Urban Expansion Simulation Based on Various Driving Factors Using a Logistic Regression Model: Delhi as a Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Methodology
- (1)
- Built-up;
- (2)
- Vegetation;
- (3)
- Water bodies;
- (4)
- Others.
3. Results and Discussion
3.1. Land Use/Cover Dynamics
3.2. The Trend of Urban Expansion in Delhi from 1989 to 2020
3.3. Lack of Spatial Planning in Delhi
3.4. The Logistic Regression Analysis
3.5. Simulation of Future Urban Expansion
3.6. Model Validation
3.7. Limitations and Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tripathy, P.; Kumar, A. Monitoring and modelling spatio-temporal urban growth of Delhi using Cellular Automata and geoinformatics. Cities 2019, 90, 52–63. [Google Scholar] [CrossRef]
- Karimi, F.; Sultana, S.; Shirzadi Babakan, A.; Suthaharan, S. An enhanced support vector machine model for urban expansion prediction. Comput. Environ. Urban Syst. 2019, 75, 61–75. [Google Scholar] [CrossRef]
- Serra, P.; Pons, X.; Saurí, D. Land-cover and land-use change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors. Appl. Geogr. 2008, 28, 189–209. [Google Scholar] [CrossRef]
- Shu, B.; Zhang, H.; Li, Y.; Qu, Y.; Chen, L. Spatiotemporal variation analysis of driving forces of urban land spatial expansion using logistic regression: A case study of port towns in Taicang City, China. Habitat Int. 2014, 43, 181–190. [Google Scholar] [CrossRef]
- Tayyebi, A.; Delavar, M.R.; Yazdanpanah, M.J.; Pijanowski, B.C.; Saeedi, S.; Tayyebi, A.H. A spatial logistic regression model for simulating land use patterns: A case study of the shiraz metropolitan area of Iran. In Advances in Earth Observation of Global Change; Springer: Dordrecht, The Netherland, 2010; pp. 27–42. ISBN 9789048190843. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ahamad, M.S.S.; Omar, N.Q. Spatio-temporal simulation and prediction of land-use change using conventional and machine learning models: A review. Environ. Monit. Assess. 2019, 191, 1–28. [Google Scholar] [CrossRef]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Li, L.; Huang, C.; Liu, R.; Chen, Z.; Wu, J. Urban expansion and agricultural land loss in China: A multiscale perspective. Sustainability 2016, 8, 790. [Google Scholar] [CrossRef] [Green Version]
- Hamdy, O.; Zhao, S.; Osman, T.; Salheen, M.; Eid, Y. Applying a Hybrid Model of Markov Chain and Logistic Regression to Identify Future Urban Sprawl in Abouelreesh, Aswan: A Case Study. Geosciences 2016, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Shafizadeh-Moghadam, H.; Tayyebi, A.; Helbich, M. Transition index maps for urban growth simulation: Application of artificial neural networks, weight of evidence and fuzzy multi-criteria evaluation. Environ. Monit. Assess 2017, 189, 1–14. [Google Scholar] [CrossRef]
- Salem, M.; Tsurusaki, N.; Divigalpitiya, P. Land use/land cover change detection and urban sprawl in the peri-urban area of greater Cairo since the Egyptian revolution of 2011. J. Land Use Sci. 2020, 15, 1–15. [Google Scholar] [CrossRef]
- Rubiera-Morollón, F.; Garrido-Yserte, R. Recent literature about urban sprawl: A renewed relevance of the phenomenon from the perspective of environmental sustainability. Sustainability 2020, 12, 6551. [Google Scholar] [CrossRef]
- Msofe, N.K.; Sheng, L.; Lyimo, J. Land use change trends and their driving forces in the Kilombero Valley Floodplain, Southeastern Tanzania. Sustainability 2019, 11, 505. [Google Scholar] [CrossRef] [Green Version]
