Spatial and Temporal Variations of Nitrogen and Phosphorus in Surface Water and Groundwater of Mudong River Watershed in Huixian Karst Wetland, Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analytical Methods
2.3. Data Analysis
3. Results
3.1. Spatio-Temporal Distribution of Hydrodynamic
3.2. Seasonal Variation of TN and TP
3.3. Spatial Distribution of TN and TP
4. Discussion
4.1. Analyses of the Seasonal Variation of TN and TP
4.2. Analyses of the Spatial Distribution of TN and TP Affected by Karst Hydrodynamic
4.3. Nitrogen and Phosphorus Pollution of Water in Karst Areas
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, J.C.; Zhang, Y.J.; Bing, H.J.; Peng, J.; Arhonditsis, G.B. Characterizing the river water quality in china: Recent progress and on-going challenges. Water Res. 2021, 201, 117309. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Strokal, M.; Van Vliet, M.T.H.; Stuiver, J.; Wang, M.; Bai, Z.; Ma, L.; Kroeze, C. Multi-scale modeling of nutrient pollution in the rivers of China. Environ. Sci. Technol. 2019, 53, 9614–9625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarvie, H.P.; Smith, D.R.; Norton, L.R.; Edwards, F.K.; Bowes, M.J.; King, S.M.; Scarlett, P.; Davies, S.; Dils, R.M.; Bachiller-Jareno, N. Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: A national perspective on eutrophication. Sci. Total Environ. 2018, 621, 849–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, F.J.; Waldron, S.; Li, S.L.; Wang, Z.J.; Zeng, J.; Xu, S.; Zhang, Z.C.; Oliver, D.M. Land use interacts with changes in catchment hydrology to generate chronic nitrate pollution in karst waters and strong seasonality in excess nitrate export. Sci. Total Environ. 2019, 696, 134062. [Google Scholar] [CrossRef]
- Amin, M.; Veith, T.L.; Collick, A.S.; Karsten, H.D.; Buda, A.R. Simulating hydrological and nonpoint source pollution processes in a karst watershed: A variable source area hydrology model evaluation. Agric. Water Manag. 2016, 180, 212–223. [Google Scholar] [CrossRef] [Green Version]
- McCormack, T.; Naughton, O.; Johnston, P.M.; Gill, L.W. Quantifying the influence of surface water-groundwater interaction on nutrient flux in a lowland karst catchment. Hydrol. Earth Syst. Sci. 2016, 20, 2119–2133. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.R.; Weyer, P.J.; Dellavalle, C.T.; Inoue-Choi, M.; Anderson, K.E.; Cantor, K.P.; Krasner, S.; Robien, K.; Freeman, L.E.B.; Silverman, D.T.; et al. Nitrate from drinking water and diet and bladder cancer among postmenopausal women in Iowa. Environ. Health Perspect. 2016, 124, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Ford, D.; Williams, P.D. Karst Hydrogeology and Geomorphology; John Wiley & Sons Ltd.: Chichester, UK, 2007. [Google Scholar]
- Coxon, C. Agriculture and Karst. In Karst Management; Van Beynen, P., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 103–138. [Google Scholar]
- Gao, R.; Dai, Q.; Gan, Y.; Yan, Y.; Peng, X. The mechanisms of nutrient output through water flow from sloping farmland with slight rocky desertification in a karst region. Environ. Res. Lett. 2020, 15, 094085. [Google Scholar] [CrossRef]
