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Abstract: Energy fraud detection bears significantly on urban ecology. Reduced losses and power
consumption would affect carbon dioxide emissions and reduce thermal pollution. Fraud detection
also provides another layer of urban socio-economic correlation heatmapping and improves city
energy distribution. This paper describes a novel algorithm of energy fraud detection, utilizing
energy and energy consumption specialized knowledge poured into AI front-end. The proposed
algorithm improves fraud detection’s accuracy and reduces the false positive rate, as well as reducing
the preliminary required training dataset. The paper also introduces a holistic algorithm, specifying
the major phenomena that disguises as energy fraud or affects it. Consequently, a mathematical
foundation for energy fraud detection for the proposed algorithm is presented. The results show that
a unique pattern is obtained during fraud, which is independent of a reference non-fraud pattern of
the same customer. The theory is implemented on real data taken from smart metering systems and
validated in real life scenarios.

Keywords: AI—Artificial Intelligence; fraud detection; smart grid; smart meters

1. Introduction

Electricity and energy (including water, gas) fraud detection is an intriguing subject
which has gained a high level of interest in recent years. Energy fraud detection is impor-
tant for urban ecology and not only for supplier’s finance; the reduction of energy losses
results in less generation. Less energy generation and transportation mean a reduction
in carbon dioxide emissions, and better urban energy grids planning in the wide sense:
electricity, water and gas. The research presented herein is implemented on electricity
data but can be suitable to gas and water data with replacement of the training datasets.
According to a recent annual document regarding smart metering benchmarks published
in December 2019 [1], the detection of electricity technical and non-technical losses results
in vast operational benefit. The report indicates that, in Europe, 7.5% of energy is lost in
the distribution grid due to technical and non-technical losses, and an additional 7.5% of
losses are encountered in the transmission grid. According to the survey in [2], electricity
fraud results in 89.3 billion dollars of loss annually, 58.7 billion dollars of which are in
the emerging markets. According to a report published in October 2017 by the Council
of European Energy Regulators (CEER) [3], the distribution losses due to technical and
non-technical losses are in the range of 1% (in Iceland) up to 14% (in Malta), and, on
average, are 7.5%. According to an earlier work by T. B. Smith from United Arab Emirates
(UAE) [4], the losses in the Western Europe Transmission and Distribution (T&D) grid were
about 7.56% in the year 2000. The numbers reach as high as 14.6% in Africa, and an average
of 16.2% worldwide [4]. The cost-savings upon operation of fraud detection mechanisms
are significant [4]. Existing algorithms for fraud detection are usually operating on electric
energy load-profile data. These data are periodic with a quarter-hourly up to hourly regis-
tration of energy consumption in that period. These data are attained by a smart meter and
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may represent one of four quadrants: active energy and reactive energy, where each can be
either import or export. The common theme of most, if not all, fraud-detection technologies
is feature generation, whether human or automatic, that enables distinguishing between
fraud and non-fraud. This survey presents meta-families of anomaly detectors which,
within themselves, include a large family of architectures. A key component to many of the
presented architectures is the autoencoder. An autoencoder performs some operation over
the data called P̂. The next operation performed is inverse operation P̂−1. The network
over the data is the identity operator Î = P̂−1◦ P̂. Hence, the outliers are excluded from the
dataset. Reducing the “only normal” items from the entire dataset is the “outlier dataset”.
Autoencoder implementations exist in various machine learning architectures, and they
are the first meta-architecture in fraud detection. The second meta-architecture in fraud
detection is the classifier between fraud/no-fraud. This requires a preliminary feature
generation module to enable distinguishing between the two clusters. A work on cascading
of Convolutional Neural Networks (CNN) and Gate Recurrent Unit (GRU) was performed
by U. Ali et al. [5]. The cascaded CNN-GRU algorithm reaches an average of 87% detection
without the Manta Ray Foraging Optimization (MRFO) back-propagation algorithm, and
up to 91% with MRFO. CNN and GRU are both deep learning algorithms and therefore
require large amounts of load-profile data, and a large fraud detection dataset. A survey
by Guo et al. [6] covers classical machine learning classifiers, such as a support vector
machine (SVM). Ullah Shoaib et al. use, again, the CNN-GRU network, this time with
the Particle Swarm Optimization (PSO) back-propagation optimization algorithm [7]. The
work performed by Kim et al. [8] is, again, investigating a dual cascaded CNN-LSTM (Long
Short-Term Memory) network, and near-global weight optimization back-propagation
algorithm. The work by Kim et al. [9] implements the Generative Adversary Network
(GAN) for anomaly detection through an auto-encoder. Korba et al. [10] implemented
an electricity fraud detection algorithm using “Support Vector Machine” (SVM) which
requires feature generation and is used occasionally as a classifier. The SVM increases
the features that dimensional space variables count, thereby making fraud/non-fraud
clusters further away and easier to classify. Yue et al. implemented a cascade of nonlinear
classifier decision trees and SVM [11]. Tumen et al. implemented the LSTM fraud detection
algorithm [12], which excels the anomaly detector but does not automatically generate
features [12]; therefore, there is a data selection module which attempts to select some
data. Ahmed et al. [13] implemented two algorithms that handle the issue that fraud data
are imbalanced data. The authors use Python imbalance handling library SMOTEENN
which performs oversampling by the SMOTE function and cleaning using ENN: “synthetic
minority oversampling technique with edited nearest neighbor” [14]. The SMOTE is a
technique for data augmentation for the minority and was invented by Nitesh Kawla.
William Eberle et al. [15] simply implemented a neural multi-layer perceptron (MLP) as
an anomaly detector. Mishra et al. [16] published a study with a cascaded two levels of
classifiers, Decision Tree (DT) and “Support Vector Machine” (SVM), acting as an anomaly
detector. Another work implementing CNN is by Zhou et al. [17], utilizing the features
generated by preliminary convolution layers into an anomaly detector. Another method
is implemented by Zhao et al. [18] with CNN-RF, RF means random forest. Here, again,
the minimal pre-processing of measuring distance is performed for anomaly enhancement,
then it is inserted into the CNN and then into the RF. It is important to notice that the initial
dataset is imbalanced, and, via the SMOTE algorithm, it becomes balanced. A comparative
work by Wang et al. [19] developed the concept of an unsupervised autoencoder-based en-
semble method for anomaly detection. The performance of various autoencoder types and
training schemes is compared there. In the work, methods are developed for performance
quantitative evaluation of fraud detection algorithms. Work performed by Duarte et al. [20]
computed human generated features which tend to be entire-data collaborative. This
time-series data are injected into simple AI structures, such as Pearson correlation heatmap,
and obtain a distinction between normal and abnormal images. The innovation here is in
feature generation and less in artificial intelligence architecture; however, it is important
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in the sense of the possibility of visualizing fraud simply by generating load-profile data
collaborative features. Another comparative work by Hatziargyriou et al. [21] presents
a fine categorization of electricity fraud detection algorithms. This work is an in-depth
review, providing insights into the entire volume of fraud detection implemented meth-
ods and their classification. According to this work, the machine learning is categorized
into “data oriented”, “network oriented” and a hybrid of both methods. Data oriented is
based on feature generation and imbalanced data balancing algorithms. Network oriented
methods require the use of power grid data (network topology network measurements).
The insights of this work are too wide to describe in a literature review. The work by Joshi
et al. [22] cascades the SMOTE imbalanced data balancing technique to a secondary layer
of the Principal-Component-Analysis (PCA) method. PCA is a matrix transform, reducing
high-order-dimensional space dimensionality into the desired dimensions count, thereby
excluding the dataset members located outside the main clusters. These are called the
outliers. KPCA (Kernel Principal Component Analysis) is the kind used in that paper as a
feature extractor. Almost no works were performed on reducing false positive detection, yet
the general approach of reducing false positive in frauds is studied systematically in fraud
accounting [23]. There, the conclusion is to use a different algorithm, and not to use the
fraud-detection algorithm positives the same way. Electricity fraud detection reduction of
false positives is discussed in [24]. When speaking of suitability also to industrial premises,
there are not only conventional grids, but also second-generation power components, such
as a loss-free resistors [25] and gyrators [26].

The works described above present a wide spectrum of methods. Three gaps can be
identified in descending importance, and they are all correlated to the question of: how
robust shall an algorithm really be in field conditions? The first proposed gap is the need
to define features that reflect “energy consumption expert knowledge” and “entire data
collaborative” and redirect the training by the clustering AI core as improved training
in the sense of training time, accuracy and requiring less data. The second gap is the
practice of the algorithm in field conditions within a utility company. The potential answer
is that there is a set of non-fraud anomalies that appear to be fraud [27,28] and, in order
to reduce the fraud false positive, it is required to know how to separate them from the
cases suspected as fraud in the office level. Another issue of this work is to present this as
a matter of conditional probabilities and confidence level computation prior to sending
qualified fraud detection personnel to the field. Identifying these anomalies and pointing
out algorithmically how to filter them is the second gap and the proposed solution. The
third and last gap follows in order of importance. At infancy stage not too many verified
frauds, and role of additive clustering models shall be investigated [29]. A question
has arisen as to what the internal mechanism is of the algorithm proposed herein, and
whether the other algorithms in other works encounter the same anomaly phenomena
in a similar way. Could that be answered on a theoretical computational ground? The
comprehension of the fraud signature in high-order dimensional space and through 3D
principal component analysis (PCA) transform shall be inspected through a series of “vector
space and linear algebra and statistics” theorems. The research shall investigate what is
the comprehension of the suggested features capability to distinguish between fraud and
non-fraud. For the proposed solution, there is a pattern that repeats itself in all solution
sub-spaces. Is it likely that other algorithms encounter the same phenomena reported
in this work? Other anomalies that reside in a closer location in high-order dimensional
space, therefore, look similar to fraud. Returning to the issue of conditional probabilities,
the algorithm’s holistic nature is a requirement drawn in light of its operation in the field.
The mathematical foundation (issue 3) is necessary in order to comprehend the physics
of the suggested solution, and to investigate what is the likelihood of other algorithms
to experience the same phenomena encountered by the research group. With regard to
the dataset, there are internationally published datasets. Due to un-tagging of non-fraud
cases in “fraud detection datasets”, only through trial and verification at a local utility
company can an algorithm be trained to distinguish between anomaly cases. This paper
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uses extensively a local utility company anonymous tagged training dataset. A local
distributed system operator (DSO) testing dataset of two-hundred meters was established
and suspected frauds were tested in the field, while some frauds were emulated on real
meters in the field, such as magnetic tampering, phase disconnects and phase reversal.
The algorithm is dynamic and iterative, as the algorithm starts to work, more cases are
verified, and the training ‘fraud tagged’ dataset becomes available. Another issue is the
ability to detect fraud when there is no reference of non-fraud behavior concerning the
suspected customer. A notification of other anomalies that are more differentiated are:
(I) defected data in the smart metering data chain from meter to data warehouse. This
problem is demonstrated by the paper as crucial through examples given. It is almost
certain that it prevails in other electricity fraud detection algorithms. A “data mismatch
in the smart metering information chain”, “detector and allocator” sub-algorithm of the
electricity fraud-detection shall be briefly presented. Without it, the data mismatch show as
an anomaly and may be accidentally identified as suspected fraud. (II) The second type of
grid anomalies that are not fraud are related to preventive-maintenance and cyber intrusion
detection, and these should also be presented; there are nations that are occasionally cyber
attacked. Consequently, in a previous work by this group [30], a reference is presented,
and it is assumed differentiated herein that these anomalies are separated. (III) There are
several methods of electricity fraud such as: magnetic tampering, phase reverse and phase
disconnect or consumption biasing the phase. It is advantageous that the algorithm may
work as a classifier of tampering types and not only as an anomaly detector. The sixth gap
identified is the current-state modularity of the algorithm for future enhancement. There
are several additional future information sources that modify the false positive accuracy.