- Sahana, M.; Hong, H.; Sajjad, H. Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Sci. Total Environ. 2018, 628–629, 1557–1566. [Google Scholar] [CrossRef]
- Li, G.; Li, F. Urban sprawl in China: Differences and socioeconomic drivers. Sci. Total Environ. 2019, 673, 367–377. [Google Scholar] [CrossRef]
- Mehriar, M.; Masoumi, H.; Mohino, I. Urban sprawl, socioeconomic features, and travel patterns in middle east countries: A case study in Iran. Sustainability 2020, 12, 9620. [Google Scholar] [CrossRef]
- Salem, M.; Tsurusaki, N.; Divigalpitiya, P.; Osman, T. Driving Factors of Urban Expansion in Peri-Urban Areas of Greater Cairo Region. In Proceedings of the 23rd International Conference on Urban Planning, Regional Development and Information, CORP–Compentence Center of Urban and Regional Planning, Vienna, Austria, 4–6 April 2018; pp. 191–196. [Google Scholar]
- Appiah, D.; Schröder, D.; Forkuo, E.; Bugri, J. Application of Geo-Information Techniques in Land Use and Land Cover Change Analysis in a Peri-Urban District of Ghana. ISPRS Int. J. Geo-Inf. 2015, 4, 1265–1289. [Google Scholar] [CrossRef] [Green Version]
- Batsuuri, B.; Fürst, C.; Myagmarsuren, B. Estimating the impact of urban planning concepts on reducing the urban sprawl of ulaanbaatar city using certain spatial indicators. Land 2020, 9, 495. [Google Scholar] [CrossRef]
- Ju, H.; Zhang, Z.; Zuo, L.; Wang, J.; Zhang, S.; Wang, X.; Zhao, X. Driving forces and their interactions of built-up land expansion based on the geographical detector—A case study of Beijing, China. Int. J. Geogr. Inf. Sci. 2016, 30, 2188–2207. [Google Scholar] [CrossRef]
- Rahman, A.; Kumar, S.; Fazal, S.; Siddiqui, M.A. Assessment of Land use/land cover Change in the North-West District of Delhi Using Remote Sensing and GIS Techniques. J. Indian Soc. Remote Sens. 2012, 40, 689–697. [Google Scholar] [CrossRef]
- Gielen, E.; Riutort-Mayol, G.; Palencia-Jiménez, J.S.; Cantarino, I. An urban sprawl index based on multivariate and Bayesian factor analysis with application at the municipality level in Valencia. Environ. Plan. B Urban Anal. City Sci. 2018, 45, 888–914. [Google Scholar] [CrossRef]
- Poelmans, L.; Van Rompaey, A. Detecting and modelling spatial patterns of urban sprawl in highly fragmented areas: A case study in the Flanders-Brussels region. Landsc. Urban Plan. 2009, 93, 10–19. [Google Scholar] [CrossRef]
- Tavares, A.O.; Pato, R.L.; Magalhães, M.C. Spatial and temporal land use change and occupation over the last half century in a peri-urban area. Appl. Geogr. 2012, 34, 432–444. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Li, J.; Lei, B. Physical and socioeconomic driving forces of land-use and land-cover changes: A Case Study of Wuhan City, China. Discret. Dyn. Nat. Soc. 2016, 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Alsharif, A.A.A.; Pradhan, B. Urban Sprawl Analysis of Tripoli Metropolitan City (Libya) Using Remote Sensing Data and Multivariate Logistic Regression Model. J. Indian Soc. Remote Sens. 2014, 42, 149–163. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, L. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puerto Rico. Appl. Geogr. 2013, 37, 52–62. [Google Scholar] [CrossRef]
- Liao, F.H.F.; Wei, Y.H.D. Modeling determinants of urban growth in Dongguan, China: A spatial logistic approach. Stoch. Environ. Res. Risk Assess. 2014, 28, 801–816. [Google Scholar] [CrossRef]