- Wang, Z.J.; Li, S.L.; Yue, F.J.; Qin, C.Q.; Buckerfield, S.; Zeng, J. Rainfall driven nitrate transport in agricultural karst surface river system: Insight from high re-solution hydrochemistry and nitrate isotopes. Agric. Ecosyst. Environ. 2020, 291, 106787. [Google Scholar] [CrossRef]
- Lagomasino, D.; René, M.P.; Jorge, H.S.; Fernando, M.W.; Gonzalo, M.A.; Yadira, G.H. Connecting Groundwater and Surface Water Sources in Groundwater Dependent Coastal Wetlands and Estuaries: Sian Ka’an Biosphere Reserve, Quintana Roo, Mexico. Estuar Coast. 2015, 38, 1–20. [Google Scholar] [CrossRef]
- Maas, B.J.; Oberhelman, A.; Watson, A.; Honings, J.; Peterson, E.W. Differentiation of surface water and groundwater in a karst system using anthropogenic signatures. Geosciences 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.; Nair, V.D.; Canion, A.; Dobberfuhl, D.R.; Foster, D.K.; Inglett, P.W. Subsurface transport and potential risk of phosphorus to groundwater across different land uses in a karst springs basin, Florida, USA. Geoderma 2018, 338, 97–106. [Google Scholar] [CrossRef]
- Malá, J.; Hübelová, D.; Schrimpelová, K.; Kozumplíková, A.; Lejska, S. Surface watercourses as sources of karst water pollution. Int. J. Environ. Sci. Technol. 2021, 1–10. [Google Scholar] [CrossRef]
- Davraz, A.; Karaguzel, R.; Soyaslan, I.; Sener, E.; Seyman, F.; Sener, S. Hydrogeology of karst aquifer systems in SW Turkey and an assessment of water quality and contamination problems. Environ. Geol. 2009, 58, 973–988. [Google Scholar] [CrossRef]
- Ma, J.; Liu, Y.; Yu, G.B.; Li, H.B.; Yu, S.; Jiang, Y.P.; Li, G.L.; Lin, J.C. Temporal Dynamics of Urbanization- Driven Environmental Changes Explored by Metal Contamination in Surface Sediments in a Restoring Urban Wetland Park. J. Hazard. Mater. 2016, 309, 228–235. [Google Scholar] [CrossRef]
- Peng, C.; Pan, X.D.; Jiao, Y.J.; Ren, K.; Zeng, J. Identification of nitrate pollution sources through various isotopic methods: A case study of the Huixian Wetland. Environ. Sci. 2018, 39, 5410–5417. (In Chinese) [Google Scholar]
- Chen, J.; Luo, M.; Ma, R.; Zhou, H.; Zuo, S.Z.; Gan, Y.Q. Nitrate distribution under the influence of seasonal hydrodynamic changes and human activities in Huixian karst wetland, South China. J Contam. Hydrol. 2020, 234, 103700. [Google Scholar] [CrossRef] [PubMed]
- Li, L.X.; Li, J.C.; Wei, C.M.; Zhou, J.; Zhang, Q.; Liu, H.L. Analysis and evaluation of water quality status in Huixian wetland of Guangxi. J. Guilin Univ. Technol. 2019, 39, 693–699. (In Chinese) [Google Scholar]
- Xing, M.L.; Li, H.X.; Jiang, L.; Tu, Y.; Zeng, H.F.; Wang, D.Q. Spatio-temporal characteristics of water pollutants in surrounding water system of Lingui and Huixian karst wetlands. J. Guilin Univ. Technol. 2019, 39, 168–176. (In Chinese) [Google Scholar]
- Xiao, H.; Shahab, A.; Li, J.; Xi, B.; Sun, X.; He, H.; Yu, G. Distribution, ecological risk assessment and source identification of heavy metals in surface sediments of Huixian karst wetland, China. Ecotoxicol. Environ. Saf. 2019, 185, 109700.1–109700.10. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- National Environmental Protection Bureau (NEPB). Standard Methods for the Examination of Water and Wastewater (Version 4) (HJ/T 91-2002); China Environmental Science Press: Beijing, China, 2002; pp. 1–48. (In Chinese) [Google Scholar]
