Identification of Soil Heavy Metal Sources in a Large-Scale Area Affected by Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Subregions
2.2. Sampling and Chemical Analysis
2.2.1. Soil Heavy Metal Content Data Collection
2.2.2. Environmental Factors
3. Data Analysis
3.1. Hot Spot Analysis
3.2. Geo-Accumulation Index
3.3. Receptor Model
3.4. Random Forest Algorithm
4. Results and Discussion
4.1. Heavy Metal Contamination Characteristics
4.1.1. Descriptive Statistics of the Heavy Metals
4.1.2. Pollution Assessment
4.1.3. Difference Analysis
4.2. Source Apportionment by PMF
4.3. Qualitative Identification of Pollution Sources
4.4. Dependence of Heavy Metals on Major Environmental Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, B.; Wang, J.Y.; Jin, B.; Li, Y.; Shi, Z. Assessment of the potential health risks of heavy metals in soils in a coastal industrial region of the Yangtze river delta. Environ. Sci. Pollut. R. 2017, 24, 19816–19826. [Google Scholar] [CrossRef]
- Huang, J.H.; Guo, S.T.; Zeng, G.M.; Li, F.; Gu, Y.L.; Shi, Y.H.; Shi, L.X.; Liu, W.C.; Peng, S.Y. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environ. Pollut. 2018, 243, 49–58. [Google Scholar] [CrossRef]
- Singh, U.K.; Kumar, B. Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere 2017, 174, 183–199. [Google Scholar] [CrossRef]
- Saleem, M.; Iqbal, J.; Shah, M.H. Non-carcinogenic and carcinogenic health risk assessment of selected metals in soil around a natural water reservoir, Pakistan. Ecotoxicol. Environ. Saf. 2014, 108, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.R.; Ma, J.; Wu, X.; Ju, T.N.; Lin, X.L.; Zhang, Y.Y.; Li, X.H.; Gong, Y.W.; Hou, H.; Zhao, L.; et al. Inventories of heavy metal inputs and outputs to and from agricultural soils:A review. Ecotoxicol. Environ. Saf. 2018, 164, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Chen, Y.L.; Weng, L.P.; Ma, J.; Ma, Y.L.; Li, Y.T.; Islam, M.S. Comparisons of heavy metal input inventory in agricultural soils in north and south China:A review. Sci. Total Environ. 2019, 660, 776–786. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, R.Z.; Gan, Y.D.; Cai, L.Q.; Freidenreich, A.; Wang, K.P.; Guo, T.W.; Wang, H.B. Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Sci. Total Environ. 2019, 651, 3127–3138. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cai, L.M.; Wen, H.H.; Luo, J.; Wang, Q.S.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Deng, M.H.; Wu, S.F.; Japenga, J.; Li, T.Q.; Yang, X.E.; He, Z.L. A modified receptor model for source apportionment of heavy metal pollution in soil. J. Hazard. Mater. 2018, 354, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.J.; Deng, Q.Y.; Lin, Q.; Zeng, C.Y.; Zhong, C. Cadmium source identification in soils and high-risk regions predicted by geographical detector method. Environ. Pollut. 2020, 263, 114338. [Google Scholar] [CrossRef]
- Srishti, J.; Sudhir, K.S.; Manoj, K.S. Source apportionment of PM10 over three tropical urban atmospheres at Indo-Gangetic plain of India: An approach using different receptor models. Arch. Environ. Contam. Toxicol. 2019, 76, 114–128. [Google Scholar]
- Zhang, J.; Li, R.F.; Zhang, X.Y.; Bai, Y.; Cao, P.; Hua, P. Vehicular contribution of PAHs in size dependent road dust: A source apportionment by PCA-MLR, PMF, and Unmix receptor models. Sci. Total Environ. 2019, 649, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Qing, X.D.; Yin, L.D.; Zhang, X.H.; Huang, Y.; He, M. A New Receptor model based on the alternating trilinear decomposition followed by a score matrix reconstruction for source apportionment of ambient particulate matter. Sci. J. Anal. Chem. 2020, 8, 93. [Google Scholar]