There are training data and datasets such as for example [31,32].
In this paper, we will show a new method for electricity fraud detection at the entry

to the premises. The method is based on electricity fraud-detection by a generation of a
new set of strong energy-consumption trend “data collaborative signature” features. These
features exceed the following set of “differentiating load-profile value from average” works.
These rules constitute the preprocessing layer. The paper shall describe three groups of
rules, ensuring that each is “collaborating the entire load-profile periodic data” electrically
and statistically, proving a panoramic electricity business view of the customer profile. In
addition, the paper shall include the development of a theory of electricity fraud-detection
specific to the proposed algorithm and universal to all algorithms. Gaps (1)–(6) presented
above are all addressed using a single theme. The proposal uses only load-profile data.
The algorithm generated 256 statistical parameters, providing the customer panoramic
view of fraud/non-fraud speaking. The AI is sophisticated enough, using a correlation
heatmap to fraud/no-fraud, in order to reject 156 parameters, leaving only the meaningful
data. Computation cost is low: 5–10 min over a single processor, with up to five years
of historic load-profile. In order to obtain high accuracy, the proposed algorithm uses a
fraud detection data-augmentation assisting algorithm. The low computation cost enables
personalized training, because a single server may train over 50,000 customers/year.

2. Materials and Methods
2.1. Proposed Architecture

Figure 1 presents the algorithm architecture in the format that is common to other
works. It presents the primary goal of the paper: utilize electro “consumption-trend”
knowledge to better cluster fraud and non-fraud. This is the paper’s most important con-
tribution: the energy consumption-trend features demonstrate very clearly the difference
between fraud and non-fraud and show the “physics of electric consumption”. The second
module is a supervised learning clustering core that is used to ensemble learning, partly in
order to learn about and to research the performance, and partly because it shall be shown
that different algorithms outperform others which are dependent on the maturity of the
dataset. The local DSO (distributed system operator—entity deploying smart meters and
collecting data for distribution to suppliers and customers) section of the training dataset is
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dynamic and increases with time. The classification core would be enhanced if replaced in
the steady-state period, when sufficient data are gathered, by the CNN object identification
module, as presented in the future research section. The effect of the pre-processing feature
generation is the most important—it is modular, and it shall be shown in the Results
section, and “Materials and Methods”, that it acts similarly to the 2D facial recognition
system. Consequently, it is capable of identification of fraud-types (tempering magnet,
reverse phase, phase disconnect) and of other anomaly types disguised as electricity fraud,
such as maintenance/configuration/communication mismatch. Figure 1a represents a
conventional fraud detection architecture, where input to clustering AI core is raw data.
Figure 1b represents the proposed architecture where the front-end smart preprocessor
constructs a high-order dimensional space that redirects the training.

Figure 1. Schematic of proposed algorithm—(a) traditional schematic where raw data enters a clustering AI core.
(b) proposed schematic: a front-end high order energy consumption-trend dimensional space which prepares the data and a
clustering AI core. Exponentially less raw data is required more features are generated. The front-end redirects the training.
(c) analogy of 2D features to facial recognition option: (c-1) classic machine learning with feature engineering, (c-2) 1D CNN
with features learning, sometimes feature engineering. (c-3) end-to-end 2D object identification with self-generated features.

Figure 1c: front end is modularly connected to a different clustering core during the
lifespan of the algorithm. It shall be shown that, at “infancy”, the post-installation stage
at a local utility company, the logistic regression, which is a Generalized Additive Model
(GAM), converges fastest over 10–15 local utility verified frauds. There are international
datasets [21], however, as shall be shown, they do not contain tagged non-fraud anomalies.
Therefore, additional verified frauds and anomalies from local DSO are added. In the
first maturity stage, when there are already ~100 verified frauds, random forest (RF) and
decision tree (DT), non-linear classifiers are shown to be more accurate and converge well.
During the latest maturity stage, which is not implemented yet, several deep learning
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algorithms fit: these require an order of ~103 verified frauds. Currently, RF and DT
act as clustering algorithms and they perform this well with much fewer test cases. It
shall be shown herein that generated consumption knowledge features are 2D. A regular
CNN/LSTM classification core is possible. This is heuristically shown in 1-c-2 as the middle
1D CNN. The generated features are y = f (x) or, stated differently, f (x, y) = 0. This is
represented as 1-c-1. It shall be shown in the Results section that human cognition may
distinguish fraud from non-fraud through the presented features. Therefore, a 2D CNN for
object identification shall excel in classifying various anomalies from fraud and various
fraud types. This is shown in 1-c as upper 2D CNN, such as heuristically illustrated at
1-c-3. However, the proposed front-end is successful in the generation of distinguishable
patterns in high order dimensional space, and DT and RF are sufficient for clustering them;
they are implemented in this research. What is important is that front-end high order
dimensional space is modular and is currently demonstrated with five classical machine
learning algorithms but may also re-direct training with deep learning algorithms 1D and
2D object identification.

2.2. System Flow Diagram—At Distinguishing Various Anomalies Level

Figure 2 presents the flow diagram of the core algorithm lower-level design. This
relates to the paper’s secondary contribution. The proposed algorithm is different than
most presented algorithms in that it is holistic. It shall be shown in the theoretical math,
Section 2.8, and through examples in the “Results” section, that various anomalies reside
in the high order dimensional space, adjacent to the fraud cluster, and most likely in
other presented works as well. If not separated, it shall be shown that in practical field
conditions, they significantly increase the false positive rate. The presented anomalies
2.1–2.6 cover the majority of false positives: preventive maintenance, grid cyber intrusion
detection and data mismatch in the smart metering/grid data chain. Additional probability
interference is derived for some smart meter models through built-in events of (1) magnetic
tampering and (2) meter front panel opening. If they do not exist, then the algorithm
ignores them, however, if they do, then their trigger dramatically affects the confidence
level of actual fraud. Item 2.4 presents a non-implemented, as of yet, module, still of
considerable affect over the confidence level, and that is “customer information” deriving
from the customer information database. The solution should be modular to operate even
without such a module. A description of future work architecture and the technology it
shall utilize is presented in the Chapter of Future Work. Examples of customer information
are address, socio-economic class and indication of person abroad/not-abroad. The last
affecting factor is item 2.5: super-consumption. Fraud detection in previous works usually
means fraud from the supplier or sub-consumption. There is another type of fraud that
is of security interest, fraud from another customer, and that is 2.6. super-consumption.
Super-consumption shall be shown at Results at Section 3.10.

2.3. An Ever-Learning Algorithm Flow Diagram

Figure 3 presents yet another layer of the proposed algorithm, supporting the pre-
sented approach of a holistic solution. The algorithm presented in Figure 2 is iterating over
itself as presented by Figure 3, enriching the local training dataset both with additional
fraud/non-fraud samples and new classes. The anomalies filtered out by this paper’s
presented algorithm section may be tagged in the maturity stage by the original presented
fraud detection algorithm also, and that shall be shown in the data mismatch anomaly
in the Results section. In addition to being identified at maturity stage by AI algorithm,
they are during entire lifetime, interrogated by the robotic process automation software
described at Section 2.14.3 Figure 12 further on. Claiming that other algorithms are likely to
encounter the same anomalies misidentified as fraud in the proposed algorithm should be
based not only on our word, although it is permissible. There are works about grid anomaly
and works about fraud detection. These are merged in our presented work. However, a
considerable mathematical section is presented in order to be able to state exactly that.
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The focus of the paper is that it presents the core algorithm mostly, however, it relates
with AI architecture exactly to the additional phenomena. Not as a best practice, but as
precise algorithms. In the discussion below, energetic consumption recorded in a period is
assumed non-aggregative. If, at a specific smart meter, the energy recording is aggregative,
it is easy to transform to a non-aggregative load profile.

Figure 2. Inner algorithm flow diagram of proposed algorithm—a holistic approach designed to reduce false positive and
maximize true positive.

2.4. Group One: Energetic Distribution from Load-Profile

The first group of engineered features is derived from taking the electricity load-profile
and generating bins of energy distribution:

n(Em) =
n(En≤E<En+∆E)

∑m n(Em)

n(E) = lim N → ∞
∆E→ 0

count_o f (En ≤ E < En + ∆E)/
∫ ∞

0 n(E)dE

n(E) = lim N → ∞
∆E→ 0, Em → E

n(Em) =

lim N → ∞
∆E→ 0, Em → E

n(En ≤ E < En + ∆E)

∫ ∞
0 n(E)dE

N = ∑
m

n(Em)

(1)
where:

n—number of load-profile periods counted with energy that is inside the bin [En, En+1];
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N = ∑m n(Em)—entire load-profile periods count, which is a summation over all
bins of periods counts. It is not the entire energy, the formula for the entire energy is
∑m n(Em)Em∆E;

n(E)—a limit continuous function of the series n(Em) at the point Emwhen the periods
count N becomes infinite and the bins split ∆E becomes zero;

The latter limit ∆E→ 0 cannot be performed without incrementation of N, otherwise
the digital distribution shall not reflect the true distribution because there shall be empty
bins which do not occur as of yet.

The figure ∆E ∗ N can be made to equal a constant. Meaning:

∆E · N = Emax (2)

where:
Emax—consumer maximal energy of consumer per period, meaning the period is

defined as quarter hourly up to one hour.

Figure 3. Iterative outer algorithm flow diagram. The dashed square marks the entire algorithm of Figure 2.

The distribution function of a characteristic consumer, let it be rural, residential or
industrial, as depicted in Figure 4: a comparative visualization of the distribution function
defined by Equation (1) between three verified frauds and three verified non-frauds.

Characterizing what is observed, the following guidelines may be outlined by obser-
vation of Figure 2.