- National Environmental Protection Bureau (NEPB). Water Quality—Determination of Total Nitrogen–Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method (HJ636-2012); China Environmental Science Press: Beijing, China, 2012; pp. 1–8. (In Chinese) [Google Scholar]
- National Environmental Protection Bureau (NEPB). Water Quality—Determination of Nitrate-Nitrogen–Ultraviolet Spectrophotometric Method (HJ/T 346-2007); China Environmental Science Press: Beijing, China, 2007; pp. 1–2. (In Chinese) [Google Scholar]
- National Environmental Protection Bureau (NEPB). Water Quality—Determination of Ammonia Nitrogen–Nessler’s Reagent Spectrophotometric Method (HJ535-2009); China Environmental Science Press: Beijing, China, 2009; pp. 1–6. (In Chinese) [Google Scholar]
- National Environmental Protection Bureau (NEPB). Water Quality—Determination of Phosphorus–Ammonium Molybdate Spectrophotometric Method (GB11893-89); China Environmental Science Press: Beijing, China, 1989; pp. 1–4. (In Chinese) [Google Scholar]
- Ministry of Environmental Protection of China. The Chinese Environmental Quality Standards for Surface Water (GB3838–2002); China Environmental Science Press: Beijing, China, 2002; pp. 1–8. (In Chinese) [Google Scholar]
- Ministry of Environmental Protection of China. The Chinese Environmental Quality Standards for Groundwater (GB/T 14848-2017); China Standard Press: Beijing, China, 2017; pp. 1–13. (In Chinese) [Google Scholar]
- Dupas, R.; Musolf, A.; Jawitz, J.W.; Rao, P.S.C.; Jaeger, C.G.; Fleckenstein, J.H.; Rode, M.; Borchardt, D. Carbon and nutrient export regimes from headwater catchments to downstream reaches. Biogeosciences 2017, 14, 4391–4407. [Google Scholar] [CrossRef] [Green Version]
- Dupas, R.; Minaudo, C.; Gruau, G.; Ruiz, L.; Gascuel-Odoux, C. Multidecadal trajectory of riverine nitrogen and phosphorus dynamics in rural catchments. Water Resour. Res. 2018, 54, 5327–5340. [Google Scholar] [CrossRef]
- Rhodes, A.L.; Newton, R.M.; Pufall, A. Influences of land use on water quality of a diverse New England watershed. Environ. Sci. Technol. 2001, 35, 3640–3645. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.H.; Mo, D.Q.; Li, J.C.; Deng, Z.Q.; Wang, H.F.; Qin, Y.H.; Qin, J.H. Huixian karst wetland water quality monitoring. Shandong Chem. Ind. 2018, 6, 156–160. (In Chinese) [Google Scholar]
- Nardo, A.D.; Natale, M.D.; Iervolino, M.; Musmarra, D.; Santonastaso, G.F. Convolution integral vs. finite difference for the inverse problem of detection of a contamination source in rivers. Desalination Water Treat. 2017, 86, 277–284. [Google Scholar] [CrossRef]
- Capell, R.; Bartosova, A.; Tonderski, K.; Arheimer, B.; Pedersen, S.M.; Zilans, A. From local measures to regional impacts: Modelling changes in nutrient loads to the baltic sea. J. Hydrol. 2019, 36, 100867. [Google Scholar]
- Zeiger, S.J.; Owen, M.R.; Pavlowsky, R.T. Simulating nonpoint source pollutant loading in a karst basin: A swat modeling application. Sci. Total Environ. 2021, 785, 147295. [Google Scholar] [CrossRef]
