Long-Term Sustainability Approach in Road Traffic Noise Wall Design
Abstract
:1. Introduction
2. Background
2.1. Characteristics of Concrete, Metal, and Wood Panels
2.1.1. Acoustic Characteristics
2.1.2. Non-Acoustic Characteristics
2.1.3. Long-Term Performance
2.1.4. Cradle-to-Gate Sustainability
2.2. Panel Material Trends
2.2.1. Lightweight Concrete Panels
2.2.2. Lightweight Aggregate Types
2.2.3. Acoustic Characteristics
2.2.4. Cradle-to-Gate Sustainability
3. Data Analysis and Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Environment Agency (EEA). Managing Exposure to Noise in Europe. Briefing January 2017. Available online: https://www.eea.europa.eu/publications/managing-exposure-to-noise-in-europe (accessed on 2 May 2020).
- Muzet, A. Environmental noise, sleep and health. Sleep Med. Rev. 2007, 11, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Zacarías, F.F.; Molina, R.H.; Ancela, J.L.C.; López, S.L.; Ojembarrena, A.A. Noise exposure in preterm infants treated with respiratory support using neonatal helmets. Acta Acust. United Acust. 2013, 99, 590–597. [Google Scholar] [CrossRef]
- Hygge, S.; Evans, G.W.; Bullinger, M. A prospective study of some effects of aircraft noise on cognitive performance in schoolchildren. Psychol. Sci. 2002, 13, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Lercher, P.; Evans, G.W.; Meis, M. Ambient noise and cognitive processes among primary schoolchildren. Environ. Behav. 2003, 35, 725–735. [Google Scholar] [CrossRef]
- Chetoni, M.; Ascari, E.; Bianco, F.; Fredianelli, L.; Licitra, G.; Cori, L. Global noise score indicator for classroom evaluation of acoustic performances in LIFE GIOCONDA project. Noise Mapp. 2016, 3, 157–171. [Google Scholar] [CrossRef]
- Dratva, J.; Phuleria, H.C.; Foraster, M.; Gaspoz, J.-M.; Keidel, D.; Künzli, N.; Liu, L.-J.S.; Pons, M.; Zemp, E.; Gerbase, M.W.; et al. Transportation noise and blood pressure in a population-based sample of adults. Environ. Health Perspect. 2012, 120, 50–55. [Google Scholar] [CrossRef]
- Babisch, W.; Beule, B.; Schust, M.; Kersten, N.; Ising, H. Traffic noise and risk of myocardial infarction. Epidemiology 2005, 16, 33–40. [Google Scholar] [CrossRef]
- Babisch, W.; Swart, W.; Houthuijs, D.; Selander, J.; Bluhm, G.; Pershagen, G.; Dimakopoulou, K.; Haralabidis, A.S.; Katsouyanni, K.; Davou, E. Exposure modifiers of the relationships of transportation noise with high blood pressure and noise annoyance. J. Acoust. Soc. Am. 2012, 132, 3788–3808. [Google Scholar] [CrossRef]
- Miedema, H.M.E.; Oudshoorn, C.G.M. Annoyance from transportation noise: Relationships with exposure metrics DNL and DENL and their confidence intervals. Environ. Health Perspect. 2001, 109, 409–416. [Google Scholar] [CrossRef]
- Licitra, G.; Fredianelli, L.; Petri, D.; Vigotti, M.A. Annoyance evaluation due to overall railway noise and vibration in Pisa urban areas. Sci. Total Environ. 2016, 568, 1315–1325. [Google Scholar] [CrossRef]
- Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 Relating to the Assessment and Management of Environmental Noise (END). Available online: http://data.europa.eu/eli/dir/2002/49/2020-03-25 (accessed on 2 May 2020).
- Dragčević, V.; Lakušić, S.; Ahac, S.; Ahac, M. Contribution to Optimization of Noise Mapping Procedures. GRADEVINAR 2008, 60, 787–795. [Google Scholar]
- Science for Environment Policy—Noise Abatement Approaches, Future Brief 17. Produced for the European Commission DG Environment by the Science Communication Unit, UWE, Bristol, 2017. Available online: http://ec.europa.eu/science-environment-policy (accessed on 2 May 2020).