The three verified non-frauds and the three verified frauds are a sum of two/three
normal distributions. A consumer has a maximal energy consumption, and around it the
law of large numbers prevails, meaning normal distribution. There are two or three peaks
in the day dictating three normal distributions. Figure 1 is not a daily distribution, but is
actually:

n(E) =
K

∑
i=1

ϕi N(µi, σi, hmax,i) (3)

where:
N(µi, σi, hmax,i)—normal distribution with matching average, variance and peak

height.
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The normal distribution is characterized by three parameters:

N(µ, σ, hmax) =
h′max√

2πσ
e
− (E−µ)2

(2σ2)

h′max
hmax

=
√

2πσ

(4)

where:
µ = Ecentral,i—normal distribution central energy with peak consumption share of

total time;
hmax = N(E = µ)—peak count of periods at most common energy value of the specific

normal distribution. Th is the consumption periodic energetic value that is most common;
σ—variance. The width ±2σ around central energy where 68.26% of periods are. The

width edge points are determined where N(E = µ± σ)= hmax/2:

• The distribution is distinctive in terms of mathematical formulation between fraud
and non-fraud. The right-hand side of Figure 2, representing verified non-frauds, is a
sum of normal distribution, where for each distribution the maximal height is larger
than the width. The height is a maximal count of bins per specific energy value En, or
alternatively stating “energy bin value”[En,, En + ∆E]. On the other hand, observing
all verified frauds, the maximal height is smaller than the half probability width.
This rule was tested for a very large count of frauds and non-frauds and is always
correct. On its own, it is insufficient for reliable fraud detection. The fraud customer is
“shaving the peak”. The clustering into fraud/non-fraud shall be performed using AI
and not some hmax/σ <> 1 selection rule.

• Behavior is collaborative, assuming Figure 2 is generic and that it is based on large
cases count. It reflects the entire load-profile, and the litmus test is that by observation
it is possible to initially mark suspects of electricity fraud versus non suspects.

• Rule 1 of suspected fraud detection is correct even without a reference of non-fraud
for that same customer. A customer may start stealing from day one and disguise
themselves as a low consumption customer, yet the statistical energy distribution
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signature cannot be tricked. There is one exception. Anomaly due to data chain fault
may look similar, and that is similar to other features by other algorithms as well. It
shall be shown within the paper how this may be resolved. This means that there
is no requirement for reference of non-fraud from that same customer, and that is
innovative as compared to most fraud-detection algorithms.

Normalization: in order to enable learning from one consumer of 5000 kilo −
Watthour/year to another consumer of 50 killo Watthour/year , as much as can be learned,
at least for not too far apart consumption profiles, the distribution is normalized just before
construction of the high-order dimensional space. This is a simple and most powerful
tool that enables comparison between any two customers. Independently, Group 1 is
an insufficient level of confidence for determination of suspected electricity fraud. The
required confidence level must be at least 95% true positive and less than 5% false positive.

2.5. Group Two: Daily Hourly Trends Computed from Load-Profile

Another collaborative feature is to take an entire energetic load-profile constructed of
periods and, for each day, calculate the average trend hourly energetic consumption curve.
This may also be performed seasonally as a daily–hourly trend. Herein, we focus on daily–
hourly trends without seasonal separation. For which the mathematical formulation is:

Eday(i)
(
t′ = tn

)
=

∑period∈tn E(t′ = tn)

N
(5)

where:
day(i) ∈ (Sunday, Monday, . . . , Saturday)
tn—each day is constituted of a fixed number of recorded energetic periods and fixed

period times. For example, a quarter hourly load profile: 00:00, 00:15, . . . , 23:59; there are
96 quarter hourly periods. tn is a fixed time occurring each day. For example: tn = 12 : 15.

period ∈ tn—summing all periods from each and every day, one period per day of
time tn. For example, tn = 12.15.

N is the total number of days within a recorded load profile which equals a total
number of periods t = tn.

Eday(i)(t′ = tn)—average energy in day of week day(i), of type defined above. Aver-
aging is over all periods of historic energetic load profile.

Figure 5 describes “daily–hourly” trend graphs of days of the week
(Sunday, Monday, . . . , Saturday). Certain customers consume the same during weekends
as the rest of week, such as factories. With regard to other customers, there is either a
decline during the weekends—such as “workplaces”, or a rise during the weekends—such
as in residential premises.
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Figure 5. Characteristic daily–hourly trends (0–24) of verified non-frauds (left) versus daily–hourly trends of a verified
fraud (right).

Figure 5 is characteristic to all fraud and non-fraud cases. It was repeated for hundreds
of verified non-frauds and tens of verified frauds. The following characteristic behavior is
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observed. For verified non-fraud, there is strong regularity of daily curves and equalities
of daily curves, at least for regular “weekdays”, Monday–Friday. For verified frauds,
there is a mess with trends, and, in addition, they are not close to each other. The feature
is collaborative, it generates a classifying fraud/non fraud signature for all customers.
Regardless of the fraudulent person disguising themself as having a low-consumption
rate, he cannot escape the statistical signature of Figure 5, right hand side. This means
that there is no requirement for reference of non-fraud from that same customer, and
this is innovative as compared to most fraud-detection algorithms. The signature may
be characterized by measurement of the collaborative RMS distance between any day to
any other day and taking the maximum of these RMSs. Normalization: there is no single
customer with exactly the same consumption, or even the same normalized consumption
profile. Therefore, the distance between the shapes is normalized by shape absolute value.

2.6. Group 3: Seasonal Hourly Boxplot Graphs

The third and last features group is seasonal–hourly boxplot graphs. Taking separate
periods belonging to one of four seasons and generating a boxplot of the hourly energy
consumption is the initial definition of a boxplot. Figure 6 illustrates, per a specific season,
the boxplot as a mapping of normal distribution of a cluster of samples. In group 3, that is
the periods referring to the same time moment, taken from the entire load profile and not
of the same date.

Figure 6. Mapping of boxplot to normal distribution of a cluster of samples. Seven parameters
marked 1–7 are generated providing a panoramic view of the hour trend within a season.

The hourly boxplots generate a full entire load profile view. The boxplot was intro-
duced by M. E. Spear in 1952 [33] and again in 1969 [34] It is an effective tool for panoramic
display in terms of, for example, normal distribution. There are, of course, recent refer-
ences [35], and the boxplot has become a standard Python object in three libraries, seaborn,
matplotlib and pandas. Boxplot outliers are exceptions to the normal distribution within
the 0.1% of edges. The collaborative entire data view does not complete with a single
boxplot. There are twenty-four boxplots per twenty-four hours per day. Therefore, there
may be up to 24 ∗ 7 = 168 sub-features in group 3, providing a collaborative view of the
entire load profile data per season over several years. For four seasons there may be up to
4 ∗ 168 = 672 features per group 3.

Dimensionality reduction: on one hand, this is a panoramic view. On the other
hand, this may be too many dimensions, in terms of contribution to fraud detection. With
regard to efficiency, the software computes the Pearson correlation heatmap between all
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parameters to all, and especially to fraud, and about 61% are not correlated to fraud and
removed. The Pearson formula is:

ρx,y =
cov(x, y)

σxσY
=

n

∑
i=1

[
(

xi −
−
x
)(

yi −
−
y
)
]/[

√
n

∑
i=1

(xi −
−
x)

2
√

n

∑
i=1

(yi −
−
y)

2
] (6)

where:
σx, σy—the standard deviation of x, y;
xi object instance forecast;
yi object instance actual.
This function computes the correlation between these object instances, thereby reveal-

ing correlation in accordance with a specific classification algorithm. The Pearson formula
is a built-in Python function, it generates a correlation heatmap and is a method of library
scipy class stats.

A characteristic comparative view of a seasonal hourly boxplot, fraud verified (upper)
and non-fraud verified, is shown in Figure 7.

Figure 7. Season–hourly trend boxplot. Verified fraud (upper) vs. verified non-fraud (lower).

It is visible that the upper outliers count in a verified fraud example is much larger
than the verified non-fraud case. The boxplot carries much more information than that,
and therefore it is studied as 165 variables per season. We may even draw a connect-
ing and imaginary line between all boxes upper front of +25% (point 7 in Figure 6),
and an imaginary line connecting between all boxes, lower boundary −25% (point 3 in
Figure 6); an imaginary wavefront is observed and even that collaborative feature may
be investigated. Since especially group 3 generates 168 parameters times four seasons
(672 features overall) and the Pearson correlation heatmap reduces 60% of features, the three
groups act similar to a 2D facial recognition system of three sets of systems: fi(x, y) = 0
where i is group index. However, there are no faces herein, there are fraud/non-fraud
consumption all-data collaborative patterns. This is heuristically demonstrated in Figure 1c
middle function. It shall be shown why the algorithm is successful in many abnormal
‘classification procedures’, and is performance compatible with CNN, only with much less
data.
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2.7. Group 1: Energy Distribution Feature Extraction and Construction of a High-Order
Dimensional Space

A high-order dimensional space is constructed according to the model of
Equations (3) and (4). There are built-in algorithms that best fit a sum of two to three
Gaussians: Gaussian Mixture Model (GMM) described by Raynolds [36] and Kernel Den-
sity Estimation (KDE) with Gaussian kernel. KDE is most common, for example, with deep
neural networks where there are numerous works. A tutorial material on GMM method is
shown in [37].

From these systems, regardless of how they operate, results have in three features
per a single Gaussian: µ = Ecentral,i, hmax = N(E = µ), σ. A six to nine order space
is constructed. Since a human vision system is capable of visualizing only up to three
dimensions, the system order is reduced using: “Principal Component Analysis” (PCA)
transform [38]. PCA is a linear transform to a desired predefined dimensional space, where
the components are orthogonal. Figure 8 shows the sub-space of group 1 after PCA.

Figure 8. A 3D PCA transform of Gaussian Mixture Model of the energy distribution function. Points
are humanly clustered according to theft non-theft.

PCA has multiple roles, however, here it is used only for visual demonstration because
of a theorem that shall be proved herein, “higher order dimensional space potentially
increase distance between clusters” and because PCA is eliminating exceptions, and frauds
are exceptions.

It is visible even prior to execution of an AI clustering core that the fraud and non-
fraud cases are distinguishable. The frauds are clustered close to but not identical to the
walls of the 3D space: xi = 0 surfaces, where xi ∈ one o f {x, y, z}. This is not a coincidence.

This shall be analyzed and proved in the mathematical Section 2.8. A PCA transform
reduces dimensions to orthogonal space.

2.8. Group 2: Daily Hourly Trends Distribution Feature Extraction and Construction of a
High-Order Dimensional Space

As observed in a characteristic graph in Section 2.5 Figure 5, includes a verified
fraud and a non-frauds case, at least during regular days of week, not including the
weekend, are: (1) regularized graphs; (2) closely attached to each other on average. The
measurement of this closeness may be performed with a CNN object identification network.
It is implemented herein with parameters measuring the closeness of each figure to one
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another. Normalization is key, in order for results to be relevant for any consumer and
consumer profile. We define a measure of a normalized collaborative distance, in the L2
sense between two daily hourly trend curves Ci, Cj i 6= j. Notice normalization by one
of the curves so that the result is close to the [0, 1] range. Normalization is a very simple
mathematical trick and the concept behind it is not minor.

hi,j(L2)
=
√∫ ∞

0

∣∣pi(E)− pj(E)
∣∣2dE/

∫ ∞
0 |pi(E)|2dE

hmax = max
{

hi,j(L2)
, i, j ∈ (regular− week− days)

} (7)

where:
hi,j(L2)

—collaborative distance measurements between two daily curves pi, pj i 6= j;
pi(E), pj(E)—energetic daily-hourly curves as illustrated in Figure 5;
regular − week − days—for Christian-based weeks {Monday–Friday}, for Muslim

based weeks {Saturday-Wednesday} and for Jewish-based weeks {Sunday–Thursday}.
In general, not including weekends;

hmax—max pulling over all combinations of daily trends.
The proposed high-order dimensional space actually includes an entire range of

distances. For five regular days of the week, there are 4! parameters, meaning 24 dimensions.
Reducing that to 3D using PCA, the comparative view appears as shown in Figure 9.