- Ghasemizadeh, R.; Hellweger, F.; Butscher, C.; Padilla, I.; Vesper, D.; Field, M.; Alshawabkeh, A. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the north coast limestone aquifer system of Puerto Rico. J. Hydrol. 2012, 20, 1441–1461. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.R.; Shu, L.C.; Zhu, J.T.; Yu, Z.B.; Jiang, P. Storage and drainage characteristics of a highly heterogeneous karst aquifer in Houzhai Basin. Groundwater 2016, 54, 878–887. [Google Scholar] [CrossRef]
- EI Gaouzi, F.Z.J.; Sebilo, M.; Ribstein, P.; Plagnes, V.; Boeckx, P.; Xue, D.M.; Derenne, S.; Zakeossian, M. Using δ15N and δ18O values to identify sources of nitrate in karstic springs in the Paris basin (France). Appl. Geochem. 2013, 35, 230–243. [Google Scholar] [CrossRef]
- Musgrove, M.; Opsahl, S.P.; Mahler, B.J.; Herrington, C.; Sample, T.L.; Banta, J.R. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas. Sci. Total Environ. 2016, 568, 457–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opsahl, S.P.; Musgrove, M.; Slattery, R.N. New insights into nitrate dynamics in a karst groundwater system gained from in situ high-frequency optical sensor measurements. J. Hydrol. 2017, 546, 179–188. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, S.R. Hydrogeochemical characteristics of groundwater highly polluted with nitrate in an agricultural area of Hongseong, Korea. Water 2016, 8, 345. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Ghosh, P.K.; Hasan, M.; Rahman, A. Surface and groundwater quality assessment and identification of hydrochemical characteristics of a south-western coastal area of Bangladesh. Environ. Monit. Assess. 2020, 192, 258. [Google Scholar] [CrossRef] [PubMed]
- Yue, F.J.; Li, S.L.; Liu, C.Q.; Lang, Y.C.; Ding, H. Sources and transport of nitrate constrained by the isotopic technique in a karst catchment: An example from Southwest China. Hydrol. Processes 2015, 29, 1883–1893. [Google Scholar] [CrossRef]
- Liu, C.Q.; Li, S.L.; Lang, Y.C.; Xiao, H.Y. Using δ15N and delta δ18O values to identify nitrate sources in karst ground water, Guiyang, Southwest China. Environ. Sci. Technol. 2006, 40, 6928–6933. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health of the People’s Republic of China. Standardization Administration of P.R. China MOH & SAC. In Chinese National Standards (GB 5749–2006): Standards for Drinking Water Quality; Standards Press of China: Beijing, China, 2006; pp. 1–9. [Google Scholar]
- Magal, E.; Arbel, Y.; Caspi, S.; Glazman, H.; Grseenbaum, N.; Yechiel, Y. Determination of pollution and recovery time of karst springs, an example from a carbonate aquifer in Israel. J Contam. Hydrol. 2013, 145, 26–36. [Google Scholar] [CrossRef]
- Venkiteswaran, J.J.; Boeckx, P.; Gooddy, D.C. Towards a global interpretation of dual nitrate isotopes in surface waters. J. Hydrol. 2019, 4, 100037. [Google Scholar] [CrossRef]
Type | No. | Latitude | Longitude | Section Width (m) | Flow Velocity (m/s) | Water Table (m) | TN (mg/L) | TP (mg/L) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wet Season | Dry Season | Wet Season ③ | Dry Season | Wet Season ③ | Dry Season ③ | Wet Season ④ | Dry Season ④ | p-Value | Wet Season ④ | Dry Season ④ | p-Value | ||||