- Zambon, G.; Roman, H.E.; Smiraglia, M.; Benocci, R. Monitoring and Prediction of Traffic Noise in Large Urban Areas. Appl. Sci. 2018, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- EEA Glossary. Available online: https://www.eea.europa.eu/help/glossary/eea-glossary/lden (accessed on 7 December 2020).
- Sandberg, U.; Ejsmont, J. Tyre/Road Noise Reference Book; INFORMEX: Kisa, Sweden, 2002. [Google Scholar]
- Licitra, G.; Teti, L.; Cerchiai, M.; Bianco, F. The influence of tyres on the use of the CPX method for evaluating the effectiveness of a noise mitigation action based on low-noise road surfaces. Transp. Res. Part D Transp. Environ. 2017, 55, 217–226. [Google Scholar] [CrossRef]
- Bendtsen, H.; Qing, L.; Erwin, K. Acoustic Aging of Asphalt Pavement: A Californian Danish Comparison; Report Number: UCPRC-RP-2010-01; The Danish Road Institute—Road Directorate: Hedehusene, Denmark, 2010. [Google Scholar] [CrossRef]
- Licitra, G.; Moro, A.; Teti, L.; Del Pizzo, A.; Bianco, F. Modelling of acoustic ageing of rubberized pavements. Appl. Acoust. 2019, 146, 237–245. [Google Scholar] [CrossRef]
- Stančerić, I.; Dragčević, V.; Ahac, S. Toward Environmental Noise Estimation according to the Road Surface Characteristics and Traffic Volume. Tech. Gaz. 2010, 17, 191–197. [Google Scholar]
- Del Pizzo, A.; Teti, L.; Moro, A.; Bianco, F.; Fredianelli, L.; Licitra, G. Influence of texture on tyre road noise spectra in rubberized pavements. Appl. Acoust. 2020, 159, 107080. [Google Scholar] [CrossRef]
- Praticò, F.G. On the dependence of acoustic performance on pavement characteristics. Transp. Res. Part D Transp. Environ. 2014, 29, 79–87. [Google Scholar] [CrossRef]
- Bérengier, M.; Stinson, M.; Daigle, G.; Hamet, J. Porous road pavements: Acoustical characterization and propagation effects. J. Acoust. Soc. Am. 1997, 101, 155. [Google Scholar] [CrossRef]
- Praticò, F.G.; Anfosso-Lédée, F. Trends and issues in mitigating traffic noise through quiet pavements. Procedia Soc. Behav. Sci. 2012, 53, 203–212. [Google Scholar] [CrossRef]
- Kotzen, B.; English, C. Environmental Noise Barriers: A Guide to Their Acoustic and Visual Design, 2nd ed.; Taylor & Francis: Oxford, UK, 2009. [Google Scholar]
- Fredianelli, L.; Del Pizzo, A.; Licitra, G. Recent developments in sonic crystals as barriers for road traffic noise mitigation. Environments 2019, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Jean, P.; Defrance, J. Sound propagation in rows of cylinders of infinite extent: Application to sonic crystals and thickets along roads. Acta Acust. United Acust. 2015, 101, 474–483. [Google Scholar] [CrossRef]
- Godinho, L.; Santos, P.G.; Amado-Mendes, P.; Pereira, A.; Martins, M. Experimental and Numerical Analysis of Sustainable Sonic Crystal Barriers Based on Timber Logs. In Proceedings of the EuroRegio2016, Porto, Portugal, 13–15 June 2016. [Google Scholar]
- Kay, D.H.; Morgan, S.M.; Bodapati, S.N. Evaluation of Service Life of Noise Barrier Walls in Illinois. Final Report No. ITRC FR97-3 for the Project IIB-H1 FY97. Prepared for the Illinois Department of Transportation—Transportation Research Center; 1999. Available online: https://idot.illinois.gov/Assets/uploads/files/Transportation-System/Research/Illinois-Transportation-Research-Center/1999.11.01%20-%20Evaluation%20of%20Service%20Life%20of%20Noise%20Barrier%20Walls%20-%20IIB-H1%20FY97.pdf (accessed on 2 May 2020).
