Fabrication of Black Silicon via Metal-Assisted Chemical Etching—A Review
Abstract
:1. Introduction
2. Mechanism of MACE Technique
2.1. Reaction
2.2. Mass Transfer
2.3. Direction
3. Applied Metal Nanoparticles in the MACE Technique
3.1. Silver (Ag)
3.2. Copper (Cu)
3.3. Nickel (Ni)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Coxon, P.; Peters, M.; Hoex, B.; Cole, J.; Fray, D. Black silicon: Fabrication methods, properties and solar energy applications. Energy Environ. Sci. 2014, 7, 3223–3263. [Google Scholar] [CrossRef] [Green Version]
- Barillaro, G.; Nannini, A.; Piotto, M. Electrochemical etching in HF solution for silicon micromachining. Sens. Actuators A Phys. 2002, 102, 195–201. [Google Scholar] [CrossRef]
- Angelescu, A.; Kleps, I.; Mihaela, M.; Simion, M.; Neghina, T.; Petrescu, S.; Moldovan, N.; Paduraru, C.; Raducanu, A. Porous silicon matrix for applications in biology. Rev. Adv. Mater. Sci. 2003, 5, 440–449. [Google Scholar]
- Berger, C.M.; Dieker, M.; Thonissen, L.; Vescan, H.; Luth, H.; Munder, W.; Theiss, M.; Wernke, P. Grosse, Porosity superlattices: A new class of Si heterostructures. J. Phys. D Appl. Phys. 1994, 27, 1333–1336. [Google Scholar] [CrossRef]
- Ge, M.; Fang, X.; Rong, J.; Zhou, C. Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 2013, 24, 422001. [Google Scholar] [CrossRef]
- Fan, S. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science 1999, 283, 512–514. [Google Scholar] [CrossRef]
- Christiansen, A.; Clausen, J.; Mortensen, N.; Kristensen, A. Injection moulding antireflective nanostructures. Microelectron. Eng. 2014, 121, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Yost, V.; Page, M.; Stradins, P.; Meier, D.; Branz, H. Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules. Appl. Phys. Lett. 2009, 95, 123501. [Google Scholar] [CrossRef]
- Atteia, F.; Rouzo, J.L.; Denaix, L.; Duché, D.; Berginc, G.; Simon, J.J.; Escoubas, L. Morphologies and optical properties of black silicon by room temperature reactive ion etching. Mater. Res. Bull. 2020, 131, 110973. [Google Scholar] [CrossRef]
- Huo, C.; Wang, J.; Fu, H.; Li, X.; Yang, Y.; Wang, H.; Mateen, A.; Farid, G.; Peng, K.Q. Metal-Assisted Chemical Etching of Silicon in Oxidizing HF Solutions: Origin, Mechanism, Development, and Black Silicon Solar Cell Application. Adv. Funct. Mater. 2020, 30, 2005744. [Google Scholar] [CrossRef]
- Nguyen, V.T.H.; Jensen, F.; Hübner, J.; Leussink, P.; Jansen, H. On the formation of black silicon in SF6-O2 plasma: The clear, oxidize, remove, and etch (CORE) sequence and black silicon on demand. J. Vac. Sci. Technol. A Vac. Surf. Film 2020, 38, 043004. [Google Scholar] [CrossRef]
- Ding, J.; Zou, S.; Choi, J.; Cui, J.; Yuan, D.; Sun, H.; Wu, C.; Zhu, J.; Ye, X.; Su, X. A laser texturing study on multi-crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 2020, 214, 110587. [Google Scholar] [CrossRef]
- Arafat, M.; Islam, M.A.; Mahmood, A.W.B.; Abdullah, F.; Kiong, T.S.; Amin, N. Study of Black Silicon Wafer through Wet Chemical Etching for Parametric Optimization in Enhancing Solar Cell Performance by PC1D Numerical Simulation. Crystals 2021, 11, 881. [Google Scholar] [CrossRef]
