhalite (50% each); T5: 120 K2O ha−1 as MOP + polyhalite (50% each).
Within each column different letters indicate statistical difference.
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Table 5. Growth and yield parameters of sugarcane under different rates and types of potassium fertilizer.

Treatments

Nodes Cane−1 NMC
(000 ha−1) Tillers Leaf Chlorophyll Concentration

Yield
(t ha−1)Days after Sowing

152 200 261 297 334 200 329 219 267 298

T1 15.5a 21.3a 23.6a 24.9a 3.41c 5.00a 7.40a 69.1a 44.5a 45.3a 68.40b
T2 16.9a 21.0a 24.1a 25.3a 3.88b 5.67a 7.87a 62.9b 37.2b 42.8b 71.41a
T3 16.3a 21.3a 23.9a 24.3a 4.18b 5.53a 8.27a 57.5c 32.9c 42.9b 72.63a
T4 16.4a 21.8a 24.2a 24.7a 4.68a 5.50a 8.87a 47.6d 36.3bc 39.2c 74.02a
T5 16.3a 21.5a 24.3a 25.2a 4.81a 5.43a 8.73a 48.4d 33.1c 42.4b 75.16a

F-test (p ≤ 0.05) NS NS NS NS 0.36 NS NS 2.8 3.5 2.1 1.40
SE (±) 0.62 0.34 0.31 0.69 0.11 0.34 0.51 0.87 1.10 0.63 0.42
CV (%) 6.5 2.73 2.24 4.76 4.44 10.9 10.6 2.6 5.1 2.6 1.00

NMC = number of millable canes. In all treatments, the recommended dose of non-K fertilizers was applied. T1: 0 kg K2O ha−1; T2: 80 kg
K2O ha−1 as MOP; T3: 120 kg K2O ha−1 as MOP; T4: 80 K2O ha−1 as MOP + polyhalite (50% each); T5: 120 K2O ha−1 as MOP + polyhalite
(50% each). Within each column different letters indicate statistical difference.

Relative to the control treatment, the cane germination rate at 35 DAS was higher in T2
(by 12.7%), in T3 (by 24.2%), in T4 (by 33.0%), and in T5 (by 35.0%; Table 4). Sugarcane stalk
length at 113 DAS was not significantly different between the control and all K treatments.
Significant differences in stalk length were observed at 127 DAS (stalks in T3, T4, and T5
were significantly higher than those in T1) and 152 DAS (stalks in T5 were significantly
higher than those in T1 to T3), however by 198 DAS there were no significant differences in
stalk height between any treatments.

Sugarcane stalk diameter was greater in both T4 and T5 than in any of T1, T2, or T3
(Table 4). Differences in stalk diameter were largest at 99 DAS, where the increase above T1
was up to 13.7% in T5. At 262 DAS, the greatest increase in stalk diameter above the control
treatment was 5.1% in T5. Across all three growth and yield parameters the differences
from the baseline treatment were statistically similar in the T4 and T5 treatments, and
greater than those in treatments T1, T2, or T3.

There were no significant differences between treatments on the number of internodes
per sugarcane stalk or the number of tillers per plant were (Table 5).

In terms of the number of millable canes (NMC) in each experimental treatment, all
K treatments had higher NMC than the T1 control at 334 DAS (Table 5). The MOC-only
treatments (T2 and T3) had 23–33% more NMC than T1, while the combined MOC and
polyhalite treatments (T4 and T5) had 49–53% more NMC than T1.

Leaf chlorophyll concentration was lower in all K treatments than in the baseline T1
treatment at 219, 267, and 298 DAS (Table 5). At 298 DAS the leaf chlorophyll concentrations
in T2 (−5.5%), T3 (−5.3%), and T5 (−6.4%) were all lower than those in T1; and the leaf
chlorophyll concentration in T4 (−13.5%) was lower again.

The average yield in the baseline treatment was 68.4 t ha−1: yields in all K treatments
were higher than the baseline regardless of K fertilizer type, and ranged between 71.4 t ha−1

in T2 to 75.2 t ha−1 in T5, although there was no significant yield difference between K
treatments (Table 5).