- US Department of Transportation, Federal Highway Administration (FHWA) Technology Exchange Program. Quiet Pavements Systems in Europe. Report No. FHWA-PL-05-011; 2005. Available online: https://international.fhwa.dot.gov/pubs/quiet_pav/pl05011.pdf (accessed on 3 May 2020).
- Joynt, J.L.R. A Sustainable Approach to Environmental Noise Barrier Design. Ph.D. Thesis, School of Architecture, University of Sheffield, Sheffield, UK, 2005. [Google Scholar]
- Oltean-Dumbrava, C.; Watts, G.; Miah, A. Transport infrastructure: Making more sustainable decisions for noise reduction. J. Clean. Prod. 2013, 42, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Oltean-Dumbrava, C.; Watts, G.; Miah, A. Towards a more sustainable surface transport infrastructure: A Case study of applying multi criteria analysis techniques to assess the sustainability of transport noise reducing devices. J. Clean. Prod. 2016, 112, 2922–2934. [Google Scholar] [CrossRef]
- Oltean-Dumbrava, C.; Miah, A. Assessment and relative sustainability of common types of roadside noise barriers. J. Clean. Prod. 2016, 135, 919–931. [Google Scholar] [CrossRef] [Green Version]
- Ohiduzzaman, M.D.; Sirin, O.; Kassem, E.; Rochat, J.L. State-of-the-Art Review on Sustainable Design and Construction of Quieter Pavements—Part 1: Traffic Noise Measurement and Abatement Techniques. Sustainability 2016, 8, 742. [Google Scholar] [CrossRef] [Green Version]
- Morgan, S.M.; Kay, D.H. Noise Barrier Material Selection. Transportation Research Record. Paper No. 01-2616. J. Transp. Res. Board 2001. [Google Scholar] [CrossRef]
- Conference of European Directors of Roads (CEDR). State of the Art in Managing Road Traffic Noise: Noise Barriers. Technical Report 2017-02. 2017. Available online: https://www.cedr.eu/download/Publications/2017/CEDR-TR2017-02-noise-barriers.pdf (accessed on 14 May 2020).
- Brero, G. EU Noise Policy: European Noise Barrier Federation (ENBF) Expectations and Contributes. In Proceedings of the “Noise in Europe” Conference, European Commission, Brussels, Belgium, 24 April 2017; Available online: https://ec.europa.eu/info/events/noise-europe-2017-apr-24_en (accessed on 17 May 2020).
- Ministry of Sea, Transport, and Infrastructure. Report on Environmental and Social Compliance of the Management and Operations Systems of the Implementing Agencies within the Project “Modernization and Restructuring of the Road Sector” (MARS). 2018. Available online: https://hrvatske-ceste.hr/uploads/documents/attachment_file/file/298/Izvje%C5%A1%C4%87e_Mars_npl.pdf (accessed on 12 May 2020). (In Croatian).
- The Croatian Association of Toll Motorways Concessionaires (HUKA). National Report on Highways. 2018. Available online: http://www.huka.hr/files/docs/HUKA_NI-EN_2018_final.pdf (accessed on 10 July 2020).
- Vukadin, P. Noise Mitigation Action Plan for the Motorway Concession Area of the Construction and Management Company Rijeka-Zagreb Motorway (ARZ); Rijeka—Zagreb Motorway: Zagreb, Croatia, 2014. (In Croatian) [Google Scholar]
- Clairbois, J.P.; de Roo, F.; Garai, M.; Conter, M.; Defrance, J.; Oltean-Dumbrava, C.A.; Durso, C. QUIESST Guidebook to Noise Reducing Devices Optimisation. Report No. FP7-SST-2008-RTD-1. Prepared for the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement n°SCP8-GA-2009-233730. 2012. Available online: https://repository.tudelft.nl/view/tno/uuid%3A16f7a829-5f5c-4523-ab35-1d6cce015cb1 (accessed on 10 June 2020).