- Zuo, Z.; Cui, G.; Shi, Y.; Liu, Y.; Ji, G. Gold-thickness-dependent Schottky barrier height for charge transfer in metal-assisted chemical etching of silicon. Nanoscale Res. Lett. 2013, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Akan, R.; Parfeniukas, K.; Vogt, C.; Toprak, M.; Vogt, U. Reaction control of metal-assisted chemical etching for silicon-based zone plate nanostructures. RSC Adv. 2018, 8, 12628–12634. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, Y.; Choi, S.; Lee, W. Curved Silicon Nanowires with Ribbon-like Cross Sections by Metal-Assisted Chemical Etching. ACS Nano 2011, 5, 5242–5248. [Google Scholar] [CrossRef]
- Venkatesan, R.; Arivalagan, M.; Venkatachalapathy, V.; Pearce, J.; Mayandi, J. Effects of silver catalyst concentration in metal assisted chemical etching of silicon. Mater. Lett. 2018, 221, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Zhang, X.; Reiche, M.; Liu, L.; Lee, W.; Shimizu, T.; Senz, S.; Gösele, U. Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching. Nano Lett. 2008, 8, 3046–3051. [Google Scholar] [CrossRef]
- Zheng, H.; Han, M.; Zheng, P.; Zheng, L.; Qin, H.; Deng, L. Porous silicon templates prepared by Cu-assisted chemical etching. Mater. Lett. 2014, 118, 146–149. [Google Scholar] [CrossRef]
- Volovlikova, O.; Gavrilov, S.; Lazarenko, P.; Kukin, A.; Dudin, A.; Tarhanov, A. Influence of Etching Regimes on the Reflectance of Black Silicon Films Formed by Ni-Assisted Chemical Etching. Key Eng. Mater. 2019, 806, 24–29. [Google Scholar] [CrossRef]
- Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gösele, U. Metal-Assisted Chemical Etching of Silicon: A Review. Adv. Mater. 2010, 23, 285–308. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bohn, P. Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett. 2000, 77, 2572–2574. [Google Scholar] [CrossRef]
- Zhang, P.; Jia, R.; Tao, K.; Jiang, S.; Dai, X.; Sun, H.; Jin, Z.; Ji, Z.; Liu, X.; Zhao, C.; et al. The influence of Ag-ion concentration on the performance of mc-Si silicon solar cells textured by metal assisted chemical etching (MACE) method. Sol. Energy Mater. Sol. Cells 2019, 200, 109983. [Google Scholar] [CrossRef]
- Chien, P.J.; Wei, T.C.; Chen, C.Y. High-Speed and Direction-Controlled Formation of Silicon Nanowire Arrays Assisted by Electric Field. Nanoscale Res. Lett. 2020, 15, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chartier, C.; Bastide, S.; Lévy-Clément, C. Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim. Acta 2008, 53, 5509–5516. [Google Scholar] [CrossRef]
- Hildreth, O.; Lin, W.; Wong, C. Effect of Catalyst Shape and Etchant Composition on Etching Direction in Metal-Assisted Chemical Etching of Silicon to Fabricate 3D Nanostructures. ACS Nano 2009, 3, 4033–4042. [Google Scholar] [CrossRef] [PubMed]
- Hildreth, O.; Wong, C. Nano-metal-Assisted Chemical Etching for Fabricating Semiconductor and Optoelectronic Devices. In Mater. Advanced Packaging; Springer: Berlin/Heidelberg, Germany, 2016; pp. 879–922. [Google Scholar]
- Wang, Y.; Liu, Y.; Liang, H.; Mei, Z.; Du, X. Broadband antireflection on the silicon surface realized by Ag nanoparticle-patterned black silicon. Phys. Chem. Chem. Phys. 2013, 15, 2345. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Huang, Z.; Lee, W. Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 2014, 9, 271–304. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Zhang, F.; Con, C.; Cui, B.; Sun, B. Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching. Nanoscale Res. Lett. 2013, 8, 155. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Gao, F.; Wu, H.; Liu, X.; Zheng, X.; Liu, S.; Wang, H.; Zhou, S.; Li, F. The effects of Ag particle morphology on the antireflective properties of silicon textured using Ag-assisted chemical etching. J. Alloy. Compd. 2016, 670, 156–160. [Google Scholar] [CrossRef]