- Liu, Q.Y.; Gong, J.X. Assessment of source contributions to organic carbon in ambient fine particle using receptor model with inorganic and organic source tracers at an urban site of Beijing. SN Appl. Sci. 2020, 2, 291–333. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Teng, Y.G.; Chen, H.Y.; Wang, Y.Y. A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks. J. Hazard. Mater. 2020, 388, 121766. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Zhang, L.X.; Wang, J.N.; Lv, J.S. Identifying quantitative sources and spatial distributions of potentially toxic elements in soils by using three receptor models and sequential indicator simulation. Chemosphere. 2020, 242, 125266. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Z.; Xu, W.H.; Zhou, K.; Xiong, Z.T. Research progressing of present contamination of Cd in soil and restoration method. Wuhan Univ. J. Nat. Sci. 2015, 20, 430–444. [Google Scholar] [CrossRef]
- Qiu, L.F.; Wang, K.; Long, W.L.; Wang, K.; Hu, W.; Amable, G.S. A comparative assessment of the influences of human impacts on soil Cd concentrations based on stepwise linear regression, classification and regression tree, and random forest models. PLoS ONE 2017, 11, e0151131. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.N.; Cheng, H.F. Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region. Environ. Sci. Technol. 2013, 47, 3752–3760. [Google Scholar] [CrossRef]
- Stojić, A.; Stojić, S.S.; Reljin, I.; Čabarkapa, M.; Šoštarić, A.; Perišić, M.; Mijić, Z. Comprehensive analysis of PM10 in Belgrade urban area on the basis of long-term measurements. Environ. Sci. Pollut. Res. 2016, 23, 10722–10732. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, X.R. Impact of industrial activities on heavy metal contamination in soils in three major urban agglomerations of China. J. Clean. Prod. 2019, 230, 1–10. [Google Scholar] [CrossRef]
- Adgate, J.L.; Willis, R.D.; Buckley, T.J.; Chow, J.C.; Watson, J.G.; Rhoads, G.G.; Lioy, P.J. Chemical mass balance source apportionment of lead in house dust. Environ. Sci. Technol. 1998, 32, 108–114. [Google Scholar] [CrossRef]
- Lv, J.S.; Liu, Y. An integrated approach to identify quantitative sources and hazardous areas of heavy metals in soils. Sci. Total Environ. 2019, 646, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Zhi, Y.Y.; Li, P.; Shi, J.C.; Zeng, L.Z.; Wu, L.S. Source identification and apportionment of soil cadmium in cropland of Eastern China: A combined approach of models and geographic information system. J. Soils Sediments 2016, 16, 467–475. [Google Scholar] [CrossRef]
- Maier, M.L.; Balachandran, S.; Sarnat, S.E.; Turner, J.R.; Mulholland, J.A.; Russell, A.G. Application of an ensemble-trained source apportionment approach at a site impacted by multiple point sources. Environ. Sci. Technol. 2013, 47, 3743–3751. [Google Scholar] [CrossRef]
- Chen, H.Y.; Teng, Y.G.; Lu, S.J.; Wang, Y.Y.; Wu, J.; Wang, J.S. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere 2016, 144, 1002–1011. [Google Scholar] [CrossRef]
- Qu, M.K.; Wang, Y.; Huang, B.; Zhao, Y.C. Source apportionment of soil heavy metals using robust absolute principal component scores-robust geographically weighted regression (RAPCS-RGWR) receptor model. Sci. Total Environ. 2018, 626, 203–210. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Li, S.; Wang, F.; Chen, J.; Wang, L.Q. An innovative expression model of human health risk based on the quantitative analysis of soil metals sources contribution in different spatial scales. Chemosphere 2018, 207, 60–69. [Google Scholar] [CrossRef]
- MEEC (Ministry of Ecology and Environment of the People’s Republic of China). Solid Waste–Determination of Metals–Inductively Coupled Plasma Mass Spectrometry (HJ 766-2015); MEEC: Kuala Lumpur, Malaysia, 2015.