- Nong, Y.; Du, Q. Urban growth pattern modeling using logistic regression. Geo-Spat. Inf. Sci. 2011, 14, 62–67. [Google Scholar] [CrossRef]
- Sharma, R.; Joshi, P.K. Monitoring Urban Landscape Dynamics Over Delhi (India) Using Remote Sensing (1998-2011) Inputs. J. Indian Soc. Remote Sens. 2013, 41, 641–650. [Google Scholar] [CrossRef]
- Chadchan, J.; Shankar, R. An analysis of urban growth trends in the post-economic reforms period in India. Int. J. Sustain. Built Environ. 2012, 1, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Guttikunda, S.K.; Calori, G. A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi, India. Atmos. Environ. 2013, 67, 101–111. [Google Scholar] [CrossRef]
- Maiti, S.; Agrawal, P.K. Environmental Degradation in the Context of Growing Urbanization: A Focus on the Metropolitan Cities of India. J. Hum. Ecol. 2005, 17, 277–287. [Google Scholar] [CrossRef]
- Nagar, P.K.; Singh, D.; Sharma, M.; Kumar, A.; Aneja, V.P.; George, M.P.; Agarwal, N.; Shukla, S.P. Characterization of PM2.5 in Delhi: Role and impact of secondary aerosol, burning of biomass, and municipal solid waste and crustal matter. Environ. Sci. Pollut. Res. 2017, 24, 25179–25189. [Google Scholar] [CrossRef]
- Abu Hatab, A.; Cavinato, M.E.R.; Lindemer, A.; Lagerkvist, C.J. Urban sprawl, food security and agricultural systems in developing countries: A systematic review of the literature. Cities 2019, 94, 129–142. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Bharath, A.H.; Sowmyashree, M.V. Monitoring urbanization and its implications in a mega city from space: Spatiotemporal patterns and its indicators. J. Environ. Manag. 2015, 148, 67–81. [Google Scholar] [CrossRef]
- Shaw, R.; Das, A. Identifying peri-urban growth in small and medium towns using GIS and remote sensing technique: A case study of English Bazar Urban Agglomeration, West Bengal, India. Egypt. J. Remote Sens. Space Sci. 2018, 21, 159–172. [Google Scholar] [CrossRef]
- Paul, S.; Saxena, K.G.; Nagendra, H.; Lele, N. Tracing land use and land cover change in peri-urban Delhi, India, over 1973–2017 period. Environ. Monit. Assess. 2021, 193, 1–12. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Department of Economic and Social Affairs. The World’s Cities in 2016: Data Booklet; UN Publications: New York, NY, USA, 2016. [Google Scholar]
- Bhat, P.A.; ul Shafiq, M.; Mir, A.A.; Ahmed, P. Urban sprawl and its impact on landuse/land cover dynamics of Dehradun City, India. Int. J. Sustain. Built Environ. 2017, 6, 513–521. [Google Scholar] [CrossRef]
- Bose, A.; Chowdhury, I.R. Monitoring and modeling of spatio-temporal urban expansion and land-use/land-cover change using markov chain model: A case study in Siliguri Metropolitan area, West Bengal, India. Model. Earth Syst. Environ. 2020, 6, 2235–2249. [Google Scholar] [CrossRef]
- Salem, M.; Tsurusaki, N.; Divigalpitiya, P. Remote sensing-based detection of agricultural land losses around greater Cairo since the Egyptian revolution of 2011. Land Use Policy 2020, 97, 1–8. [Google Scholar] [CrossRef]
- Rahman, M.T. Detection of land use/land cover changes and urban sprawl in Al-Khobar, Saudi Arabia: An analysis of multi-temporal remote sensing data. ISPRS Int. J. Geo-Inf. 2016, 5, 15. [Google Scholar] [CrossRef]
- Rahman, M.T.U.; Tabassum, F.; Rasheduzzaman, M.; Saba, H.; Sarkar, L.; Ferdous, J.; Uddin, S.Z.; Zahedul Islam, A.Z.M. Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh. Environ. Monit. Assess. 2017, 189, 1–18. [Google Scholar] [CrossRef]