- Pakhuruddin, M.; Huang, J.; Dore, J.; Varlamov, S. Enhanced light-trapping in laser-crystallised silicon thin-film solar cells on glass by optimised back surface reflectors. Sol. Energy 2017, 150, 477–484. [Google Scholar] [CrossRef]
- Tsujino, K.; Matsumura, M. Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts. Electrochim. Acta 2007, 53, 28–34. [Google Scholar] [CrossRef]
- Dawood, M.; Tripathy, S.; Dolmanan, S.; Ng, T.; Tan, H.; Lam, J. Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching. J. Appl. Phys. 2012, 112, 073509. [Google Scholar] [CrossRef]
- Li, X.; Gao, Z.; Zhang, D.; Tao, K.; Jia, R.; Jiang, S.; Wang, B.; Jin, Z.; Liu, X. High-efficiency multi-crystalline black silicon solar cells achieved by additive assisted Ag-MACE. Sol. Energy 2020, 195, 176–184. [Google Scholar] [CrossRef]
- Sato, N.; Sakaguchi, K.; Yamagata, K.; Fujiyama, Y.; Yonehara, T. Epitaxial Growth on Porous Si for a New Bond and Etchback Silicon-on-Insulator. J. Electrochem. Soc. 1995, 142, 3116–3122. [Google Scholar] [CrossRef]
- Huang, Z.P.; Geyer, N.; Liu, L.F.; Li, M.Y.; Zhong, P. Metal-assisted electrochemical etching of silicon. Nanotechnology 2010, 21, 465301. [Google Scholar] [CrossRef]
- Cowley, A.; Sze, S. Surface States and Barrier Height of Metal-Semiconductor Systems. J. Appl. Phys 1965, 36, 3212–3220. [Google Scholar] [CrossRef]
- Lehmann, V. The Electrochemistry of Silicon; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Chattopadhyay, S.; Li, X.; Bohn, P. In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching. J. Appl. Phys. 2002, 91, 6134–6140. [Google Scholar] [CrossRef]
- Peng, K.Q.; Hu, J.J.; Yan, Y.J.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S.T.; Zhu, J. Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles. Adv. Funct. Mater. 2006, 16, 387–394. [Google Scholar] [CrossRef]
- Peng, K.; Wu, Y.; Fang, H.; Zhong, X.; Xu, Y.; Zhu, J. Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays. Angew. Chem. Int. Ed. 2005, 44, 2737–2742. [Google Scholar] [CrossRef]
- Hiraki, A.; Nicolet, M.; Mayer, J. Low-Temperature Migration of Silicon In Thin Layers of Gold And Platinum. Appl. Phys. Lett. 1971, 18, 178–181. [Google Scholar] [CrossRef]
- Cros, A.; Derrien, J.; Salvan, F. Catalytic action of gold atoms on the oxidation of Si(111) surfaces. Surf. Sci. 1981, 110, 471–490. [Google Scholar] [CrossRef]
- Xie, T.; Schmidt, V.; Pippel, E.; Senz, S.; Gösele, U. Gold-Enhanced Low-Temperature Oxidation of Silicon Nanowires. Small 2008, 4, 64–68. [Google Scholar] [CrossRef]
- Werner, P.; Büttner, C.; Schubert, L.; Gerth, G.; Zakarov, N.; Gösele, U. Gold-enhanced oxidation of silicon nanowires. Int. J. Mater. Res. 2007, 98, 1066–1070. [Google Scholar] [CrossRef]
- Büttner, C.; Zakharov, N.; Pippel, E.; Gösele, U.; Werner, P. Gold-enhanced oxidation of MBE-grown silicon nanowires. Semicond. Sci. Technol. 2008, 23, 075040. [Google Scholar] [CrossRef]