Figure 9. 3D PCA transform of 24 parameters computing collaborative distance of the energy “daily–
hourly” function. Points are humanly clustered according to non-fraud (blue) and all the rest of the
space which is non-fraud.

Again, fraud is a single cluster while non-fraud is three clusters, and that is no
coincidence as shall be explained later.

2.9. Group 3: Seasonal Hourly Boxplots Extraction and Construction of a High-Order
Dimensional Space

The third and last group was defined in Section 2.6. It generates 24 h points times
7 features/hour = 168 features. The clustering core shall receive them filtered by the filter
“Pearson correlation heatmap”. The Pearson heatmap leaves 66 parameters out of 168. The
66 dimensions reduced to 3D by PCA are shown in Figure 10. A sharp-eyed observer shall
notice that: (1) the verified non-fraud is one cluster, and the verified fraud are three clusters;
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(2) that the verified frauds are clustered around the axes. A third observation is raw and
cannot be a coincidence, and following fraud detection two theorems are proved, showing
that there is mathematical regularity in fraud. Following Sections 2.5–2.7 and Figures 6–8,
it is clear that there may be clustering of frauds and non-frauds. The next section attempts
to theoretically prove this. Finally, it may be stated that a collaborative all three groups
high order dimensional space is also an option for fraud/no-fraud identification. It was
implemented as a preprocessor front-end to the clustering core.

Figure 10. 3D PCA transform of 66 parameters computing collaborative distance of the energy
“daily-hourly” function. Points are clustered according to non-fraud (marked with blue color) and all
the rest of the space which is non-fraud (marked with red color).

2.10. Proof of Fraud-Detection Theorems—A Mathematical Universal Foundation of
Fraud-Detection Theory

The objectives of this section are several-fold: (i) to provide a mathematical/physical
comprehension of the algorithm and its results; (ii) to provide for the first time a common
mathematical ground for all fraud detection algorithms that is also two-fold. (ii-1) The
tools presented herein may be replicated to other works. (ii-2) This section states that, for
all algorithms, regardless of the features used in their high-order dimensional space, there
is some structure to the fraud/non-fraud signature that is a common theme to all works.
(iii) To state more confidently that the five non-fraud reported “anomalies” in the current
paper are likely to reside, similar to our work, in the same spatial location as fraud. This
means that our important conclusions that are correct to the proposed algorithm are most
likely applicable to other works. (iv) To demonstrate techniques to separate these anomalies
from fraud. Otherwise, the reported accuracy is conditional that all five anomalies are
excluded. This, of course, shall yield a high false positive rate in the field. Let us start with
the theorems.

Theorem 2.10.1. Scope: local to proposed algorithm. The signature in PCA N-Dimensional
orthogonal space of any electricity system has common themes to all fraud and non-fraud cases in
the proposed algorithm:

• The non-fraud is farther from the planes xi = 0 than the frauds.
• There may be, at an N dimensional PCA, up to N fraud clusters closer to the planes.
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Proof. The energy taking into consideration the fraud case may be separated into two
sections, hidden and visible:

Eactual(t) = Evisible(t) + Ehidden(t)
Eactual(ω) = Evisible(ω) + Ehidden(ω)

(8)

where:
EActual—Energy that is actually consumed by the customer;
Evisible—Energy that is registered in meters in the fraud-case;
Ehidden —Energy that is not recorded by meters but is consumed by the customer in

the fraud case.
The feature space is a vector that each axis is dependent on the energy:

→
x = (x1, x2, . . . , xN)
where : xi = xi(Etotal), i = 1, . . . , N

(9)

where:
xi(Etotal)feature and axis in high order dimensional space, which is a function of the

fraud, as described by Equation (9). The meaning is for features defined in Sections 2.5–2.7
above.

At the proposed algorithm for features group 1 for example, these are the normal dis-
tribution coefficients extracted by the GMM. Assuming that the fraud-detection algorithm
is successful, then xi(Etotal) is a sharply varying function due to the absence of Ehidden.

∃xi ∈ {x1, x2, . . . , xN}
xi(Evisible)/xi(Etotal) 6= 1

(10)

There exists a feature xi such that the values of Evisible and Etotal are significantly
different. Going through PCA orthogonal transform [39]:

TL = XWL ‖TWT − TLWT
L ‖

2
2 → min

∃tj(E) tj(E) = f (. . . , xi, . . . .)

such− that :
tj(Evisible)

tj(Etotal)
6= 1

(11)

where:
X—represents all vectors

⇀
x . A matrix with raw vectors xk;

W—transformation matrix that minimizes the error over the entire set of vectors
⇀
x ;

tj—a vector in the PCA target-space.
Linearity of PCA transform and the error minimization of total squared reconstruction

error are important for preservation of differences between xi(Evisible) and xi(Etotal). For
our case, taking the features group 1 defined in Section 2.7, these are the {central energy,
variance and peak consumption} of each of the two Gaussians. In our specific algorithm,
the missing energy is shown to shave the peak, thereby reducing the peak consumption
and variance—xi(Evisible)/xi(Etotal) � 1 thereby getting closer to the xi = 0 plane for
these axes. This propagates through the PCA orthogonal transformation into tj(E) and
monotonity is conserved. Therefore, also for the PCA space:

∃tj(E) tj(E) = f (. . . , xi, . . . .)

such− that :
tj(Evisible)

tj(Etotal)
〈〈or〉〉1 (12)

∃—Signifies that there exists some items.
Taking group 3 of seasonal hourly boxplot trends, the features are the energetic

hourly average. Therefore, the ratios of this groups features shall be similar in the
xi(Evisible) and xi(Etotal), and in the PCA the features are ti(Evisible) and ti(Etotal).

That is proof for the proposed algorithm. �
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Theorem 2.10.2. Scope: universal. The signature in PCA N-Dimensional orthogonal space of any
electricity system has common themes to all fraud and non-fraud cases in any algorithm.

Proof. Same as for Theorem 2.10.1, except that we do not speak by example of groups 1–3
of our proposed algorithm. The strong effect of variable energy over the selected features is
inherent to the assumption that the algorithms are successful. If it is high, then it is implied
from the sharp effect of fraud on object location in the dimensional space. This may be
proved mathematically. �

Corollary 2.10.2.1. Scope: global to all algorithms. The algorithm’s accuracy is high IFF there is a
sharp slope. Mathematically speaking:

∀customerci accuracy( f raud/non− f raud) ∼= 1
IFF
tj(Evisible)

tj(Etotal)
〈〈or〉〉1

(13)

This Corollary shall not be proved, it makes sense, and it takes a large volume of
bi-directional proof and of opposite assumption negation and correlation of probability to
sharpen the variability of features dependent on fraud/non-fraud. �

Theorem 2.10.3. The energy distribution group signature at fraud is common also to CNN
self-generated features.

Proof. This result is correct because the energetic distribution is a spectral function, all
energy-based groups are spectral, and CNN is spectral due to convolution. �

Theorem 2.10.4. The relationship between energetic load profile Fourier transform to energy
distribution-function. The relationship between Gaussian-like energetic load profile, its energetic
spectral distribution and its energetic distribution function is the same as group 1. The theorem
states that both distributions, time distribution and group 1 distribution n(E) from Equation (1), as
well as spectral one n(ω), are Gaussian-like.

Proof. Is dependent on several corollary results.

Corollary 2.10.4.1. The time distribution of the consumption load-profile function is Gaussian-like
or, more generally, it is a sum of Gaussians with daily quasi-periodicity.

Writing down the energetic load profile is a Gaussian like function or more accurately
a sum of Gaussians. Why is that solution possible?

Nn,(Eo,n ,µn ,σn)(t) =
Eo,ne

− (E−µn)2

2σn2
√

2πσn
E(t) = Eload−pro f ile(t) = ∑

n
Nn(t)

(14)

where:
Nn,Eo,n ,Eo,n,µn ,σn

(t)—normal time distribution with parameters , Eo,n,µn ,σn .
Hence: (1) this distribution makes sense: a maximal timely hour of consumption is

reasonable and the law of large numbers, the large count being the periods count and the
continuous decline of peak, and rise to peak, makes the distribution Gaussian. (2) Second,
any continuous function is describable using a Gaussian kernel [40]. This is a known result
and Gaussian functions may serve as a kernel. The daily periodicity is due to “human
life-cycle”; humans work in a cycle of days. The quasi-periodicity is due to a load-profile
being a function of weather and a tariff program. If the customer is aware of the tariff,
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consumption shall be strongly correlated, and, if not, consumption shall not be strongly
correlated. �

Corollary 2.10.4.2. The Fourier transform or spectral of a Gaussian function is a Gaussian
function.

Proof. Taking periodicity to be daily, a known result from the theory of the Fourier
transform [38]:

En(t) = e−an(t−to)
2

En(ω) =
(√

π
a

)
e−π2ω2/αn

(15)

This completes the proof. �

Corollary 2.10.4.3. (1) The energy distribution function n(E) is Gaussian-like as defined in
Equation (3). (2) The Fourier transform of energy distribution is Gaussian-like.

Proof. The law of large numbers working on thousands of quarter-hourly periods yields a
Gaussian-like distribution, such as described in group 1.

ψE(t) =
1√
2π

(
2α

π

)1/4 ∫ ∞

−∞
e−α(k−ko)

2
eiωtdk =

∫ ∞

−∞
ψ′E(t, ω)dω (16)

What Equation (16) states is a sum of harmonics with continuous varying frequency
around a central frequency ko. Then, there is a proof at [38] that the Fourier transform is
transforming the Gaussian time-dependent distribution into another Gaussian distribution:

P(ω) = Fourier(E(t)) =

√
2α

π
e−2α(ω−ω0)

2
(17)

and that terminates theorem 2.10.4. proof. �

Theorem 2.10.5. Scope: local to the proposed algorithm. The features selected by the proposed
algorithm are stretching the distance between fraud and non-fraud signatures, as compared to the
time-domain load profile.

Proof. Figure 11 illustrates the stretching of the distance in virtual space between two
clusters. There is still a sticky glue between the clusters due to fraud/non-fraud rare objects
residing in the space between the clusters. �

Figure 11. The time-domain signature of the load profile is drawn at origin. The high-order dimen-
sional space increases the distance between the clusters, thereby separating them.
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Group 1 energy extracted parameters from GMM. Observing Figure 4, the fraud shaves
the entire Gaussians. Empirically from Figure 4 and theoretically from Theorem 2.10.1, the
following inequalities exist:

xi = E
(

µ f raud

)
<< E

(
µno− f raud

)
xi = σno− f raud 6= (not_equal)σf raud
E
σ ( f raud) << 1 << E

σ (no− f raud)

(18)

Group 2 daily hourly trends: extract distance between curves and then maximal
distance. empirically from Figure 5 and theoretically from Theorem 2.10.1:

dmax = max
{

di,j
}

i 6= j
dmax( f raud)� dmax(no− f raud)

(19)

Group 3 seasonal–hourly boxplots: taking the outliers count for example:
outlier( f raud) � outlier(non− f raud) and in general without entering into details:
f eaturei( f raud) 6= f eaturei(non− f raud).