- Rout, S.; Kumar, A.; Sarkar, P.K.; Mishra, K.; Ravi, P.M. Application of Chemometric methods for assessment of heavy metal pollution and source apportionment in Riparian zone soil of Ulhas River estuary, India. Int. J. Environ. Sci. 2013, 3, 1485–1496. [Google Scholar]
- Simeonov, V.; Massart, D.L.; Andreev, G.; Tsakovski, S. Assessment of metal pollution based on multivariate statistical modeling of ’hot spot’ sediments from the Black Sea. Chemosphere 2000, 41, 1411–1417. [Google Scholar] [CrossRef]
- CNEMC (China National Environmental Monitoring Center). The Background Concentrations of Soil Elements of China; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Chen, T.B.; Zheng, Y.M.; Lei, M.; Huang, Z.C.; Wu, H.T.; Chen, H.; Fan, K.K.; Yu, K.; Wu, X.; Tian, Q.Z. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 2005, 60, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Paatreo, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Jiang, Y.X.; Chao, S.H.; Liu, J.W.; Yang, Y.; Chen, Y.J.; Zhang, A.C.; Cao, H.B. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2016, 168, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Teng, Y.G.; Li, J.; Wang, J.S. Source apportionment of trace metals in river sediments: A comparison of three methods. Environ. Pollut. 2016, 211, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Shih, Y.S.; Tsai, H.W. Variable selection bias in regression trees with constant fits. Comput. Stat. Data Anal. 2004, 45, 595–607. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. Bioinformatics 2007, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Manual on Setting Up, Using, and Understanding Random Forests V3.1. 2002. Available online: https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf (accessed on 31 December 2020).
- Ramón, D.U.; Sara, A.A. Gene selection and classification of microarray data using random forest. Bioinformatics 2006, 7, 3. [Google Scholar]
- Ishwaran, H. Variable importance in binary regression trees and forests. Electron. J. Stat. 2007, 1, 519–537. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.M.; Tuleau, C. Random Forests: Some methodological insights. arXiv 2008, arXiv:0811.3619. [Google Scholar]
- Wu, J.; Teng, Y.G.; Wu, B.B.; Su, J.; Wang, J.S. Comparison of sources and spatial distribution of heavy metals at two peri-urban areas in Southwest Shenyang, China. Environ. Eng. Manag. J. 2019, 18, 31–39. [Google Scholar]
- MEEC (Ministry of Ecology and Environment of the People’s Republic of China). Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (GB 15618-2018); MEEC: Kuala Lumpur, Malaysia, 2018.
- Zhao, C.; Yang, J.; Zheng, Y.M.; Yang, J.X.; Guo, G.H.; Wang, J.Y.; Chen, T.B. Effects of environmental governance in mining areas: The trend of arsenic concentration in the environmental media of a typical mining area in 25 years. Chemosphere 2019, 235, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, H.F.; Cao, Z.G.; Shi, Z.Y.; Liu, J. Human health risk assessment and risk source analysis of arsenic in soil from a coal chemical plant in Northwest China. J. Soils Sediments 2019, 19, 2785–2794. [Google Scholar] [CrossRef]
- Georgina, G.R.; Nadia, M.V.; Smolders, E. The labile fractions of metals and arsenic in mining-impacted soils are explained by soil properties and metal source characteristics. J. Environ. Qual. 2020, 49, 417–427. [Google Scholar]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Zhong, T.Y.; Chen, D.M.; Zhang, X.Y. Identification of potential sources of mercury (Hg) in farmland soil using a decision tree method in China. Int. J. Environ. Res. Public Health 2016, 13, 1111. [Google Scholar] [CrossRef] [Green Version]
- Rafique, N.; Tariq, S.R. Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields. Environ. Monit. Assess. 2016, 188, 309. [Google Scholar] [CrossRef]