- Toofan, M.; Toofan, J. A Brief Review of the Cleaning Process for Electronic Device Fabrication. Dev. Surf. Contam. Clean. 2015, 185–212. [Google Scholar] [CrossRef]
- Veenendaal, E.V.; Sato, K.; Shikida, M.; Nijdam, A.; Suchtelen, J.V. Micro-morphology of single crystalline silicon surfaces during anisotropic wet chemical etching in KOH: Velocity source forests. Sens. Actuators A Phys. 2001, 93, 232–242. [Google Scholar] [CrossRef]
- Bean, K. Anisotropic etching of silicon. IEEE Trans. Electron Devices 1978, 25, 1185–1193. [Google Scholar] [CrossRef]
- Seidel, H.; Csepregi, L.; Heuberger, A.; Baumgärtel, H. Anisotropic etching of crystalline silicon in alkaline solutions: I. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 1990, 137, 3612. [Google Scholar] [CrossRef]
- Seidel, H.; Csepregi, L.; Heuberger, A.; Baumgärtel, H. Anisotropic etching of crystalline silicon in alkaline solutions: II. Influence of dopants. J. Electrochem. Soc. 1990, 137, 3626. [Google Scholar] [CrossRef]
- Pal, P.; Sato, K. A comprehensive review on convex and concave corners in silicon bulk micromachining based on anisotropic wet chemical etching. Micro Nano Syst. Lett. 2015, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Frühauf, J.; Krönert, S. Wet etching of silicon gratings with triangular profiles. Microsyst. Technol. 2005, 11, 1287–1291. [Google Scholar] [CrossRef]
- Li, S.; Ma, W.; Chen, X.; Xie, K.; Li, Y.; He, X.; Yang, X.; Lei, Y. Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching. Appl. Surf. Sci. 2016, 369, 232–240. [Google Scholar] [CrossRef]
- Abdulkadir, A.; Aziz, A.B.A.; Pakhuruddin, M.Z. Optimization of etching time for broadband absorption enhancement in black silicon fabricated by one-step electroless silver-assisted wet chemical etching. Optik 2019, 187, 74–80. [Google Scholar] [CrossRef]
- Lajvardi, M.; Eshghi, H.; Ghazi, M.; Izadifard, M.; Goodarzi, A. Structural and optical properties of silicon nanowires synthesized by Ag-assisted chemical etching. Mater. Sci. Semicond. Process. 2015, 40, 556–563. [Google Scholar] [CrossRef]
- Zhang, M.-L.; Peng, K.-Q.; Fan, X.; Jie, J.-S.; Zhang, R.-Q.; Lee, S.-T.; Wong, N.-B. Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching. J. Phys. Chem. C 2008, 112, 4444–4450. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, Y.; Liu, F.; Zhou, Y.; Zhang, Y.; Liu, Y.; Guo, Y. Progress and Mechanism of Cu Assisted Chemical Etching of Silicon in a Low Cu2+Concentration Region. ECS J. Solid State Sci. Technol. 2015, 4, P331–P336. [Google Scholar] [CrossRef]
- Lee, J.; Choi, S.; Park, S. Extremely Superhydrophobic Surfaces with Micro- and Nanostructures Fabricated by Copper Catalytic Etching. Langmuir 2011, 27, 809–814. [Google Scholar] [CrossRef]
- Park, J.E.; Cho, Y.H.; Kang, S.; Hong, H.K.; Kim, D.S.; Lim, D. Effect of Cu-Assisted Chemical Etching for Black Silicon. In Proceedings of the IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa Village, HI, USA, 10–15 June 2018; pp. 1047–1050. [Google Scholar]
- Chen, W.; Liu, Y.; Yang, L.; Wu, J.; Chen, Q.; Zhao, Y.; Wang, Y.; Du, X. Difference in anisotropic etching characteristics of alkaline and copper based acid solutions for single-crystalline Si. Sci. Rep. 2018, 8, 3408. [Google Scholar] [CrossRef]
- Lu, Y.; Barron, A. Anti-reflection layers fabricated by a one-step copper-assisted chemical etching with inverted pyramidal structures intermediate between texturing and nanopore-type black silicon. J. Mater. Chem. A 2014, 2, 12043. [Google Scholar] [CrossRef]