Looking in each sub-space 1–3 separately or in the collaborative sub-space, the distance
between a vector of fraud and a vector of non-fraud:

−
dL2

(→
x f raud,

→
x no− f raud

)
=

√
N
∑

i=1

(
xi, f raud − xi,no− f raud

)2
6= 0

even :
−
dL2

(→
x f raud,

→
x no− f raud

)
>> 1

(20)

The same rule applies for PCA vectors
⇀
t ∈ T.

It is worth stating again that using the Pearson correlation heatmap between all fea-
tures to fraud, the non-correlated features are dumped. Equation (20) proves
Theorem 2.10.5. �

Statement 2.10.1. (a) Non-linear classifiers shall be more effective than linear classifiers when
there are sufficient data. When there is a small dataset, provided that the problem is linear, then
linear classifiers are better. (b) If classified clusters are sufficiently far, a linear classifier will suffice.

This is not a theorem, it is known from previous work, to be verified at results section.

2.11. Fraud-Detection Data Augmentation—Importance and Difference from Load Forecasting
Data Augmentation

This is simple replication of data with 10% white Gaussian noise. Augmentation stops
when the dataset is increased to ~200 fraud validated meters.

2.12. Cascading High-Order Dimensional Space, Followed by Correlation Heatmap Filter, to a
Clustering AI Core

The clustering AI core is constructed by a series of five classical machine learning
(meaning non-deep learning) clustering algorithms. The high accuracy in field tests is
obtained after data augmentation, which is required at least initially until a large verified-
fraud samples count is obtained.

2.13. A Short Introduction into the Machine Learning Classifiers

Five machine learning algorithms are used for comparative study, as well as Ensemble
learning for future enhancement of the ability to distinguish different types of anomality.

Table 1 lists down the classification/clustering algorithms, sources of information
about them and linear/non-linear tagging. Research usually results in a conclusion concern-
ing what outperforms: linear/non-linear, and intuitively this should be non-linear because,
in theory, non-linear includes linear and because, in theory, the problem is speculatively
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non-linear. Surprising insights are expected herein, all are comprehended and shall be
presented.

Table 1. List of implemented classifiers, references for further reading and linearity/non-linearity tagging.

Classifier Type References Linearity Comments

Random forest [39,41,42] Non-linear Known as bootstrap bagging
Decision tree [39,42] Non-linear

The k-nearest neighbors (KNN) [39,42,43] Non-linear

Logistic regression [39,42,44] Linear More correctly known as generalized
additive model

Ridge [39,42,45] Non-linear Non-linear enhancement to linear classifier
Known as Tikhonov regularization

Support Vector Machine [39,42,46] Non-linear

2.14. Reduction of False Positive Rates—Sub-Algorithm for Maintenance and Cyber-Attack and
Sub-Algorithm for Data Mismatch
2.14.1. Forward

When the proposed algorithm was initially operated, there was a high rate of 10–20%
of false positives. Eventually, it was discovered that there were additional anomalies at
the grid that are non-fraud: (1) a fault in the smart grid/metering data chain caused by
data mismatch, imperfect data transfer or a faulty component on the path from the smart
meter front end to the data warehouse back end. That anomaly type tends to show more
in the infancy stage of the smart metering; however, whoever is handling a real smart
metering system knows this never ends, such as on-going of new technologies and modules
inserted into the system, meter types, software modules, new firmware versions for meters
and data concentrators. (2) Anomaly due to preventive maintenance issue; this is half
of a problem, since it requires that different technicians go out to the field. (3) Anomaly
detection due to cyber-attack intrusion. It is suspected by the current research group
that these anomalies shall appear in other algorithms in the world as well, since in any
collaborative features space, these anomalies look more or less similar to fraud detection
until plenty of tagged data are accumulated. Especially after performing the survey in the
introduction, most algorithms look for difference in energy consumption as compared to
regular consumption. As the series of fraud-detection theorems suggest, fraud is a very
distinct mathematical signature almost regardless of the set dimensional space, even if
the features are different. Fraud shaves some of the features and tends to occur close to
the surfaces {xi = 0} of the specific features high-order dimensional space constructed
in a specific algorithm. It is therefore important to describe how the other anomalies are
identified, otherwise the proposed algorithms require an extremely large dataset of tagged
ground zero fraud/non-fraud. For a robust operation, it is important to describe these
sub-algorithms. The approach of the proposed algorithm was to consider the flags set
by the fraud-detection algorithm, somewhat like the approach applied for accounts of
financial frauds [47]. The other conclusion was to operate specialized sub-algorithms of
anomaly detection for handling these anomaly-type detections.

2.14.2. A Specialized Sub-Algorithm for Preventive Maintenance and Cyber
Intrusion Detection

For intrusion detection and preventive maintenance, another algorithm taking multi-
sensor dimensional space, including fusion of electricity knowledge with deep learning,
was applied [30] using a patented technology. The other sub-algorithm is more physically
oriented to electric components failure types and grid-interpreting.

2.14.3. Data Mismatch in Smart Metering Chain—Detection Sub-Algorithm

For identification of a fault in the data chain following the algorithm was applied.
“Out of the eater, something to eat; out of the strong, something sweet.” turns out as the
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Bible, book-of-judges Chapter 14, Samson’s riddle notifies. Figure 12 describes a smart
grid/metering data chain and a fault detection system within that chain. After additional
examples of such verified anomalies occur, in the future it is considered that the “fraud-
detection” core shall be capable of classifying the anomalies by itself. The fraud detection
algorithm, which is also a primary anomaly detection algorithm, receives the load profile
at the smart grid/metering data-chain back end which is at the data warehouse. A data
chain is very abstractly described herein of a real system at a local utility company which is
the DSO. It includes six main sub-systems and actually includes many more, amounting to
twenty stations. The front end is the smart meter generating load profile data over which the
fraud detection algorithm operates. If it is a PLC or RF mesh communication method, then
the second station is the data concentrator/gateway located at the distribution transformer
station, aggregating data from 100 up to 1000 smart meters. The next station, a cyber-
secure grid, required as a firewall, is a physical component. Next is some HES located
at the SFTP protocol server or separately. Next in line is the Meter Data Management
System which is a central station storing and processing smart meters data. Last in the
chain is the Data warehouse. In practice, there are numerous other stations. There is
the Work-Force Management (WFM) tool to manage the smart metering deployment.
There are numerous other cyber systems, at least for some DSO-s, a field application for
install/replace/uninstall/read/ firmware update for field technicians, the Geographic
Information System and the billing system. The Datahub provides validated data to
the customers and suppliers within 24/30 h in accordance with directive EU/944/2020.
There is the second channel of non-validated data to In Home Display. Prior to sending
technicians to the field, it is required to determine whether the alert by one of the three
groups: distribution, “daily-hourly trends” or seasonal–hourly trends is data mismatch. If
not, and if there is no failure of types (2) + (3) described above, then it is electricity fraud. In
order for the load profile to be read from successive stations: (1) data warehouse and Meter
data management system (MDM), (2) MDM and head-end system (HES), (3) HES and
SFTP (secure FTP protocol server), (4) SFTP and firewall, (5) firewall and Data concentrator,
(6) Data concentrator and meter: order of scan is from smart meter to data warehouse—
same order of data flow. Components are smart metering project dependent and vary
from one project to another. At the first two components of the data chain: meter/data
concentrator, where there is a mismatch starting meter/data concentrator couple, then that
is the fault location. In order to be able to practically access multiple isolated environments
protected with cyber, a “Robotic Process Automation” platform (RPA) is introduced. There
are at least twelve such platforms, such as UIpath, Runorex and Eggplant. The one
implemented by the proposed algorithm is UIpath, however, any RPA shall suffice. The
RPA is used for smart metering testing automation and procedures automation. It accesses
any of the isolated systems through their GUI using a username and password. In its
simplicity lies its success, because previous generations attempted to access the smart
metering components through the MDM and failed. In the Results chapter, two examples
out of numerous examples shall be provided for real faults, starting from: what does their
load profile time-series look like, how do the features look and what is the Root Cause
Analysis (RCA)? The system is applied at local DSO and alerts faults up to one year before
the “Fault Management” system based on events and energy sanity checks.

Our group’s learned lesson from RPA is not to always stick to AI only and become
open to other advanced technologies in collaboration with the AI. The main strength of
RPA is simplicity: access using same authentication as human user. From there it is OCR
like cognition. The main difficulty is how to perform this cyber secure. RPA is 100% AI in
the sense of visual object identification.



Sustainability 2021, 13, 10696 22 of 38

Figure 12. Fault identification and allocation system within heuristic data chain. HES stands for head end system. Robotics
is implemented using the UIPath platform, for example. There are at least dozen “robotic process automation” (RPA)
platforms such as for example: Runnorex, Eggplant-software.

2.15. The Statistical Meaning of Ignoring or Inclusion of the Other Anomaly Phenomena—For at
Least Some of Fraud Detection Algorithms

Reported accuracy results presented in other works are potentially results after filtra-
tion of these used cases, and that is a conditional probability:

p(
→
x |→y ) =

p
(→

x∩→y
)

p
(→

y
)

→
y =

N
∩

i=1
not(yi)

→
y = (y1, y2, . . . , y6)

(21)

where:
⇀
y —a logical and of not being an event type from the following types:

1. “not data mismatch anomaly” ∩;
2. “not preventive maintenance anomaly” ∩;
3. “not a cyber-attack anomaly” ∩;
4. customer information: “customer not from high socio-economic status” ∩, “customer

not abroad” ∩ “customer is not from town with low fraud rate” ∩;
5. “not super consumption” ∩;
6. “events from smart meter included”—magnetic tampering, and front-panel opening.

Count of no events is from total anomaly count, and not from entire customer count.
⇀
x —event that customer with “specific fraud signature” from ∪groups(i), i = 1, . . . , N + 1.