SW ① | R1 | 110°12′25″ E | 25°08′27″ N | 2.5−3.0 | 2.0−2.5 | 0.001−0.100 (0.053) | <0.001 | 157.54−157.93 (157.77) | 157.40−157.47 (157.47) | 2.58 | 1.09 | 0.024 | 0.036 | 0.042 | 0.813 |
R2 | 110°12′16″ | 25°07′46″ | 3.5−4.0 | 3.0−3.5 | 0.020−0.100 (0.048) | <0.02 | 152.62−152.95 (152.73) | 152.58−152.7 (152.65) | 1.91 | 4.55 | 0.001 | 0.014 | 0.092 | 0.000 | |
R3 | 110°12′26″ | 25°07′15″ | 5.0−5.5 | 4.0−4.5 | 0.020−0.150 (0.082) | <0.02 | 150.18−150.65 (150.40) | 150.02−150.47 (150.16) | 2.00 | 3.19 | 0.446 | 0.074 | 0.065 | 0.812 | |
R4 | 110°12′58″ | 25°06′23″ | 3.0−7.5 | <3.0 | 0.010−0.250 (0.085) | <0.01 | 149.30−150.11 (149.53) | 148.15−149.44 (149.03) | 1.08 | 2.05 | 0.160 | 0.076 | 0.098 | 0.383 | |
R5 | 110°13′28″ | 25°05′33″ | 8.0−9.0 | 8.0 | 0.008−0.013 (0.010) | ≤0.010 | 148.58−151.21 (150.01) | 148.44−148.67 (148.50) | 0.52 | 2.19 | 0.018 | 0.107 | 0.126 | 0.061 | |
R6 | 110°11′54″ | 25°05′42″ | 19−20.0 | 18−19 | 0.010−0.100 (0.035) | 0.02−0.01 | 148.80−149.86 (149.25) | 148.90−149.20 (149.05) | 1.51 | 1.99 | 0.362 | 0.134 | 0.117 | 0.608 | |
R7 | 110°11′29″ | 25°05′54″ | 12.0−14.0 | 10−12 | 0.008−0.012 (0.01) | ≤0.010 | 149.54−150.50 (149.96) | 149.34−149.66 (149.48) | 1.30 | 1.40 | 0.740 | 0.173 | 0.138 | 0.190 | |
R8 | 110°10′55″ | 25°05′29″ | 4.5−9.0 | 1.6−5.0 | 0.010−0.030 (0.016) | ≤0.010 | 150.30−150.90 (150.44) | 150.25−150.30 (150.29) | 1.71 | 1.68 | 0.929 | 0.183 | 0.188 | 0.780 | |
R9 | 110°11′03″ | 25°06′26″ | 10.0−27.0 | <6.0 | 0.014−0.750 (0.398) | ≤0.150 | 148.55−149.20 (148.85) | 148.50−148.70 (148.57) | 0.60 | 0.86 | 0.245 | 0.079 | 0.098 | 0.519 | |
R10 | 110°10′34″ | 25°06′19″ | 7.0−11.3 | <5.0 | 0.100−0.430 (0.271) | ≤0.150 | 148.24−149.32 (148.55) | 148.00−148.30 (148.13) | 0.75 | 1.43 | 0.135 | 0.105 | 0.125 | 0.431 | |
R11 | 110°09′21″ | 25°05′56″ | 3.5−6.0 | 3.5 | 0.200−0.900 (0.450) | 0.09−0.45 (0.150) | 146.20−147.15 (146.63) | 145.75−145.95 (145.81) | 1.37 | 4.53 | 0.032 | 0.155 | 0.294 | 0.008 | |
Type | No. | Latitude | Longitude | Elevation (m) | Flow (L/s) | TN (mg/L) | TP (mg/L) | ||||||||
Wet Season | Dry Season | Wet Season | Dry Season | p-Value | Wet Season | Dry Season | p-Value | ||||||||
GW ② | S1 | 110°12′16″ | 25°08′55″ | 189.32 | 0.010−0.05 | ≤0.010 | 2.9 | 2.3 | 0.737 | 0.021 | 0.028 | 0.364 | |||
S2 | 110°12′18″ | 25°08′44″ | 160.13 | 0.010−0.05 | 0.001−0.010 | 3.33 | 3.30 | 0.978 | 0.023 | 0.038 | 0.013 | ||||
No. | Latitude | Longitude | Depth (m) | Water Table (m) | Wet Season | Dry Season | p-Value | Wet Season | Dry Season | p-Value | |||||
Wet Season ③ | Dry Season ③ | ||||||||||||||
G1 | 110°11′36″ | 25°08′14″ | 3.9 | 152.80−154.00 (153.44) | 153.10−153.88 (153.39) | 3.92 | 3.49 | 0.799 | 0.024 | 0.011 | 0.010 | ||||
G2 | 110°12′11″ | 25°08′05″ | 4.2 | 153.10−155.01 (154.03) | 152.84−153.90 (153.32) | 3.47 | 2.93 | 0.406 | 0.042 | 0.019 | 0.071 | ||||
G3 | 110°12′27″ | 25°07′42″ | 2.9 | 152.33−154.02 (153.19) | 152.01−152.75 (152.30) | 2.37 | 5.03 | 0.022 | 0.027 | 0.027 | 0.980 | ||||
G4 | 110°13′32″ | 25°07′03″ | 2.9 | 149.90−151.80 (151.17) | 150.05−151.30 (150.99) | 15.26 | 15.68 | 0.767 | 0.077 | 0.045 | 0.044 | ||||