- Oltean-Dumbrava, C.A.; Miah, A.; Watts, G.; Brero, G.; Clairbois, J.P.; Padmos, C.; Auerbach, M.; Hans, J.; Schiopu, N. State of the Art Review and Report on the Sustainability of Noise Reducing Devices QUIESST–Deliverable No.6.1 FP7-SST-2008-RTD-1. In European Community’s Seventh Framework Programme; 2010. [Google Scholar]
- Conference of European Directors of Roads (CEDR). Noise Management and Abatement. Report 2010-05. 2010. Available online: https://www.cedr.eu/download/Publications/2010/e%20Road%20noise.pdf (accessed on 10 May 2020).
- US Department of Transportation, Federal Highway Administration (FHWA), Office of Planning, Environment, & Realty (HEP). Noise Barriers Inventory. Available online: https://www.fhwa.dot.gov/environment/noise/noise_barriers/inventory/ (accessed on 5 August 2020).
- European Committee for Standardization (CEN). CEN/TC 226/WG 6—Noise Reducing Devices, Published Standards. Available online: https://standards.cen.eu/dyn/www/f?p=204:32:0::::FSP_ORG_ID,FSP_LANG_ID:7542,25&cs=1563CAC0058F0284316199F4F140DEE9A (accessed on 10 September 2020).
- Clairbois, J.P.; Garai, M. The European Standards for Roads and Railways Noise Barriers: State of the Art 2015. In Proceedings of the 10th European Congress and Exposition on Noise Control Engineering: EuroNoise 2015, Maastricht, The Netherlands, 31 May–3 June 2015; pp. 45–50. [Google Scholar]
- Shahidan, S.; Hannan, N.I.R.R.; Maarof, M.Z.M.; Leman, A.S.; Senin, M.S. A Comprehensive Review on the Effectiveness of Existing Noise Barriers Commonly Used in the Railway Industry. In MATEC Web Conf. Vol. 87, Proceedings of the 9th International Unimas Stem Engineering Conference (ENCON 2016) “Innovative Solutions for Engineering and Technology Challenges”, Sarawak, Malaysia, 26–28 October 2016; Hasan, A., et al., Eds.; EDP Sciences: Les Ulis, France, 2017. [Google Scholar] [CrossRef] [Green Version]
- US Department of Transportation, Federal Highway Administration (FHWA), Office of Planning, Environment, & Realty (HEP). Noise Barrier Design Handbook. Available online: https://www.fhwa.dot.gov/ENVIRonment/noise/noise_barriers/design_construction/design/design03.cfm (accessed on 4 May 2020).
- McAvoy, D.S.; Theberge, R. Comparison and Testing of Various Noise Wall Materials; Report No. FHWA/OH-2014/8; The Ohio Department of Transportation, Office of Statewide Planning & Research: Columbus, OH, USA, 2014. [Google Scholar]
- Pigasse, G.; Kragh, J. Optimised Noise Barriers: A State-of-the-Art Report. Report No. 194–2011. Prepared for the Vejdirektoratet—Danish Road Directorate of Ministry of Transport. 2011. Available online: https://www.vejdirektoratet.dk/udgivelse/optimised-noise-barriers (accessed on 5 May 2020).
- de la Red Bellvis, E.J. Noise Barriers in Railways—A View on the State of Art. In Proceedings of the RailSpain Congress, Zaragoza, Spain, 14–16 June 2011. [Google Scholar]
- Boothby, T.E.; Burroughs, C.B.; Bernecker, C.A.; Manbeck, H.B.; Ritter, M.A.; Grgurevich, S.; Cegelka, S.; Hillbrich Lee, P.D. Design of Wood Highway Sound Barriers. Research Paper FPL−RP−596. Prepared for the United States Department of Agriculture (USDA), Forest Service. 2001. Available online: https://www.fpl.fs.fed.us/documnts/fplrp/fplrp596/fplrp596.pdf (accessed on 10 May 2020).