This is the vector in high-order electro- consumption-trend dimensional space, where
the extra event is of fraud. For some algorithms, Equation (21) yields a higher accuracy
probability than it actually is because it is a biased probability. In Section 2.8, it was
demonstrated that some patterns exist in all algorithms regardless of the algorithm.
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2.16. A Discussion as to Why Does a Linear Classifier Outperforms Non-Linear Classifiers for
Some Cases

The logistic regression classifier outperforms the other classifiers by a large gap. In
addition, it is not so intuitive that a linear classifier is better than a non-linear classifier. The
reason for this result is a combination of two factors: (1) according to the 3D PCA view of
three sub-spaces, the distance between fraud clusters and non-fraud is noticeable. Then,
the problem is linear in the sense that there is no problem to set a surface separating the
non-fraud from the fraud clusters. (2) In addition, there is inherently little original data
at the start of the algorithm operation. This issue has been discussed in the introduction:
fraud detection datasets are either empty or presented with less concrete data, which is
possibly due to non-violating regulator legislation with regard to customer privacy, and not
to expose proprietary or theft knowledge. Data augmentation maintains the same fraud
profile and generates points in the same existing clusters. Referring to (1), the proposed
models for which the linear classifier outperforms the non-linear classifier are named
“Additive Models” [48] (AM). Logistic regression is an additive model. A mathematical
definition showing it is a pseudo-linear estimator:

given− dataset
{

yi,
→
Xi =

(
xi1, xi2, . . . , xip

)}n

i=1

E[yi|xi1, xi2, . . . , xip] = β0 +
p
∑

j=1
f j(
→
X j) + ε

where : E[ε] = 0, Var(ε) = σ2, E
[

f j
(
Xj
)]

= 0

(22)

where:
⇀
Xi =

(
xi1, xi2, . . . , xip

)
—vector of several predictors—herein the original features;

there is a classifying plane separating a non-fraud single cluster and frauds of three clusters.
The clusters for 3D are 2D and even 1D.

yioutcome. For a dataset this is the known tagged outcome;

f j

(
⇀
Xj

)
—unknown smoothing function set that are computed by the algorithm for

fitting the data;
ε—some remainder with zero mean and variance σ which enables the smoothing;

f j

(
⇀
Xj

)
—with zero mean.

Generalized Additive models are effectively Bayesian with a prior distribution that
places weight on additive effects and places little weight on non-additive (interactive;
synergistic) effects. This means that, in the constructed space, the three groups defined
are independent of each other. Bayesian means that knowing an average then what was
previously bigger than average, shall be predicted as smaller than average, and vice versa.
The combination of two factors, (1) and (2), causes the problem to be linear of additive,
and a linear classifier uses less data, better fits the data and executes less time, which is
less relevant herein because other classifiers consume five minutes each. The proposed
algorithm is maintaining at least random forest and decision tree non-linear second-best
classifiers, due to exposing new fraud profiles in the future, where a non-linear algorithm
shall cover that, but a linear model shall not cover it. Future research: a model that has
not been tried and is recommended for trial is the enhancement of an AM model to a
Generalized Additive Model (GAM) [49]. The advantage is that, although GAM is additive,
meaning pseudo-linear, it generates boundaries that are not flat: GAMs use the equation
of a straight line but allow nonlinear relationships between the predictor variables and
the outcome. An additive model is not a straight line or flat surface. It looks more like a
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non-linear classifier [50,52]. Initially a geometric series expansion of the logistic sigmoid
function:

y(x) =
1

1 + e−x =


1− e−x + e−2x − e−3x =

∞
∑

n=0
(−1)ne−nx e−x > 1→ x < 0

ex[1− ex + e2x − e3x] = ∞
∑

n=1
(−1)n+1enx ex < 1→ x < 0

(23)

ex may be expanded as the Taylor series showing that in the linear range it is linear,
with xn additional variables entering for larger x values. Logistic sigmoid is what makes
deep neural networks work, being an activation gate. This is possibly the first time that
expansion of each ex into the Taylor series is performed in a scientific paper in order to
demonstrate how linear they are. For x < 0:

1−
∞
∑

n=0

(−x)n

n! +
∞
∑

n=0

(−2x)n

n! − . . . + (−1)k ∞
∑

n=0

(−kx)n

n!

= 1− αx + βx2 . . .− γ2nx2n + γ2n+1x2n+1 . . . . ∼=
0<x�1

1− αx
(24)

The variables (−kx)n

n! converge fast since n! grows faster than (−kx)n regardless of k
and x. Therefore, the series converge quickly in its two ranges, x > 0 and x < 0.

3. Results
3.1. General Results

For a mathematical description of the four variables: precision, recall f1-score and
support, kindly refer to paper [51] Briefly, let us mark the following: TP− True positive,
FN − False negative, TN − True negative, FP− False poisitive. Precision is true positive
plus true negative (TP + TN)/(TP + TN + FP + FN) over all occurrences and is the clos-
est terminology to what is expected: how many fraud/non-fraud guesses are correct.
Accuracy is TP/(TP + FP). It is the following: out of all positive guesses, what is actually
a true positive fraud identification. Recall is TP/(TP + FN). It is out of all correct identifi-
cations TP, FN, those who should be reported as true and should be reported as false and
what is the percent that was detected as such. This is more a measure of data balancing.
f 1− score is complicated. It is the harmonic mean of the precision and recall, where an
f1-score reaches its best value in 1 (perfect precision and recall). It is important where both
precision and recall are important as a mean. Results are summarized in Table 2.

A second comparative result is the confusion matrix. Herein, there are no comparative
results elsewhere. Table 3 lists the results.

Indices legend: 1,1—fraud taken as fraud, 1,2—fraud taken as no-fraud, 2,1—no-fraud
mixed as fraud, 2,2—no-fraud taken as no-fraud

A discussion as to the performance of each algorithm is performed below.

3.2. Random Forest Classifier

The results of the running random forest are shown in Table 2 and the confusion
matrix results are shown in Table 3. Since all accuracy measures are around 0.92, this means
92% accuracy and ±8% uncertainty, which means 0.83% in the worst-case scenario. This
paper functions as an innovation to previous works and it shall be demonstrated how
accuracy is improved by reduction of false positives. Computation is in accordance with
paper [50], and expectancy from a non-linear classifier is in accordance with Theorem 2.10.3,
Section 2.10. Non-fraud precision is considered high and possibly improves with additional
data. However, for fraud, there are gaps between non-linear classifiers.
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Table 2. Summary comparative table of all tried algorithms plus others from comparative works 1.

Fraud 1 Non-Fraud 1

Model Accuracy
Macro, weighted Precision f1-Score Recall Accuracy Precision f1-Score Recall

Proposed SVM + HDS 2 0.81 0.81 0.5 0.33 0.81 0.62 0.77 1

Proposed Ridge + HDS 0.81
0.8

1 0.55 0.33 0.81
0.8 0.81 0.77 1

Proposed KNN + HDS 0.88 1 0.800 0.67 0.88 0.77 0.67 1

Proposed RF + HDS 0.92
0.91

1 0.88 0.78 0.92
0.91 0.83 0.91 1

Proposed DT + HDS 0.95
0.95

1 0.94 0.89 0.95
0.95 0.91 0.95 1

Proposed LR + HDS 1
1

1 1 1 1
1 1 1 1

Wide & deep CNN [17] 0.9503 0.9503 0.9093 - - 3 - - - - - - - -

SVM
w/o preprocess 0.772 0.765 0.863 - - - - - - - - - -

LR without preprocess 0.676 0.645 0.937 - - - - - - - - - -

CNN 0.812 0.805 0.845 - - - - - - - - - -

RUSBoost 4 0.869 0.85 0.871 - - - - - - - - - -

CNN+Work [52] with preprocessing
and supervised learning 0.95 0.93 0.937 - - - - - - - - - -

1 Best result reported by paper—among various parameters trials. 2 HDS—high-order dimensional space. 3 All fields marked with - -.
Not reported by paper or by dataset does not mean it is after data filtration. It is likely that had it been the case, it would be reported.
4 RUSBoost—Random Under Sampling Boosting.

Table 3. Confusion matrix. Non-diagonal elements mark confusion level.

Non-Fraud Fraud

Index→
Model↓ 1,1 1,2 2,1 2,2

Proposed SVM + HDS 1 3 6 0 10

Proposed Ridge + HDS 3 6 0 10

Proposed KNN + HDS 6 3 0 10

Proposed RF + HDS 7 2 0 10

Proposed DT + HDS 8 1 0 10

Proposed LR + HDS 9 0 0 10
1 = HDS.

3.3. Decision Tree Classifier

Table 2 shows the classification report results for a decision tree, and Table 3 shows
the confusion matrix results. Computation is performed in accordance with work [23].
The decision tree classifier performs well at verified frauds and relatively good in verified
non-frauds. It performs better than random forest in the overall functioning.

3.4. KNN Classifier

The classification report results of the KNN performance are shown in Table 2, and
the confusion matrix is shown in Table 3. The results are medium. With such a high
true negative, it is impractical to use KNN in a preliminary size of dataset. It may be
reconsidered after the dataset increases.

3.5. Logistic Regression Classifier

Logistic classifier and a linear classifier classification report are presented in Table 2
and the confusion matrix is presented in Table 3, herein. The results are outstanding.
Reference as to this surprising result shall be explained in the end of the presentation of
all classifiers results. It should be noted that, even with a larger dataset enhanced with
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fraud-detection data augmentation with white Gaussian noise (WGN) insertion, the result
is maintained. The non-diagonal components of the confusion matrix are zero.

3.6. Ridge Classifier

Ridge classifier otherwise known as Tikhonov regularization [45] is non-linearization
to linear regression using:

βridge = argminβ∈R‖y− xB‖2
L2
+ λ‖B‖2

L2
(25)

where:
βridge—the minimization (argmin) of the loss function;
y—the actual result;
x—the input vector, B—the

{
βi,j
}

matrix that solves the minimization problem;
λ—regularization penalty parameter;
‖ ‖L2 is norm in the L2 sense.
The classification report and confusion matrix are computed according to [23] and

presented in Table 2, and the confusion matrix is presented in Table 3. The results are
relatively not highly accurate, especially for the non-fraud.

3.7. Support Vector Machine (SVM) Classifier

The support vector machine classification report and confusion matrix are computed
in accordance with [23]. The classification report results are shown in Table 2, and the
confusion matrix results are shown in Table 3. They are same as ridge regression and are
relatively not accurate.

3.8. Concluding Discussion as Regards to Which Algorithm Outperforms

The logistic regression classifying core outperforms the other classifiers when the
preliminary local DSO dataset size is small. This is in accordance with Section 2.15. The
architecture implemented by this group are ensemble learning of logistic regression (LR),
Random forest and Decision tree. After additional verified frauds are added to the train-
ing dataset, the non-linear classifiers shall compete with the accuracy of LR. The second
significant conclusion from Table 2 is that the comparative performance of the proposed
algorithm is comparable and equivalent to the best performing reported algorithms [52,53].
Undoubtedly, there are other good works. The accuracies reported by other works are
potentially following Equation (21) Section 2.14, specifically, assuming a conditional prob-
ability that the rest of the anomalies are filtered out, and that other works potentially
have methods for separation of phenomena or their algorithm is capable of separating the
phenomena and are not reported in fraud-detection papers.