G5 | 110°12′25″ | 25°06′40″ | 4.9 | 149.50−152.01 (150.20) | 149.39−150.66 (149.70) | 18.98 | 20.33 | 0.448 | 0.035 | 0.027 | 0.286 | ||||
G6 | 110°13′27″ | 25°05′39″ | 5.6 | 148.70−150.10 (148.91) | 148.52−149.22 (148.82) | 7.94 | 14.70 | 0.002 | 0.027 | 0.045 | 0.024 | ||||
G7 | 110°11′53″ | 25°05′22″ | 4.2 | 149.08−151.13 (150.61) | 148.98−150.92 (150.24) | 15.55 | 12.92 | 0.110 | 0.206 | 0.136 | 0.003 | ||||
G8 | 110°11′17″ | 25°06′02″ | 3.3 | 149.85−151.00 (150.62) | 149.73−150.78 (150.20) | 2.69 | 2.00 | 0.350 | 0.038 | 0.024 | 0.128 | ||||
G9 | 110°10′59″ | 25°05′29″ | 6.5 | 149.60−152.00 (150.87) | 149.54−151.19 (150.39) | 2.96 | 1.12 | 0.068 | 0.038 | 0.030 | 0.612 |
Type | Indicator | Unit | Class III Standard Limits [29,30] | Wet Season | Over-Limit Ratio (%) | Dry Season | Over-Limit Ratio (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (mg/L) Min−Max (Mean) | Variance | CV ① | Concentration (mg/L) Min−Max (Mean) | Variance | CV ① | ||||||
SW | pH | / | 6−9 | 6.9−8.5 (7.6) | / | / | / | 6.4−8.7 (7.6) | / | / | / |
TN | mg/L | 1.0 | 0.31−4.10 (1.39) | 0.71 | 0.60 | 63.6% | 0.33−9.50 (2.27) | 3.77 | 0.85 | 74.5% | |
NO3−-N | 10 | 0.01−3.73 (0.68) | 0.53 | 1.08 | 0% | 0.12−4.70 (1.04) | 1.28 | 1.09 | 0% | ||
NH4+-N | 1.0 | 0.005−1.56 (0.40) | 0.11 | 0.82 | 3.0% | 0.005−5.69 (0.72) | 0.84 | 1.27 | 20.0% | ||
TP | 0.2 | 0.01−0.23 (0.10) | 0.004 | 0.61 | 9.1% | 0.01−0.41 (0.13) | 0.006 | 0.63 | 14.5% | ||
GW | pH | / | 6.5−8.5 | 6.8−8.0 (7.3) | / | / | / | 7.0−8.0 (7.5) | / | / | / |
TN | mg/L | 1.0 ② | 0.61−25.02 (7.25) | 41.77 | 0.89 | 98.5% | 0.86−23.00 (7.89) | 45.82 | 0.86 | 98.2% | |
NO3−-N | 20 | 0.52−18.35 (6.09) | 30.02 | 0.90 | 0% | 0.60−20.11 (5.55) | 31.16 | 1.01 | 1.8% | ||
NH4+-N | 0.5 | 0.01−0.20 (0.05) | 0.001 | 0.72 | 0% | 0.01−0.17 (0.05) | 0.001 | 0.68 | 0% | ||
TP | 0.2 ② | 0.01−0.26 (0.05) | 0.003 | 1.08 | 6.1% | 0.002−0.16 (0.04) | 0.001 | 0.89 | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, L.; Dai, J.; Wu, Z.; Huang, L.; Wan, Z.; Han, J.; Li, Z. Spatial and Temporal Variations of Nitrogen and Phosphorus in Surface Water and Groundwater of Mudong River Watershed in Huixian Karst Wetland, Southwest China. Sustainability 2021, 13, 10740. https://doi.org/10.3390/su131910740
Pan L, Dai J, Wu Z, Huang L, Wan Z, Han J, Li Z. Spatial and Temporal Variations of Nitrogen and Phosphorus in Surface Water and Groundwater of Mudong River Watershed in Huixian Karst Wetland, Southwest China. Sustainability. 2021; 13(19):10740. https://doi.org/10.3390/su131910740
Chicago/Turabian StylePan, Linyan, Junfeng Dai, Zhiqiang Wu, Liangliang Huang, Zupeng Wan, Junlei Han, and Zhangnan Li. 2021. "Spatial and Temporal Variations of Nitrogen and Phosphorus in Surface Water and Groundwater of Mudong River Watershed in Huixian Karst Wetland, Southwest China" Sustainability 13, no. 19: 10740. https://doi.org/10.3390/su131910740
APA StylePan, L., Dai, J., Wu, Z., Huang, L., Wan, Z., Han, J., & Li, Z. (2021). Spatial and Temporal Variations of Nitrogen and Phosphorus in Surface Water and Groundwater of Mudong River Watershed in Huixian Karst Wetland, Southwest China. Sustainability, 13(19), 10740. https://doi.org/10.3390/su131910740