- Ernst, D.; Biton, L.; Reichenbacher, S.; Zgola, M.; Adkins, C. Guidelines for Selection and Approval of Noise Barrier Products. Final Report, Prepared for the National Cooperative Highway Research Program (NCHRP) Project 25-25, Task 40, Transportation Research Board. 2008. Available online: http://onlinepubs.trb.org/onlinepubs/archive/notesdocs/25-25(40)_fr.pdf (accessed on 10 May 2020).
- Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011—Laying Down Harmonised Conditions for the Marketing of Construction Products and Repealing Council Directive 89/106/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02011R0305-20140616 (accessed on 10 May 2020).
- Attanasio, A.; Largo, A.; Larraza Alvarez, I.; Sonzogni, F.; Balaceanu, L. Sustainable aggregates from secondary materials for innovative lightweight concrete products. HERON 2015, 60, 5–26. [Google Scholar]
- Visser, J.; Couto, S.; Gupta, A.; Larraza Alvarez, I.; Chozas Ligero, V.; Sotto Mayor, T.; Vinai, R.; Pipilikaki, P.; Largo, A.; Attanasio, A.; et al. Sustainable concrete: Design and testing. HERON 2015, 60, 59–92. [Google Scholar]
- van Gijlswijk, R.N.; Pascale, S.; de Vos, S.E.; Urbano, G. Carbon footprint of concrete based on secondary materials. HERON 2015, 60, 113–140. [Google Scholar]
- Mushunje, K.; Otieno, M.; Ballim, Y. A review of Waste Tyre Rubber as an Alternative Concrete Consituent Material. In MATEC Web of Conferences vol 199, Proceedings of the 5th International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018), Cape Town, South Africa, 19–21 November 2018; Alexander, M.G., Beushausen, H., Dehn, F., Moyo, P., Eds.; EDP Sciences: Les Ulis, France, 2018. [Google Scholar] [CrossRef] [Green Version]
- Park, S.W.; Seo, D.S.; Lee, J. Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio. Cem. Concr. Res. 2005, 35, 1846–1854. [Google Scholar] [CrossRef]
- Neithalath, N.; Marolf, A.; Weiss, J.; Olek, J. Modeling the influence of pore structure on the acoustic absorption of enhanced porosity concrete. J. Adv. Concr. Technol. 2005, 3, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Cianfrini, C.; Corcione, M.; Fontana, L. Experimental verification of the acoustic performance of diffusive roadside noise barriers. Appl. Acoust. 2007, 68, 1357–1372. [Google Scholar] [CrossRef]
- Kim, H.K.; Lee, H.K. Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Appl. Acoust. 2010, 71, 607–615. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, P.; Wang, L.; Liu, D. Reducing Railway Noise with Porous Sound-Absorbing Concrete Slabs. Adv. Mater. Sci. Eng. 2014, 206549. [Google Scholar] [CrossRef] [Green Version]
- Carbajo, J.; Esquerdo-Lloret, T.V.; Ramisa, J.; Nadal-Gisbert, A.V.; Denia, F.D. Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates. Mater. Construcc. 2015, 65, e072. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhao, C. Study on reducing railway noise by porous concrete sound-absorbing panel. Mater. Res. Innov. 2015, 19, S5-1156–S5-1160. [Google Scholar] [CrossRef]
- Zhang, B.; Poon, C.S. Sound insulation properties of rubberized lightweight aggregate concrete. J. Clean. Prod. 2018, 172, 3176–3185. [Google Scholar] [CrossRef]
- Rajaonarison, E.F.; Gacoin, A.; Razafindrabe, B.H.N.; Rasamison, V.E. Acoustical properties of lightweight concrete from scoria. Int. J. Curr. Res. 2018, 10, 73667–73674. [Google Scholar] [CrossRef]
- Owens, P.L.; Newman, J.B. Lightweight aggregate manufacture. In Advanced Concrete Technology; Newman, J., Choo, B.S., Eds.; Elsevier: Springfield, MO, USA, 2003; pp. 1–12. [Google Scholar] [CrossRef]