3.9. Example No. 1: A Mismatch Caused Due to Incomplete Load Profile Transition between MDM
Database and Data Warehouse Database

Figure 13 demonstrates a real cellular polyphase direct meter in residential premises.
An infancy stage of smart metering system, very common to system deployment, it turns
out that as the Meter data management system (MDMs) is dispatching load profile and
events log data to the data warehouse—at mass data transfers, some of the data are missed.
The MDM is highly secured against cyber-attacks. The data warehouse (DWH) is in the
De-Militarized Zone (DMZ). The DMZ is in the zone between inside the distributed system
operator (DSO) secured environment and outside the environment. A Data Hub is an
interface from which data are available through web-portal and application to suppliers,
customers and third part companies approved by the customer for energetic efficiency, as
specified by EU-28 benchmarking 2020 [1]. Data warehouse significance is comprehended,
it is the gate to data distribution. Figure 13 demonstrates the load profile of the same time
segment at MDMs and at DWH. Figure 14 demonstrates the collaborative all data features.
They look anomalous, similar to fraud-detection in a sense because “energy is erased” from
distribution. Observant individuals shall notice mild differences from fraud. “Daily–hourly
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trends” are not entirely un-ordered, they are correlated simply differently than non-fraud
and fraud validated trends. The Q4 hourly–seasonal boxplot is not normally individually
distributed, the Q2 is the same. Q3–Q4 hourly–seasonal boxplots have plenty of outliers
but with partially erased all-year normal-like distributions. Something such as a 2D CNN
“object identification” core would be capable of differentiation between anomalies. The
presented result is in accordance with that reported in Section 2.14, Equation (21) and the
implemented system described in Figures 2 and 12.

Figure 13. Load profile (a) at the MDM system vs. (b) same meter load profile at the DWH system. Data are initially read
by anomaly detection system at DWH, alerted and then the Robotic Process Automation system UIpath compares load
profiles between MDM and DWH.
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Figure 14. Collaborative all-data trends: (a) energy hourly distribution, (b) “daily-hourly” trends, (c) hourly–seasonal
boxplot Q4, (d) hourly–seasonal boxplot Q3, (e) hourly–seasonal boxplot Q2 and (f) hourly–seasonal boxplot Q1. Notice
similarity to fraud detection.

The anomaly detection system for data faults identified the above fault based on the
same signatures from what is called the fraud detection system. The remedy involved
installation of a control, feedback and re-dispatch of data from MDM to DWH until it
succeeded. This gradually and convergently, with the iterations count, reached 99.9%
complete DWH. In Figure 14, the energy distribution is similar to a spectral distribution
drawn from FFT, in accordance with Corollary 2.10.3, Section 2.10 and Equation (17). This
means that convolution layers of CNN that are spectral in nature shall yield a similar
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inherent signature. The energy distribution 3D PCA shall also look similar in accordance
with the universal fraud-detection Theorem 2.10.2, Section 2.8. Figure 14b–f appear in
accordance with the universality Theorem 2.10.1, Section 2.10 when cutting energy from
distribution.

3.10. Example No. 2: A Multiplication Factor Zeroing Due to MDM Multiplication-Factor
Configuration Bug

Figure 15 shows load profile of a CT connected meter at MDM left (Figure 15a), at
DWH left (Figure 15b) and meter event log file read from DC.

Figure 15. A CT connected meter, initially alerted by the fraud-detection algorithm, a sudden drop of load profile energy
readings observed identical (a) at MDM (b) and at PLC Data concentrator. Identical load profile—different representation in
different systems. (c) Scanning of events log file detects problem starts immediately at daily time synch by SNTP server.
Further Root-Cause Analysis continues from there.

Figure 16 shows the collaborative-all data features of the data mismatch due to the
multiplication factor issue. Again, this looks like fraud detection, although the observant
may notice slight differences that a 2D object identification CNN may detect. Left is MDM
(Figure 15a) and right is PLC data concentrator (22-b)—same load profile—as sampled by
RPA. This is not missing load profile segments, rather it is a modified behavior which is
noticed by any fraud detection algorithm, which means it is false positive that requires
separation. Root-Cause Analysis involved analysis of an events log file (Figure 15c) and
showed simultaneity of occurrence of a configuration event at time 00:15, together with the
fact that the meter internal multiplication factor was nearly zeroed at 00:15 minutes, due
to a wrong configuration by the MDM system bug. The configuration action was a time
synchronization via the SNTP protocol with a master time server and the multiplication
factor reduced by orders of magnitude for a meter. That bug does not occur for every
meter but for one out of ×10,000 smart meters. The relevancy of this is two-fold: avoiding
fraud detection false alarms and detecting important anomalies in the smart metering
data chain. This tends to be unnoticed in large scale deployments unless some rules are
asserted. Figure 15a,b energy distribution is similar to a spectral distribution drawn from
FFT, in accordance with Corollary 2.10.4.3, Section 2.10. This means that convolution
layers of CNN that are spectral in nature shall yield similar inherent signatures. The
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energy distribution 3D PCA shall also look similar in accordance with universal fraud-
detection Theorem 2.10.1, Section 2.10. Figure 16b–f appear in accordance with universality
Theorem 2.10.1, Section 2.10. when cutting energy from distribution. In addition, other
algorithms featuring space shall look similar in the sense described by Theorem 2.10.2,
Section 2.10.
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3.11. Super-Consumption: Detection of a 3rd Party Consuming Energy from an
Observed Consumer

The proposed fraud detection algorithm was applied not only for sub-consumption
detection but has also alerted to super-consumption incidents which implied another type
of fraud, fraud of one consumer connected into another consumer. Figure 17 shows a case
where the daily–hourly trend on weekends showed a steep rise in consumption.

Figure 17. super-consumption. “Daily–hourly” trends of a small business consuming electricity
through the meter of a larger neighboring customer who pays the bill. This is detected by noticing a
sharp rise at night during weekends and during other “weekdays”.



Sustainability 2021, 13, 10696 30 of 38

This trend is also observed during the rest of week, indicating the uniqueness that
must be noticed. In the evening, some unexpected rises in consumption may occur. This
could be due to one of four reasons in the smart metering system, as summarized in Table 4.

Table 4. Four scenarios that resemble Figure 17 “daily–hourly” trends.

No Scenario Description

1 fraud from the supplier customer is stealing electricity from supplier

2 third party customer connected to larger
neighboring consumer larger consumer is unaware of paying the bill

3 PV of customer At night PV gradually stops generating energy and
self-consumption is from the supplier

4 A customer with second active cycle at night A factory with two shifts

The scenario herein was of a small business consuming electricity from a school.

3.12. Comparative Empirical Study to Other Fraud Detection Algorithms

The results of the presented algorithm are compared here to other works on fraud-
detection, therefore it is not necessary to repeat the table here. Work by Kahn et al. [52]
performed a state-of-the art survey over datasets in Table 2, where eight datasets are marked.
This paper also performs a comparative work between algorithms SVM, logistic regression,
CNN and XGBoost. The authors proposed their model especially in Figure 11 and Table 2,
showing up to 95% accuracy. Work on CNN by Z. Zheng et al. [17] shows, in Table 2, a
comparative work and demonstrates 96% accuracy. It appears that the proposed algorithm
has an equivalent accuracy of 95%. In Table 5, the proposed algorithm performance results
are an average of fraud and non-fraud. This provides a balanced point of view over
imbalanced data.

How to interpret this table: provided that all non-fraud anomaly events are filtered,
this table reflects comparative performance. Sometimes other algorithms are better and
sometimes they are worse than the proposed algorithm. Generally speaking, the proposed
algorithm is equivalent to the best performing algorithms. However, there is a hidden
assumption. There are aspects presented herein which are not presented in these powerful
previous works with valuable work on data im-balancing, normalization and feature
generation. These aspects are real and shown herein; exemplary works are [27], as believed
to be common to many algorithms. Therefore, the accuracy results presented in other
works are results after filtration of these “use cases”, and that is a conditional probability
defined in Equation (21). This equation yields higher accuracy probability than it actually
has because it is a biased probability. Now, let us review the “if’s” which are again specified
in Table 6.
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Table 5. Comparative accuracy 1 between proposed fraud detection system and known systems from the literature.

Model Accuracy
(Theft/NON-theft Avg)

Precision
(Theft/Non-Theft Avg)

f1-Score
(Theft/Non-Theft Avg)

Separation of Data
Mismatches Anomaly-

Reported Yes/No 3

Separation of
Preventive

Maintenance
Anomaly—Reported

Yes/No

Separation of
Cyber-Attack

Anomaly—Reported
Yes/No

Reported Super
Consumption

Identification and
Separation (Yes/No)

Proposed SVM + HDS 2 0.81 0.81 yes yes yes yes

Proposed Ridge + HDS data yes yes yes yes

Proposed KNN + HDS 0.84 0.885 0.835 yes yes yes yes

Proposed RF + HDS 0.89 0.915 0.89 yes yes yes yes

Proposed DT + HDS 0.95 0.955 0.945 yes yes yes yes

Proposed DT + HDS 0.95 0.955 0.945 yes yes yes yes

Proposed LR + HDS 1 1 1 yes yes yes yes

Wide & deep CNN [17] 0.9503 0.9503 0.9093 no no no no

SVM
w/o preprocess 0.772 0.765 0.863 no no no no

LR without preprocess 0.676 0.645 0.937 no no no no

CNN 0.812 0.805 0.845 no no no no

RUSBoost 0.869 0.85 0.871 no no no no

Work [52] with
preprocessing and

supervised learning
0.95 0.93 0.937 no no no no

1 Best result reported by paper—among various parameters trials. 2 HDS—high-order dimensional space. 3 Not reported by paper or by dataset does not mean it is after data filtration. It is likely that had it been
the case, it would be reported. RUSBoost—Random Under Sampling Boosting.
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Table 6. Non-fraud anomalies or information that should be classified as a separate issue.

Type of Anomaly that Is Non-Fraud to Be Classified
as Separate Description

Mismatch at smart metering data chain Data mismatch

Preventive maintenance alert Anomaly due to failing equipment

Cyber-attack alert Anomaly due to cyber-attack

Super-consumption Anomaly due to one of Table 1 events

Customer textual data Statistical data as to customer: geographic location, socio-economic
information (such as consumption), abroad/not-abroad

There are lessons from this comparative study, as compared to other works:

1. Maturity stages algorithm selection: during algorithm operation, the infancy stage
(20 m dataset) logistic regression is superior. In the first (200 m) and second maturity
stage, RF and DT are preferable. In the second maturity stage (10,000 m dataset),
CNN/LSTM may be better. RF and DT are implemented herein.

2. One of the lessons learned from the current study is that the existing training datasets
[31,32] are recommended to scientific community judgement, to be enhanced to
include varieties of the “use cases”, reported for example by current research and
by [54] or to be tagged as additional anomalies [30].

3. There are works on the reported non-fraud anomalies [28,55] and works on fraud-
detection. It is recommended for scientific community judgement to publish works
collaborating these world contents in order to reflect algorithms that shall actually
work in the field.

4. Ignoring the above-mentioned phenomena, sending teams to the field is costly. Fraud
detection departments are pragmatic; if it is unworthy, they should stop using the
algorithm.

5. Another conclusion is that part of the reported accuracies are of a dataset filtered
out of the reported phenomena, and in field tests they might potentially become of
lower accuracy. The other alternative is item 5 herein. There are non-fraud embedded
samples and they are not absolutely verified as non-frauds.

6. Another conclusion is that until dataset enlargement happens, it is necessary to add
a field test bench on top of the training dataset validation, where a qualified fraud
detection team goes out to the field in order to validate the fraud, and where emulation
of fraud is set as a test for the algorithm’s correct performance. What does not work
reinforces the algorithm, and the next time it shall operate more accurately.