- Nguyen, T. Optimal ground control points for geometric correction using genetic algorithm with global accuracy. Eur. J. Remote Sens. 2015, 48, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Lityński, P. The Intensity of Urban Sprawl in Poland. ISPRS Int. J. Geo-Inf. 2021, 10, 95. [Google Scholar] [CrossRef]
- Salem, M.; Tsurusaki, N.; Divigalpitiya, P.; Osman, T.; Hamdy, O.; Kenawy, E. Assessing Progress Towards Sustainable Development in the Urban Periphery: A Case of Greater Cairo, Egypt. Int. J. Sustain. Dev. Plan. 2020, 15, 971–982. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Drivers of land use/land cover changes in Munessa-Shashemene landscape of the south-central highlands of Ethiopia. Environ. Monit. Assess. 2015, 187, 452. [Google Scholar] [CrossRef]
- Knickel, K.; Almeida, A.; Bauchinger, L.; Casini, M.P.; Gassler, B.; Hausegger-Nestelberger, K.; Heley, J.; Henke, R.; Knickel, M.; Oostindie, H.; et al. Towards more balanced territorial relations—The role (And limitations) of spatial planning as a governance approach. Sustainbility 2021, 13, 5308. [Google Scholar] [CrossRef]
- Hersperger, A.M.; Oliveira, E.; Pagliarin, S.; Palka, G.; Verburg, P.; Bolliger, J.; Grădinaru, S. Urban land-use change: The role of strategic spatial planning. Glob. Environ. Chang. 2018, 51, 32–42. [Google Scholar] [CrossRef]
- Watson, V. Seeing from the South: Refocusing urban planning on the globe’s central urban issues. Urban Stud. 2009, 46, 2259–2275. [Google Scholar] [CrossRef]
- Dupont, V.E. Peri-Urban Dynamics: Population, Habitat and Environment on the Peripheries of Large Indian Metropolises. In Population (English Edition); Raman Naahar, Rajdhani Art Press: New Delhi, India, 2006; pp. 1–151. [Google Scholar]
- Nallathiga, R.; Taneja, S.; Gupta, A.; Gangal, B. Sustainability of Urban Fringe Development and Management in NCT-Delhi: A Case Study. In Exploring Urban Change in South Asia; Springer: Berlin/Heidelberg, Germany, 2018; pp. 109–133. [Google Scholar] [CrossRef]
- Jain, M.; Korzhenevych, A.; Sridharan, N. Determinants of growth in non-municipal areas of Delhi: Rural–urban dichotomy revisited. J. Hous. Built Environ. 2019, 34, 715–734. [Google Scholar] [CrossRef]
- Eastman, J.R. TerrSet Manual—Clark Labs. Available online: https://clarklabs.org/wp-content/uploads/2016/10/Terrset-Manual.pdf (accessed on 29 January 2020).
- Clark, W.A.V.; Hosking, P.L. Statistical Methods for Geographers; Wiley: Hoboken, NJ, USA, 1986; ISBN 0471818070. [Google Scholar]
- Salem, M. Peri-urban dynamics and land-use planning for the Greater Cairo Region in Egypt. In WIT Transactions on the Built Environment; WIT Press: Waterford, Ireland, 2015; Volume 168, pp. 109–119. ISBN 978-1-78466-157-1. [Google Scholar] [CrossRef] [Green Version]
- Salem, M.; Tsurusaki, N.; Divigalpitiya, P. Analyzing the driving factors causing urban expansion in the peri-urban areas using logistic regression: A case study of the greater Cairo region. Infrastructures 2019, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Lo, C.P. Modeling urban growth in Atlanta using logistic regression. Comput. Environ. Urban Syst. 2007, 31, 667–688. [Google Scholar] [CrossRef]
- Sarkar, A.; Chouhan, P. Modeling spatial determinants of urban expansion of Siliguri a metropolitan city of India using logistic regression. Model. Earth Syst. Environ. 2020, 6, 2317–2331. [Google Scholar] [CrossRef]