3.2. Quality Parameters

At 10 months after sowing, the T2 and T4 treatment plots had higher purity (by
2.6 and 3.3%, respectively) than in the T1 control treatment (Table 6). In contrast, T3 and
T5 did not differ significantly from T1 in terms of purity. Pol was statistically similar in
the T1 and T3 treatments while T2 (+0.9%), T4 (+1.1%), and T5 (+0.8%) had higher pol
than in the T1 control. Similarly, in terms of the commercial cane sugar content (CCS), T1
and T3 had comparable CCS percentages (10.56 and 10.91%, respectively), while CCS was
higher in T2 (+0.8%), T4 (+1.0%), and T5 (+0.6%). There were no significant differences
between any treatments in terms of Brix (which ranged between 18.4◦ in T1 to 19.2◦ in
T5) or the percentage of sugar extracted (which varied between 46.7% in T3 to 50.1% in
T4). Results across all five quality metrics examined were statistically similar in T2 and
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T4, which both received 66% of the recommended dose of potassium fertilizer, either as
80 kg MOP ha−1 (T2) or as 40 kg MOP ha−1 and 40 kg polyhalite ha−1 (T4). T3 and T5, the
potassium treatments with the full recommended fertilizer dose (i.e., 120 Kg K ha−1) did
not always differ in quality from the control treatment (Table 6).

Table 6. Sugarcane quality parameters 10 months after sowing under potassium fertilizer treatments.

Treatments Brix
(◦)

Pol
(%)

Purity
(%)

CCS
(%)

Sugar Extraction
(%)

T1 18.40a 15.59c 84.75c 10.56c 46.99a
T2 18.83a 16.45ab 87.34ab 11.31ab 48.38a
T3 18.67a 16.01bc 85.76bc 10.91bc 46.72a
T4 18.97a 16.70a 88.07a 11.53a 50.10a
T5 19.17a 16.40ab 85.56c 11.17ab 48.58a

F-test (p ≤ 0.05) NS 0.57 1.77 0.45 NS
SE (±)
CV (%)

0.18
1.66

0.17
1.83

0.53
1.07

0.14
2.13

1.29
2.67

CCS = commercial cane sugar content. In all treatments, the recommended dose of non-K fertilizers was
applied. T1: 0 kg K2O ha−1; T2: 80 kg K2O ha−1 as MOP; T3: 120 kg K2O ha−1 as MOP; T4: 80 K2O ha−1 as
MOP + polyhalite (50% each); T5: 120 K2O ha−1 as MOP + polyhalite (50% each). Within each column different
letters indicate statistical difference.

At 12 months after sowing, T2, T4, and T5 all had greater purity (by 2.4%, 2.8%, and
2.0%, respectively) than T1 or T3, which were statistically similar (Table 7). In terms of pol,
no K treatments differed from the T1 control, although T5 (18.9% pol) was significantly
greater than any of the T2 to T4 treatments (pol range of 18.1 to 18.5%). The CCS percentage
was similar in treatments T1 to T4 (range between 12.5 and 12.7%) which were all less than
the CCS in T5 (13.1%). When expressed as a weight per area, CCS was significantly higher
in both T4 (9.4 t ha−1) and T5 (9.8 t ha−1) than in any of T1 to T3, which ranged in CCS
between 8.6 and 9.2 t ha−1. Only T2 (20.5◦) and T4 (20.7◦) were significantly lower in Brix
than in the T1 control (21.5◦). There was no significant difference between treatments in the
percentage of sugar extracted, which varied between 48.9% in T1 to 50.7% in T4 (Table 7)
and which has been previously observed by [44–46]. As at the earlier quality sampling, the
T2 and T4 treatments, with 80 kg ha−1 potassium fertilizer, had greater differences from the
T1 control in terms of the quality parameters examined than was observed in the T3 and T5
treatments, which received 120 kg ha−1 potassium fertilizer. Other research has reported
similar results [47,48].

Table 7. Sugarcane quality parameters 12 months after sowing under potassium fertilizer treatments.

Treatments Brix
(◦)

Pol
(%)

Purity
(%)

CCS
(%)

Sugar Extraction
(%)

CCS
(t ha−1)

T1 21.53a 18.49ab 85.89b 12.62b 48.86a 8.63b
T2 20.53b 18.13b 88.33a 12.54b 49.04a 8.95b
T3 21.50a 18.48ab 85.94b 12.61b 49.27a 9.15b
T4 20.67b 18.33b 88.68a 12.70b 50.70a 9.40a
T5 21.53a 18.93a 87.91a 13.06a 50.06a 9.75a

F-test (p ≤ 0.05) 0.67 0.46 1.66 0.33 NS 0.38
SE (±) 0.20 0.14 0.50 0.10 1.00 0.11
CV (%) 1.66 1.31 0.99 1.36 2.49 1.90

CCS = commercial cane sugar content. In all treatments, the recommended dose of non-K fertilizers was
applied. T1: 0 kg K2O ha−1; T2: 80 kg K2O ha−1 as MOP; T3: 120 kg K2O ha−1 as MOP; T4: 80 K2O ha−1 as
MOP + polyhalite (50% each); T5: 120 K2O ha−1 as MOP + polyhalite (50% each). Within each column different
letters indicate statistical difference.