7. The last conclusion is that running on datasets without tagging of fraud cases means
that there is no actual validation that the cases are fraud, verified cases show in the
dataset. Taking, for example, data mismatches at a smart metering data chain.

3.13. Discussion of Other Algorithms Patterns in Light of the Mathematical Background

Section 2.8, Theorem 2.10.1 stated a non-revolutionary statement. Successful fraud-
detection algorithms shall yield a significant distance in high order dimensional space.
The second part of theorem was significant. The absence of hidden electric energy shall
yield such a distance, and potentially other anomalies which are exemplified as absence of
energy may be located in the same location of a high order dimensional space. There are not
too many fraud-detection works that demonstrate figures of the signature difference. One
noticeable work that does draw graphical signatures is [56] by F. Wang et al. observing, for
example, Figure 3 in that paper, the Pearson correlation heatmap (PCC). It is noticeable that
the non-diagonal cross-correlation coefficients are negative for fraud and positive for non-
fraud. Drawing a 3D high-order dimensional space would yield two surfaces or clusters,
one above z = 0 plane and one below (fraud). Observing Figure 4, the Autocorrelation
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function (ACF) is more ordered and abrupt for non-fraud. Such a distinction may be
identified with a CNN, as the above-mentioned work suggests. Putting this in high-order
dimensional space, there shall be noticeable distance between fraud and non-fraud.

4. Discussion

The research that was performed by this group has opened for us a window of several
interesting items for further fast socket-like enhancement.

4.1. Application of Algorithm to Fraud Detection of Individual Customer from the
Distribution Transformer

The same algorithm for fraud detection of an individual customer may be used
from the distribution transformer. If the average number of customers connected to the
distribution transformer is 100, this means that a detection of 0.5% fraud, as compared to
a challenge of detection of 33%, 66% fraud at an individual customer smart meter. The
algorithm shall alert on fraud, not when a customer is the thief. Justifications for such
an ability are: (1) save computation effort by a factor of ×100; (2) if successful, that shall
potentially enable a low voltage distribution and conduction grid “technical and non-
technical loss detection” algorithm that is not based on power-flow. There are numerous
works on power flow, however, two of the primary publications as books are [57,58]; (3) it
enables 0.5% electricity fraud detection for future usage. The major required modification
is that, instead of the customer load-profile, the “differential energy” balance load profile is
fed into the current algorithm. Missing load profile is replaced with load forecasting. The
“difference energy” intensifies the fraud.

4.2. Application of the Algorithm to Fraud Detection of Energy: Electricity, Water, and Gas

There is no reason as to why the algorithm is not trained over water and gas load
profiles from the smart meter0. There is one issue of allocating a dataset. It does not have to
be a water fraud-detection dataset. A clustering algorithm may detect frauds by itself. The
second issue is that residential water load profiles are four times a day and not every fifteen
minutes, and central load profiles are every fifteen minutes to one hour. The algorithm
may extrapolate quarter-hourly periods from these four periods per day.

4.3. Application of the Algorithm to Using the Non-Validated near Real-Time Data Port for
Revolutionary High Sampling Rate Fraud Detection

There are meters of second generation (marked as 2G) in document EU-28 bench-
marking 2020, Table in pp. 98–103 [1]. This unnoticed “P1 DSMR” port, when used with a
dongle, enables energy and other parameters load profiles, in a rate of once every 10 s. This
enables a next generation of fraud detection but requires permission from the customer or
a change of regulation.

4.4. Addition of (Import, Export) X (Active, Reactive) Load Profile Channels

Reactive load-profile contains electric machinery/loads information and potentially
valuable additional information for fraud detection.

4.5. Addition of Customer Textual Data to Training Space

This second phase of fraud detection algorithm development is an addition of textual
customer data, such as geographic location, socio-economic background and travel abroad
using word2vect technology of translating textual data into vector space.

5. Conclusions

The relevancy of energy loss in the urban energy grid has been explained and demon-
strated by an example over an electricity grid, with a proposed algorithm that is also well
suited to water and gas smart metering without algorithm modification, and with training
on a suitable dataset. Its relevance to improved urban energy grids planning and smart
cities was also outlined. In addition, water and gas grids also consume electricity through
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pumping and would require electricity and water/gas fraud detection. Finally, relevancy
to another layer on urban socio-economic correlation heatmap, a correlation of geographic
urban location to energy consumption, was also discussed in the introduction. Three
correlated gaps in previous works on energy fraud detection were identified and treated
and shall be described herein: (1) a holistic approach: a system capable of separating
various anomalies from energy fraud; that is the primary finding: a system embedded in
the smart metering meta system. On the one hand, the system receives information from it,
which improves true positive and (reduces) false positive rates. On the other hand, fraud
detection shall generate a validated anomalies dataset for service, as well, of the smart
metering system. Information received from the smart metering meta system serves the
fraud detection system (1.1.) information from the robotic process automation anomaly
detector for maintenance and cyber effects. (1.2.) Information, if it exists from a textual
customer database. The later section is not the paper’s scope, but the conditional proba-
bility equation was derived and the technology for insertion of textual data to learning
space—that is suitable to NLP non expert developer—was introduced. (1.3.) information
from five events derived from the smart meter to fault management sub-module of meter
data management system (MDM). None of the events are mandatory for fraud detection,
they are contributory: (i) magnetic tampering, (ii) reverse phase, (iii) phase disconnect,
(iv) open front panel and (v) export energy from arithmetic meter located at residential
premise. These events should increase the probability of fraud detection when an alert
from AI based on load profile indicates it. The holistic approach is the greatest contribution
by this research, since grid anomalies do exist and they are not tagged at universal datasets,
and field operation might reduce algorithms accuracy. (2) Develop a preprocessing fea-
ture generation module that utilizes consumption trend expert knowledge, as compared
to spectral processing for examples that are performed by CNN convolution layers or
very simple preprocessing arithmetic by other algorithms. It is our belief that this expert
knowledge redirects the machine learning and accelerates the learning as was shown
with logistic regression, but also potentially enables separating various grid anomalies.
The later was only briefly shown and requires future expansion; it was partially shown.
(3) Reduction of false positives by pointing out the most common anomalies identified by
our group as dominant, believed to be common to other algorithms. This was shown to be
deterministically achieved by the robotic process automation (RPA) system, and potentially
later at steady-state age by the AI fraud detection algorithm. The later capability was
demonstrated but it is not this paper’s scope. The RPA is not an AI, yet it provides the
outcome. (4) A mathematical demonstration of fraud detection signature universality. This
assists in demonstrating the preliminary thought that these phenomena clustered together
with fraud are an issue common to additional algorithms and that it may be detected
without a non-fraud reference. The most important goal was to develop an algorithm that
uses consumption knowledge in the broad sense that generates improved features for more
accurate fraud identification in comparison to automatic convolution layer features. It
was shown that the pre-processor acts as 2D object identification algorithms by generating
hundreds of correlation points from a single energy load profile. The preprocessor was
shown to work with various algorithms: classical machine learning, potentially 2D CNN
object identification and CNN/LSTM 1D classification, and it is thus beneficial to many
core AI algorithms. For deep learning algorithms, it shall redirect the training and feature
generation. (5) It has also been shown that, optimally, the algorithm works well with a
different algorithm in three deployment life stages: meaning it is preferable to replace the
classifier and define new goals per each stage. (i) In the infancy stage with ~15 verified
frauds at local utility company, it works well with logistic regression, due to the algo-
rithm’s fast convergence combined with it being GAM, on the borderline between linear
and non-linear algorithms. In the first maturity stage, (ii) maturity: when ~100 verified
frauds collected from the local utility company, RF and DT algorithms work well, there
are sufficient data to converge, and they cover a wider set of customer profiles. In the
second maturity stage, a deep learning network shall potentially be suitable; however,
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this has not been implemented yet, maintaining the RF, DT solution. What is important is
preprocessor modularity to suit versatile algorithms. It has been shown that, as verified
anomalies and frauds are added to the dataset, it may learn to tag anomaly types and fraud
types due to preprocessor’s “object identification-like” nature. The proposed algorithm has
attempted to generate “collaborative all-data reflecting” features that could show us how
fraud looks—consumption oriented. (6) No requirement for a non-fraud reference from the
specific customer under test. The literature survey has yielded a common pre-processing
layer of simpler features for many papers, counting on the CNN front end convolution
layer to generate features: (6) anomaly phenomena reported by this group were: (6.1) data
mismatch in smart grid data chain; (6.2) preventive maintenance anomaly; (6.3) cyber-
attack anomaly; (6.4) textual information regarding a customer that changes probability
or confidence level between two customers of the same “fraud detection” signature; (6.5)
super-consumption, this is not fraud from a supplier; (6.6) smart metering events: magnetic
tampering, reverse phase, phase disconnect and open front panel, and for arithmetic meter:
export energy for residential premise; (7) universal signature: using universal common
features, it was shown that in the specifically proposed algorithm, the clusters of fraud are
closer than the non-fraud cluster to {xi = 0} surfaces, also in 3D PCA space; (8) there are
other deductions that exist regardless of generated features implying that there is a common
denominator to many fraud detection algorithms. Based on the fraud-detection theorems,
it may be assumed that many fraud detection algorithms shall potentially consider the
anomalies reported by this work as very close in their signature to a fraud signature. The
“energy distribution” group 1 features were shown to be closely related to spectral anal-
ysis, although there is no FFT explicit operation there. CNN performs spectral analysis
through the convolution operation, due to the convolution operation which applies in
the time-domain but is a multiplication of input with a transfer function in the spectral
domain during the training stage. This is statistical in nature, considering 100–1000 Epochs
training, and, in addition, since the algorithm reads 96 quarter hourly periods per day, it
becomes statistical. Therefore, the result is that the algorithms using the CNN preprocessor
are likely to cluster anomalies of data mismatch of many types, such as fraud. First, this
result shows fraud detection as a universal theory. A common ground to discuss about
all algorithms providing insight into the physics of the algorithms, and enabling to look
for points of improvement, such as, for example, stretching the distance between the
various phenomena in the high order dimensional space, may arrive from mathematical
comprehension. (9) The next result obtained by this group is that, until datasets contain a
versatility of tagged phenomenon, and until works of fraud detection are integrated with
works about anomalies and contribution of textual customer information, then some of the
works are reporting accuracy of an isolated fraud/non-fraud phenomena as conditional
probability that all the rest of the phenomena are filtered out. However, when applying
an algorithm in real field conditions, it may report for some of the algorithms a higher
false positive ratio than expected. Using ‘fraud detection’ universality theorems, it was
demonstrated that energy fraud has a universal signature pattern most likely to be inherent
in fraud detection algorithms, regardless of implemented high-order dimensional space.
A fraud detection algorithm, as this research has shown, based on true deployment, is a
system capable of separating only electricity fraud from a multitude of anomalies.

6. Patents

The algorithm is a module inside a pending patent of the electric grid deciphering
system and apparatus. This includes a fraud detection module described in the current
paper, data fault within smart grid/metering data chain detection and allocation system
and preventive maintenance and cyber-attack anomaly detection.
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