- Mohammed, J.H.; Hamad, A.J. A classification of lightweight concrete: Materials, properties and application review. Int. J. Adv. Eng. Appl. 2014, 7, 52–57. [Google Scholar]
- Kumar, J.D.C.; Arunakanthi, E. The Use of Light Weight Aggregates for Precast Concrete Structural Members. Int. J. Appl. Eng. Res. 2018, 13, 7779–7787. [Google Scholar]
- Lakušić, S. How to Obtain EU Project without an EU Partner—Example of RUCONBAR Project From the EU Program CIP ECO-Innovation. In Planning, Design, Construction and Renewal in the Civil Engineering, Proceedings of the INDIS 2012, Novi Sad, Serbia, 28–30 November 2012; Radonjanin, V., Folić, R., Lađinović, Đ., Eds.; Faculty of Technical Sciences, Department of Civil Engineering and Geodesy: Novi Sad, Serbia, 2012; pp. 2–15. [Google Scholar]
- Lakušić, S.; Bjegović, D.; Haladin, I.; Baričević, A.; Serdar, M. RUCONBAR—Innovative noise protection solution made of recycled waste tyres. Mech. Transp. Commun. 2011, 3, X-76. [Google Scholar]
- Serdar, M.; Baričević, A.; Lakušić, S.; Bjegović, D. Special purpose concrete products from waste tyre recyclates. Gradevinar 2013, 65, 793–801. [Google Scholar]
- Jedidi, M.; Boulila, A.; Benjeddou, O.; Soussi, C. Crumb Rubber Effect on Acoustic Properties of Self-Consolidating Concrete. Int. J. Therm. Environ. Eng. 2014, 8, 69–76. [Google Scholar]
- Holmes, N.; Browne, A.; Montague, C. Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Constr. Build. Mater. 2014, 73, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Boarder, R.F.W.; Owens, P.L.; Khatib, J.M. The sustainability of lightweight aggregates manufactured from clay wastes for reducing the carbon footprint of structural and foundation concrete. In Sustainability of Construction Materials, 2nd ed.; Khatib, J.M., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 209–244. [Google Scholar] [CrossRef]
- Rashad, A.M. Lightweight expanded clay aggregate as a building material—An overview. Constr. Build. Mater. 2018, 170, 757–775. [Google Scholar] [CrossRef]
- Coatanlem, P.; Jauberthie, R.; Rendell, F. Lightweight wood chipping concrete durability. Constr. Build. Mater. 2006, 20, 776–781. [Google Scholar] [CrossRef]
- Macchi, N.; Zwicky, D. Wood-Based Concrete for Composite Building Construction with Timber. In Proceedings of the Concrete Innovation Conference, Oslo, Norway, 11–13 June 2014. [Google Scholar]
- Vo, L.T.T.; Navard, P. Treatments of plant biomass for cementitious building materials—A review. Constr. Build. Mater. 2016, 121, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Mangi, S.A.; Jamaluddin, N.B.; Siddiqui, Z.; Memon, S.A.; Ibrahim, M.H.B.W. Utilization of Sawdust in Concrete Masonry Blocks: A Review. Mehran Univ. Res. J. Eng. Technol. 2019, 38, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Corti, A.; Lombardi, L. End life tyres: Alternative final disposal processes compared by LCA. Energy 2004, 29, 2089–2108. [Google Scholar] [CrossRef]
- RUCONBAR. Available online: http://www.ruconbar.com/rcnb/wp-content/uploads/2014/06/RUCONBAR_brochure_A4_EN_web.pdf (accessed on 10 November 2020).
- LIADUR. Available online: https://www.liadur.cz/cz/vyuzivane-stavebni-materialy-pro-stavbu-protihlukovych-sten-liadur (accessed on 10 November 2020).
- RIEDER. Available online: http://www.rieder.cz/produkty/protihlukove-steny-faseton/faseton-absorber.php (accessed on 10 November 2020).