3.3. Insect-Pest Infestation

The incidence of early shoot borer (Chilo infuscatellus) was reduced under all potassium
treatments relative to the control (Table 8).
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Table 8. Insect–pest incidence in sugarcane under potassium fertilizer treatments.

Treatments Early Shoot Borer Top Borer Stalk Borer

T1 10.3a 11.0a 10.3a
T2 8.3b 9.33a 8.7a
T3 8.7b 9.67a 9.0a
T4 8.3b 8.67a 7.7a
T5 7.7b 9.33a 9.0a

F-test (p ≤ 0.05) 1.5 NS NS
SE (±) 0.45 0.51 0.50
CV (%) 8.90 9.20 9.60

In all treatments, the recommended dose of non-K fertilizers was applied. T1: 0 kg K2O ha−1; T2: 80 kg K2O ha−1

as MOP; T3: 120 kg K2O ha−1 as MOP; T4: 80 K2O ha−1 as MOP + polyhalite (50% each); T5: 120 K2O ha−1 as
MOP + polyhalite (50% each). Within each column different letters indicate statistical difference.

Reductions were greatest in T5 (−25.2%) and least in T3 (−15.5%). There was no
significant difference in the incidence of either top borer (Scirpophaga excerptalis) or stalk
borer (Chilo auricilius) between the control and any potassium treatments, although the
incidence of both pests was highest in the control and least in T4. While there were no
significant differences in insect pests between potassium treatments, T5 had the lowest
incidence of early shoot borer, and T4 had the lowest incidence of both top borer and stalk
borer. T3 had the highest incidence of all three insect pests among the potassium treatments;
T5 also had the highest incidence of stalk borer.

Further, comparing rates of insect pests in T2 to those in T3, T4, and T5, there was less
(by −4.82, −4.6, and −7.2%, respectively) incidence of early shoot borer (Chilo infuscatellus),
less (by 0, −7.1, and −11.5%, respectively) incidence of top borer (Scirpophaga excerptalis),
and less (by −3.3, −11.5 and −16.1%, respectively) incidence of stalk borer (Chilo auricilius)
(Table 8). The T4 treatment (80 kg K2O ha−1 as MOP and polyhalite combined) recorded
the lowest incidence of insect-pest attacks, although no statistical difference from any other
potassium fertilizer treatment was observed.

3.4. Correlation between Quality Variables

Ten months after sowing brix was strongly positively correlated with pol and CCS,
moderately positively correlated with the extractable sugar percentage, and weakly posi-
tively correlated with purity (Table 9). Pol was strongly correlated with brix, purity and
CCS, and moderately positively correlated with the extractable sugar percentage. Purity
was strongly positively correlated with pol and CCS, and weekly positively correlated with
brix and the extractable sugar percentage, while CCS was strongly positively correlated
with brix, pol and purity, and moderately positively correlated with the extractable sugar
percentage (Table 9).
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Table 9. Correlation analysis of sugarcane quality parameters at eight and ten months after sowing.

10 Months after Sowing

Brix Pol Purity CCS (%) Sugar Extraction
(%)

Brix 0.83 0.24 0.73 0.47
Pol 0.83 0.74 0.99 0.52

Purity 0.24 0.74 0.83 0.34
CCS (%) 0.73 0.99 0.83 0.51

Sugar extraction (%) 0.47 0.52 0.34 0.51

12 months after sowing

Brix Pol Purity CCS (%) Sugar extraction (%)

Brix 0.79 −0.73 0.46 0.16
Pol 0.79 −0.15 0.91 0.27

Purity −0.73 −0.15 0.27 0.04
CCS (%) 0.46 0.91 0.27 0.28

Sugar extraction (%) 0.16 0.27 0.04 0.28
CCS = commercial cane sugar content.

Twelve months after sowing, brix remained positively correlated with pol, but corre-
lations with other parameters had altered: brix was strongly negatively correlated with
purity, moderately positively correlated with CCS, and weakly positively correlated with
the extractable sugar percentage (Table 9). Pol remained strongly positively correlated with
brix and CCS but was now weakly negatively correlated with purity and weakly positively
correlated with the extractable sugar percentage. CCS remained strongly positively corre-
lated with pol, but only moderately positively correlated with brix and was now weakly
positively correlated with purity and the extractable sugar percentage.