- Sudhira, H.S.; Paper, C. Urban Sprawl: Modelling and Simulation for an Integrated Spatial Planning Support System; Indian Institute of Science: Bangalore, India, 2007. [Google Scholar]
- Siddiqui, A.; Siddiqui, A.; Maithani, S.; Jha, A.K.; Kumar, P.; Srivastav, S.K. Urban growth dynamics of an Indian metropolitan using CA Markov and Logistic Regression. Egypt. J. Remote. Sens. Sp. Sci. 2018, 21, 229–236. [Google Scholar] [CrossRef]
- Jokar Arsanjani, J.; Helbich, M.; Kainz, W.; Darvishi Boloorani, A. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Triantakonstantis, D.; Mountrakis, G. Urban Growth Prediction: A Review of Computational Models and Human Perceptions. J. Geogr. Inf. Syst. 2012, 04, 555–587. [Google Scholar] [CrossRef] [Green Version]
- Tayyebi, A.; Pijanowski, B.C.; Tayyebi, A.H. An urban growth boundary model using neural networks, GIS and radial parameterization: An application to Tehran, Iran. Landsc. Urban Plan. 2011, 100, 35–44. [Google Scholar] [CrossRef]
- Xu, T.; Gao, J.; Coco, G. Simulation of urban expansion via integrating artificial neural network with Markov chain–cellular automata. Int. J. Geogr. Inf. Sci. 2019, 33, 1960–1983. [Google Scholar] [CrossRef]
Author | Location | Region | City, Country | Main Driving Factors |
---|---|---|---|---|
Salem et al. | Global South | Africa | Cairo, Egypt | Population Density and Proximity to Roads |
Appiah et al. | Africa | Bosomtwe, Ghana | Demands for New Housing and Accessibility | |
Batsuuri et al. | Asia | Ulaanbaatar, Mongolia | Urban Planning Policy | |
Ju et al. | Asia | Beijing, China | Distance to the Downtown Area | |
Rahman et al. | Asia | Delhi, India | Population Growth and Migration from Small Cities and Rural Areas | |
Gielen et al. | Global North | Europe | Valencia, Spain | Urban Density and Proximity to the City Center |
Lien and Anton | Europe | Brussels, Belgium | Distance to Roads and Flood Risk | |
Tavares et al. | Europe | Coimbra, Portugal | Municipal Master Plans and Land Regulation |
Data | Source | Date of Acquisition |
---|---|---|
Landsat-5 | USGS Earth Explorer website (30 m Res.) | 1989/12/12, 1989/12/05 |
Landsat-7 | 2000/04/06, 2000/03/14 | |
Landsat-5 | 2010/12/22, 2010/11/29 | |
Landsat-8 | 2020/05/07, 2020/05/16 | |
Shapefiles of Roads, Water Bodies, Railways, etc. | OpenStreetMap and Google Earth Pro | 2020/06/09 |
Factors | Name |
---|---|
Dependent (Y) | 0: No Urban Expansion; 1: Urban Expansion |
Independent (X1) | Proximity to Water Bodies |
Independent (X2) | Proximity to Urban Areas |
Independent (X3) | Proximity to Tourist Places |
Independent (X4) | Proximity to the Restricted Area |
Independent (X5) | Proximity to Railways |
Independent (X6) | Proximity to Medical Facilities |
Independent (X7) | Proximity to Main Roads |
Independent (X8) | Proximity to Industrial Areas |
Independent (X9) | Proximity to Higher Education Institutes |
Feature Class | Description |
---|---|
Built-Up | All Man-Made Structures Such as Residential Zones, Commercial Areas, etc. |
Vegetation | Agricultural Lands, Arable Land, Cropland, Parks, etc. |
Water Bodies | All Water Bodies Such as Rivers, Lakes, Ponds, etc. |
Others | Fallow Land and Degraded Areas, Vacant Spaces, etc. |
LUC Change Category | Area of 1989 | Area of 2000 | Area of 2010 | Area of 2020 | Change (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
sq. km | % | sq. km | (%) | sq. km | (%) | sq. km | (%) | 89/00 | 00/10 | 10/20 | |