- Chern, W.; Hsu, K.; Chun, S.I.; Azeredo, B.P.D.; Ahmed, N.; Kim, K.; Zou, J.; Fang, N.; Ferreira, P.; Li, X. Nonlithographic Patterning and Metal-Assisted Chemical Etching for Manufacturing of Tunable Light-Emitting Silicon Nanowire Arrays. Nano Lett. 2010, 10, 1582–1588. [Google Scholar] [CrossRef]
- Peng, K.; Lu, A.; Zhang, R.; Lee, S. Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching. Adv. Funct. Mater. 2008, 18, 3026–3035. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Chen, W.; Wu, J.; Chen, Q.; Tang, H.; Wang, Y.; Du, X. Regulation of surface texturization through copper-assisted chemical etching for silicon solar cells. Sol. Energy 2020, 201, 461–468. [Google Scholar] [CrossRef]
- Vahlman, H.; Haarahiltunen, A.; Kwapil, W.; Schön, J.; Inglese, A.; Savin, H. Modeling of light-induced degradation due to Cu precipitation in p-type silicon. I. General theory of precipitation under carrier injection. J. Appl. Phys. 2017, 121, 195703. [Google Scholar] [CrossRef] [Green Version]
- Gao, K.; Shen, H.; Liu, Y.; Jiang, Y.; Zheng, C.; Li, Y.; Ren, S.; Huang, C. Enhanced etching rate of black silicon by Cu/Ni Co-assisted chemical etching process. Mater. Sci. Semicond. Process. 2018, 88, 250–255. [Google Scholar] [CrossRef]
- Gao, K.; Shen, H.; Liu, Y.; Tang, Q.; Jiang, Y.; Yang, W.; Li, Y.; Huang, C. Fabrication of black silicon by Ni assisted chemical etching. Mater. Res. Express 2018, 5, 015020. [Google Scholar] [CrossRef]
- Kong, L.; Chiam, S.; Chim, W. Metal-Assisted Silicon Chemical Etching Using Self-Assembled Sacrificial Nickel Nanoparticles Template for Antireflection Layers in Photovoltaic and Light-Trapping Devices. ACS Appl. Nano Mater. 2019, 2, 7025–7031. [Google Scholar] [CrossRef]
- Stafiniak, A.; Prażmowska, J.; Macherzyński, W.; Paszkiewicz, R. Nanostructuring of Si substrates by a metal-assisted chemical etching and dewetting process. RSC Adv. 2018, 8, 31224–31230. [Google Scholar] [CrossRef] [Green Version]
- Saive, R. “Light trapping in thin silicon solar cells: A review on fundamentals and technologies. ” Prog. Photovolt. Res. Appl. 2021, 29, 1125–1137. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arafat, M.Y.; Islam, M.A.; Mahmood, A.W.B.; Abdullah, F.; Nur-E-Alam, M.; Kiong, T.S.; Amin, N. Fabrication of Black Silicon via Metal-Assisted Chemical Etching—A Review. Sustainability 2021, 13, 10766. https://doi.org/10.3390/su131910766
Arafat MY, Islam MA, Mahmood AWB, Abdullah F, Nur-E-Alam M, Kiong TS, Amin N. Fabrication of Black Silicon via Metal-Assisted Chemical Etching—A Review. Sustainability. 2021; 13(19):10766. https://doi.org/10.3390/su131910766
Chicago/Turabian StyleArafat, Mohammad Yasir, Mohammad Aminul Islam, Ahmad Wafi Bin Mahmood, Fairuz Abdullah, Mohammad Nur-E-Alam, Tiong Sieh Kiong, and Nowshad Amin. 2021. "Fabrication of Black Silicon via Metal-Assisted Chemical Etching—A Review" Sustainability 13, no. 19: 10766. https://doi.org/10.3390/su131910766
APA StyleArafat, M. Y., Islam, M. A., Mahmood, A. W. B., Abdullah, F., Nur-E-Alam, M., Kiong, T. S., & Amin, N. (2021). Fabrication of Black Silicon via Metal-Assisted Chemical Etching—A Review. Sustainability, 13(19), 10766. https://doi.org/10.3390/su131910766