3.5. Benefit-to-Cost Ratio

The cost of potassium fertilizers was lowest in T2 (80 kg K ha−1, applied as MOP
only) and highest in T5 (120 kg K ha−1, applied as MOP and polyhalite combined;
Table 10). Sugarcane yields were lowest in T1 (68.4 t ha−1) and highest in T5 (75.2 t ha−1).
The economic benefit from the potassium fertilizer applied was 9331, 13,114, 17,422, and
20,956 INR ha−1 for T2, T3, T4, and T5, respectively.

Table 10. The benefit-to-cost ratio in sugarcane under potassium fertilizer treatments.

Treatments Cost of K Fertilizer
(INR ha−1)

Sugarcane Yield
(t ha−1)

Yield Change from
T1 (t ha−1)

Economic Benefit from Applied K
(INR ha−1)

Benefit-to-Cost
Ratio

T1 0 68.40 0.0 0 0.0
T2 2533 71.41 3.01 9331 3.68
T3 3800 72.63 4.23 13,113 3.45
T4 5542 74.02 5.62 17,422 3.14
T5 8328 75.16 6.76 20,956 2.52

K = potassium, INR = Indian rupee, sugarcane price: INR 3100 t−1, MOP cost: INR 19,000 t−1, polyhalite cost: 30,000 t−1. In all treatments,
the recommended dose of non-K fertilizers was applied. T1: 0 kg K2O ha−1; T2: 80 kg K2O ha−1 as MOP; T3: 120 kg K2O ha−1 as MOP; T4:
80 K2O ha−1 as MOP + polyhalite (50% each); T5: 120 K2O ha−1 as MOP + polyhalite (50% each).

Benefit-to-cost (B:C) ratios were highest in T2 (3.7) and T3 (3.5), and lower in T4 (3.1)
and T5 (2.5). Polyhalite is an effective multi-nutrient fertilizer in soils deficient in both potas-
sium and calcium, however, its higher cost (30,000 INR t−1 compared to 19,000 INR t−1

for MOP) means that it results in lower immediate economic benefits to farmers (longer-
term benefits resulting from improved soil health are outside the scope of this paper).
A higher fertilizer application (120 kg K ha−1 rather than 80 kg K ha−1), regardless of
potassium fertilizer type, did not increase the economic benefits for farmers. This was a
consequence of the higher production costs of the higher application of potassium fertilizer,
which were exacerbated in the combined MOP and polyhalite treatment (T5) relative to
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the sole-MOP treatment (T3) (Table 10). Rather than increasing economic benefits, treat-
ments with 120 kg ha−1 had fewer economic benefits than those at the lower (80 kg ha−1)
potassium-fertilizer rate. This may be due to higher insect-pest infestations, limited yield
response and increased fertilizer costs when comparing between T2 and T3, and T4 and T5,
respectively (Tables 5 and 8) [9,44–46].

4. Discussion
4.1. Sugarcane Growth and Yield

Improvements relative to the zero-potassium control treatment (T1) in sugarcane
germination, stalk height and stalk width (Table 1), and in the number of nodes per cane,
the number of millable canes, and leaf chlorophyll content (Table 2) are likely a result
of improved metabolic and physiological processes, including improved photosynthesis,
protein synthesis, starch production, and protein and sugar translocation [49]. Additionally,
potassium fertilizer has been shown to reduce the adverse effects of water stress and
improve root growth [6,9,27]. Potassium fertilizer also catalyzes enzymes and improves
water and nutrient use efficiencies [50], in particular the efficient use of N fertilizer, resulting
in improved root growth which facilitates improved plant extraction of water and key
nutrients [48–53].

The improved sugarcane performance from T2 (80 kg K ha−1 of sole MOP) to T4
(80 kg K ha−1 of MOP and polyhalite) and from T3 (120 kg K ha−1 of sole MOP) to T5
(120 kg K ha−1 MOP and polyhalite) may be a consequence of reduced competition
between chloride and sulfate anions for absorption by plant roots in the partial polyhalite
treatments [54,55]. Because of the presence of chloride anions and the lack of sulfur in the
soil or the MOP fertilizer, this competition may be more severe in MOP-only treatments.
In treatments containing polyhalite and MOP, calcium, potassium, and sulfur are all added
to the soil, reducing competition from soil chloride ions. As well, potassium in MOP fixes
more strongly to clay particles in the soil than does potassium released from polyhalite, due
to the competition between monovalent (K+) and divalent (Ca2+, Mg2+) cations. Managing
nutrient availability with times of crop nutrient demand, as well as variability in the
availability of calcium affects crop performance, especially in the treatments fertilized
with MOP alone [56]. Polyhalite provided a sustainable supply of calcium in the calcium-
deficient experimental soil which enhanced sugarcane performance (Table 1) and which has
been observed elsewhere [57,58]. The experimental soil was not deficient in magnesium or
sulfur, and thus it is likely that the benefits of polyhalite were from the additional calcium
provided. Increasing the potassium and calcium available to sugarcane plants extends the
shelf life of harvested canes and reduces post-harvest losses [59]. Further, polyhalite is
a slow-release fertilizer with a low chloride concentration [59] which reduces the risk of
salinity stress and rapid potassium depletion from the rhizosphere.