- Sgarbossa, A.; Boschiero, M.; Pierobon, F.; Cavalli, R.; Zanetti, M. Comparative Life Cycle Assessment of Bioenergy Production from Different Wood Pellet Supply Chains. Forests 2020, 11, 1127. [Google Scholar] [CrossRef]
- Grubeša, S.; Suhanek, M.; Đurek, I.; Petošić, A. Combined acoustical and economical noise barrier optimization using genetic algorithms. Gradevinar 2019, 71, 177–185. [Google Scholar] [CrossRef]
- Öztürk, T.; Öztürk, Z.; Çalis, M. A Case Study on Acoustic Performance and Construction Costs of Noise Barriers. Sci. Res. Essays 2012, 7, 4213–4229. [Google Scholar] [CrossRef]
Product | Shape of Surface | Absorbing Layer Thickness (cm) | DLα (dB) | Sound Absorption Class 1 |
---|---|---|---|---|
Liadur | flat | 15 | 8 | A3 |
low wave | 11 | 8 | A3 | |
medium wave | 13 | 10 | A3 | |
high wave | 22 | 16 | A5 | |
Faseton | block | 7, 9 | 10 | A3 |
low wave | 11 | 10 | A3 | |
high wave | 12 | 18 | A5 | |
mushroom | 16 | 15 | A4 | |
RUCONBAR | flat | 20 | 6 | A2 |
trapezoidal | 13 | 9 | A3 | |
high wave | 12 | 9 | A3 |
Performance Group | Noise Walls Panel Performance Measure | Concrete | Metal | Wood | ||
---|---|---|---|---|---|---|
Aluminum | Steel | Timber | Willow | |||
Acoustic performance | Single-number rating of sound absorption (dB) | 4 [73] | 8 [53] | 8 [73] | ||
Single-number rating of sound insulation (dB) | 24 [73] | 15 [53] | 24 [73] | |||
Insertion loss (dB(A)) | 18 [51] | 19 [51] | 13 [51] | |||
Non-acoustic performance | Surface density (kg/m2) | 150–250 [90] | 5–20 [90] | 5–10 [90] | <20 [90] | <5 [44] |
Mechanical resistance (kg/m2) | >500 [53] | <400 [53] | >20 [90] | |||
Average construction costs (€/m2) | 225 [44] | 216 [44] | 206 [44] | |||
Long-term performance | Minimal service life (years) | 40 [44] | 30 [44] | 20–25 [44] | 20–40 [44] | 25 [44] |
Maintenance and replacement costs (€/m2) | 40 [51] | 120 [51] | 115 [51] | |||
Lifecycle cost (€/m2) | 305 [51] | 515 [51] | 360 [51] | |||
Cradle-to-Gate Sustainability and Recyclability | Carbon footprint (t) | 70 [44] | 0.7 [44] | 60 [44] | 4 [44] | −17 [44] |
Water footprint (106 l) | 0.8 [44] | 270 [44] | 270 [44] | 0.5 [44] | 850 [44] | |
Primary energy use (109 J) | 3.7 [44] | 1.2 [44] | 0.8 [44] | 0.1 [44] | 1.9 [44] | |
Transportation embodied energy (109 J) | 0.4 [44] | 0.05 [44] | 0.05 [44] | 0.01 [44] | 0.1 [44] | |
Recycling potential at end-of-life (%) | 80 [44] | 100 [44] | 100 [44] | 20 [44] | 40 [44] |
Performance Group | Noise Walls Panel Performance Measure | Score 1 | ||||
---|---|---|---|---|---|---|
5 | 4 | 3 | 2 | 1 | ||
Acoustic performance | Single-number rating of sound absorption (dB) | >11 | 8–10 | 4–7 | <4 | no aps. |
Single-number rating of sound insulation (dB) | ≥24 | 23–20 | 15–19 | <15 | no isol. | |
Insertion loss (dB(A)) | ≥20 | 15–19 | 14–10 | 9–5 | <4 | |
Non-acoustic performance | Surface density (kg/m2) | >150 | 150–100 | 100–50 | 50–20 | <20 |
Mechanical resistance (kg/m2) | >500 | 500–250 | 250–120 | 120–20 | <20 | |