Built-Up | 195.30 | 12.92 | 268.11 | 17.73 | 351.21 | 23.23 | 435.12 | 28.78 | 72.81 | 4.82 | 5.55 |
Veg. | 130.56 | 8.63 | 127.03 | 8.40 | 120.92 | 8.00 | 111.39 | 7.37 | −3.53 | −0.23 | −0.63 |
Water | 14.34 | 0.95 | 13.84 | 0.92 | 13.59 | 0.90 | 14.11 | 0.93 | −0.50 | −0.03 | −0.03 |
Others | 1171.90 | 77.50 | 1103.12 | 72.95 | 1026.37 | 67.88 | 951.48 | 62.92 | −68.78 | −4.55 | −4.95 |
Distance from the Center of Delhi (km) | % Built-Up Area | |||
---|---|---|---|---|
1989 | 2000 | 2010 | 2020 | |
<2 | 1.43 | 2.20 | 2.35 | 1.85 |
4 | 4.62 | 5.44 | 4.58 | 4.26 |
6 | 6.98 | 8.46 | 8.12 | 8.11 |
8 | 12.23 | 10.57 | 11.52 | 10.44 |
10 | 10.88 | 10.69 | 9.16 | 9.67 |
12 | 9.46 | 9.75 | 11.78 | 11.20 |
14 | 9.01 | 8.26 | 9.17 | 7.75 |
16 | 6.27 | 6.85 | 8.24 | 8.60 |
18 | 9.86 | 8.44 | 8.98 | 9.51 |
20 | 10.94 | 8.51 | 7.75 | 7.45 |
22 | 8.50 | 7.25 | 6.58 | 6.46 |
24 | 4.36 | 4.92 | 4.10 | 4.51 |
26 | 4.11 | 3.94 | 3.17 | 3.68 |
28 | 0.94 | 2.40 | 1.97 | 2.84 |
30 | 0.86 | 1.04 | 1.07 | 1.79 |
32 | 0.95 | 1.26 | 1.43 | 1.70 |
34 | 0.02 | 0.01 | 0.02 | 0.16 |
36 | 0.00 | 0.02 | 0.02 | 0.02 |
Direction | 2020 | 2010 | 2000 | 1989 | Urban Expansion Intensity (%) |
---|---|---|---|---|---|
North North West | 16.40 | 14.05 | 4.75 | 3.91 | 0.0267 |
North North East | 21.76 | 17.56 | 12.41 | 9.77 | 0.0256 |
East North East | 56.57 | 52.68 | 38.07 | 27.34 | 0.0623 |
East South East | 160.99 | 140.48 | 136.74 | 97.65 | 0.1351 |
South South East | 65.27 | 52.68 | 48.26 | 37.11 | 0.0601 |
South South West | 56.57 | 42.15 | 17.96 | 11.72 | 0.0957 |
West South West | 39.16 | 21.07 | 7.24 | 5.86 | 0.0710 |
West North West | 18.40 | 10.54 | 2.68 | 1.95 | 0.0351 |
Variable | Coefficient | Odds Ratio (OR) | |
---|---|---|---|
1 | Proximity to Water Bodies | 0.095 | 0.780 |
2 | Proximity to Urban Area | 0.884 | 0.230 |
3 | Proximity to Tourist Places | 0.042 | 1.000 |
4 | Proximity to Restricted Area | 0.037 | 1.000 |
5 | Proximity to Railways | 0.109 | 0.850 |
6 | Proximity to Medical Facilities | 0.377 | 0.540 |
7 | Proximity to Main Roads | 0.475 | 0.360 |
8 | Proximity to Industrial Areas | 0.056 | 1.000 |
9 | Proximity to Higher Education Institutes | 0.027 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, M.; Bose, A.; Bashir, B.; Basak, D.; Roy, S.; Chowdhury, I.R.; Alsalman, A.; Tsurusaki, N. Urban Expansion Simulation Based on Various Driving Factors Using a Logistic Regression Model: Delhi as a Case Study. Sustainability 2021, 13, 10805. https://doi.org/10.3390/su131910805
Salem M, Bose A, Bashir B, Basak D, Roy S, Chowdhury IR, Alsalman A, Tsurusaki N. Urban Expansion Simulation Based on Various Driving Factors Using a Logistic Regression Model: Delhi as a Case Study. Sustainability. 2021; 13(19):10805. https://doi.org/10.3390/su131910805
Chicago/Turabian StyleSalem, Muhammad, Arghadeep Bose, Bashar Bashir, Debanjan Basak, Subham Roy, Indrajit R. Chowdhury, Abdullah Alsalman, and Naoki Tsurusaki. 2021. "Urban Expansion Simulation Based on Various Driving Factors Using a Logistic Regression Model: Delhi as a Case Study" Sustainability 13, no. 19: 10805. https://doi.org/10.3390/su131910805
APA StyleSalem, M., Bose, A., Bashir, B., Basak, D., Roy, S., Chowdhury, I. R., Alsalman, A., & Tsurusaki, N. (2021). Urban Expansion Simulation Based on Various Driving Factors Using a Logistic Regression Model: Delhi as a Case Study. Sustainability, 13(19), 10805. https://doi.org/10.3390/su131910805