The benefit-to-cost ratio declined as the amount of potassium fertilizer applied in-
creased from 80 to 120 kg K ha−1: this is due to higher fertilizer costs (Table 10) and
lower yields under increased attack by insect pests (Table 8). While polyhalite is ini-
tially expensive relative to traditional MOP fertilizer, it provides a lasting contribution to
edaphic health and sustainable sugarcane production on potassium- and calcium-deficient
soils. Consideration for government subsidies to increase the sustainability of sugarcane
production in the region should be considered.

4.2. Sugarcane Juice Quality

Sugarcane quality parameters were higher in the treatment with 80 kg K ha−1 applied
as MOP and polyhalite in combination than in the treatment with 80 kg K ha−1 applied
as MOP alone (Tables 6 and 7). This is likely a result of an improved and more sustain-
able supply of key nutrients (potassium and calcium) by polyhalite which is critical in
the nutrient-deficient soils of the experimental site, and which deficiency is widespread
throughout the sugarcane-growing region of northern India. K+ adsorbs less strongly to
mineral soil surfaces than Ca2+ or Mg2+, and the total adsorption capacity of the soil in-
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creases as the clay mineral concentration increases [60,61]. Relative to the control treatment,
all potassium treatments had improved sugarcane quality as a result of increases in dry
matter accumulation, the number of sprouted buds, the number of millable canes, and
in improved root growth [62]. Potassium mitigates the adverse effect of water stress and
thus promotes an environment that is more conducive to plant development and biomass
accumulation [6,9,49].

4.3. Incidence of Insect Pests

Crop resistance to most pests and diseases improves under balanced plant nutrition
because the healthier a plant is the more resilient it is to attack [54,55]. The incidence of three
key insect pests in sugarcane, early shoot borer (Chilo infuscatellus), top borer (Scirpophaga
excerptalis) and stalk borer (Chilo auricilius), reduced (although not significantly) with sole
MOP applied at 80 kg K ha−1, and further reduced with an application at the same rate of
MOP and polyhalite combined (Table 8). The potassium fertilizer may have facilitated an
improved transfer of photosynthates across the whole plant [38], resulting in comparatively
bitter leaves and thereby reducing the incidence of insect–pest attack [6,9,62,63]

5. Conclusions

Nutrients, including potassium, calcium, magnesium, and sulfur, are limiting in
agricultural soils in key sugarcane growing regions of the semi-arid tropics including
the Indian Punjab, in part due to agricultural intensification over the last three decades.
This lack of key nutrients limits sugarcane yield and juice quality. Traditional potassium
fertilizers such as MOP are insufficient to overcome these soil nutrient deficiencies. Instead,
multi-nutrient fertilizers, such as polyhalite, have the potential to sustainably increase
sugarcane growth, yield and quality across the region. We have shown that potassium
fertilizer applied as 80 kg K ha−1 of MOP alone improved sugarcane growth, yield, and
quality parameters relative to a 0 kg K ha−1 control treatment and that these benefits were
further enhanced when potassium fertilizer was applied at the same rate, but at an equal
concentration (i.e., 40 kg K ha−1 for each) of MOP and polyhalite. We recommend sugarcane
farmers in the potassium- and calcium deficient soils of the Indian Punjab combine MOP
and polyhalite equally to achieve an application rate of 80 kg K ha−1, in addition to
other fertilizers applied as recommended. Increasing potassium fertilizer applications to
120 kg K ha−1 reduced the benefits observed at the lower potassium fertilizer application
rate. The benefits of polyhalite combined with MOP are likely to result from the addition
of calcium into these calcium-deficient soils. Further, longer-term research is necessary to
quantify the optimum amounts of key nutrients, e.g., calcium, magnesium, and sulfur, and
to establish precise fertilizer management strategies for different edaphic conditions across
the sugarcane production region.
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