- Wang, J.F.; Song, J.J.; Xie, R.H.; Li, Y.Y.; Xu, M.; Lu, J.; Xia, X.W.; Li, G.B. Source identification of heavy metals in surface sediments from a river in Anhui, China. Environ. Forensics 2020, 21, 167–175. [Google Scholar] [CrossRef]
- Young, C.J.; Hyeryeong, J.; Choi, K.Y.; Hong, G.H.; Yang, D.B.; Kim, K.; Kongtae, R. Source identification and implications of heavy metals in urban roads for the coastal pollution in a beach town, Busan, Korea. Mar. Pollut. Bull. 2020, 161, 111724. [Google Scholar]
- Ren, F.; Xu, G.D.; He, X.C. Study on the influence range of soil pollution in non-ferrous metal mining industry. China Min. Eng. 2018, 47, 26–30. (In Chinese) [Google Scholar]
- Zhu, Y.T.; Li, J.H.; Ling, H.; Li, J. An efficient diffusion model for a real-time gas diffusion simulation system. Adv. Mater. Res. 2013, 2493, 390–397. [Google Scholar] [CrossRef]
- Method for Determination of Particulate Matter in Fixed Source Exhaust and Sampling of Gaseous Pollutants (GBAT 1619196); MEEC: Beijing, China, 1996. (In Chinese)
- Zechmeister, H.G.; Hohenwallner, D.; Riss, A.; Hanus-Illnar, A. Estimation of element deposition derived from road traffic sources by using mosses. Environ. Pollut. 2005, 138, 238–249. [Google Scholar] [CrossRef] [PubMed]
Category | Factor | Category | Factor |
---|---|---|---|
Industrial | Distance from mining | Agricultural | Pesticide usage (element mesh) |
Distance from smelting and pressing | Fertilizer usage (element mesh) | ||
Distance from other industries | Distance from river | ||
Other | Land-use type | Traffic | Distance from traffic trunk line |
pH | Natural | Agrotype | |
Soil organic matter | Elevation |
Statistics | Cd | Hg | As | Pb | Cr | |
---|---|---|---|---|---|---|
Local background values | 0.098 | 0.091 | 14 | 29.7 | 71.4 | |
Screening values | 0.3 | 2.4 | 30 | 120 | 200 | |
Whole area (n = 1347) | Minimum | 0.09 | 0.04 | 3.15 | 19.14 | 17.22 |
Mean | 0.93 | 0.22 | 31.12 | 97.00 | 75.09 | |
Maximum | 49.53 | 4.45 | 575.33 | 8547.76 | 208.76 | |
C.V. | 2.09 | 0.86 | 1.27 | 3.13 | 0.45 | |
Exceeded Rate (%) | 85.08 | 0.01 | 34.74 | 12.77 | 0.01 | |
Zone 1 (n = 232) | Minimum | 0.29 | 0.09 | 10.31 | 38.73 | 20.40 |
Mean | 2.16 | 0.24 | 55.67 | 260.09 | 84.76 | |
Maximum | 49.53 | 0.83 | 575.33 | 8547.76 | 178.44 | |
C.V. | 2.01 | 0.39 | 1.26 | 2.71 | 0.30 | |
Exceeded Rate (%) | 99.57 | 0.00 | 64.66 | 41.81 | 0.00 | |
Zone 2 (n = 573) | Minimum | 0.16 | 0.06 | 5.90 | 25.18 | 18.00 |
Mean | 0.82 | 0.24 | 32.27 | 74.42 | 77.78 | |
Maximum | 5.18 | 4.45 | 327.69 | 453.86 | 192.65 | |
C.V. | 0.67 | 1.06 | 1.05 | 0.67 | 0.42 | |
Exceeded Rate (%) | 94.24 | 0.01 | 37.00 | 11.69 | 0.00 | |
Zone 3 (n = 542) | Minimum | 0.09 | 0.04 | 3.15 | 19.14 | 17.22 |
Mean | 0.51 | 0.18 | 19.39 | 51.05 | 68.09 | |
Maximum | 2.61 | 1.18 | 87.79 | 240.52 | 208.76 | |
C.V. | 0.66 | 0.60 | 0.62 | 0.40 | 0.53 | |
Exceeded Rate (%) | 69.19 | 0.00 | 19.56 | 1.48 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Shi, H.; Fei, Y.; Wang, C.; Mo, L.; Shu, M. Identification of Soil Heavy Metal Sources in a Large-Scale Area Affected by Industry. Sustainability 2021, 13, 511. https://doi.org/10.3390/su13020511
Xu Y, Shi H, Fei Y, Wang C, Mo L, Shu M. Identification of Soil Heavy Metal Sources in a Large-Scale Area Affected by Industry. Sustainability. 2021; 13(2):511. https://doi.org/10.3390/su13020511
Chicago/Turabian StyleXu, Yuan, Huading Shi, Yang Fei, Chao Wang, Li Mo, and Mi Shu. 2021. "Identification of Soil Heavy Metal Sources in a Large-Scale Area Affected by Industry" Sustainability 13, no. 2: 511. https://doi.org/10.3390/su13020511
APA StyleXu, Y., Shi, H., Fei, Y., Wang, C., Mo, L., & Shu, M. (2021). Identification of Soil Heavy Metal Sources in a Large-Scale Area Affected by Industry. Sustainability, 13(2), 511. https://doi.org/10.3390/su13020511