Average construction costs (€/m2) | <200 | 200–210 | 210–220 | 220–230 | >230 | |
Long-term performance | Minimal service life (years) | >40 | 30–40 | 20–30 | 10–20 | <10 |
Maintenance and replacement costs (€/m2) | <50 | 50–75 | 75–100 | 100–125 | >125 | |
Lifecycle cost (€/m2) | <300 | 300–350 | 350–400 | 400–450 | >450 | |
Cradle-to-Gate Sustainability and Recyclability | Carbon footprint (t) | <0 | 0–20 | 20–40 | 40–60 | >60 |
Water footprint (106 l) | <200 | 200–400 | 400–600 | 600–800 | >800 | |
Primary energy use (109 J) | <1 | 1–2 | 2–3 | 3–4 | >4 | |
Transportation embodied energy (109 J) | <0.1 | 0.1–0.2 | 0.2–0.3 | 0.3–0.4 | >0.4 | |
Recycling potential at end-of-life (%) | 100–80 | 80–60 | 60–40 | 40–20 | 20–0 |
Performance Group | Noise Walls Panel Performance Measure | Concrete | Metal | Wood | ||
---|---|---|---|---|---|---|
Aluminum | Steel | Timber | Willow | |||
Acoustic performance | Single-number rating of sound absorption (dB) | 3 | 4 | 4 | 4 | 4 |
Single-number rating of sound insulation (dB) | 5 | 3 | 3 | 5 | 5 | |
Insertion loss (dB(A)) | 4 | 4 | 4 | 3 | 3 | |
Non-acoustic performance | Surface density (kg/m2) | 5 | 1 | 1 | 1 | 1 |
Mechanical resistance (kg/m2) | 5 | 4 | 4 | 2 | 2 | |
Average construction costs (€/m2) | 2 | 3 | 3 | 4 | 4 | |
Long-term performance | Minimal service life (years) | 5 | 5 | 4 | 5 | 3 |
Maintenance and replacement costs (€/m2) | 5 | 2 | 2 | 2 | 2 | |
Lifecycle cost (€/m2) | 4 | 1 | 1 | 3 | 3 | |
Cradle-to-Gate Sustainability and Recyclability | Carbon footprint (t) | 1 | 4 | 2 | 2 | 5 |
Water footprint (106 l) | 5 | 4 | 4 | 5 | 1 | |
Primary energy use (109 J) | 2 | 4 | 5 | 5 | 4 | |
Transportation embodied energy (109 J) | 2 | 5 | 5 | 5 | 4 | |
Recycling potential at end-of-life (%) | 4 | 5 | 5 | 1 | 2 | |
Average overall score for panel material type | 3.7 | 3.5 | 3.4 | 3.4 | 3.1 |
Process | Liadur Greenhouse Gasses (kg CO2-eq) | RUCONBAR Greenhouse Gasses (kg CO2-eq) |
---|---|---|
Production | 112 | 107 |
Use | 5.3 | 6.3 |
Disposal | 3.3 | 2.9 |
Total | 120.6 | 116.2 |
Process | Liadur GWP (kg CO2-eq/m2) | RUCONBAR GWP (kg CO2-eq/m2) |
---|---|---|
Manufacturing | 27.54 | 23.03 |
Transport to location | 0.85 | 1.90 |
Disposal | 0.53 | 0.12 |
Total | 28.92 | 25.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahac, M.; Ahac, S.; Lakušić, S. Long-Term Sustainability Approach in Road Traffic Noise Wall Design. Sustainability 2021, 13, 536. https://doi.org/10.3390/su13020536
Ahac M, Ahac S, Lakušić S. Long-Term Sustainability Approach in Road Traffic Noise Wall Design. Sustainability. 2021; 13(2):536. https://doi.org/10.3390/su13020536
Chicago/Turabian StyleAhac, Maja, Saša Ahac, and Stjepan Lakušić. 2021. "Long-Term Sustainability Approach in Road Traffic Noise Wall Design" Sustainability 13, no. 2: 536. https://doi.org/10.3390/su13020536
APA StyleAhac, M., Ahac, S., & Lakušić, S. (2021). Long-Term Sustainability Approach in Road Traffic Noise Wall Design. Sustainability, 13(2), 536. https://doi.org/10.3390/su13020536