Key Factors of Rural Households’ Willingness to Pay for Cleaner Heating in Hebi: A Case Study in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Estimation of Households’ WTP for Cleaner Heating
2.3. Econometric Model
2.4. Questionnaire Survey
3. Results and Discussion
3.1. Distribution of Households’ WTP
3.2. Factors Influencing Households’ WTP
3.3. Effects of Factors
3.3.1. The Effects of Economic Condition
3.3.2. The Effects of Demographic Features
3.3.3. The Effects of Environmental Attitude
3.3.4. The Effects of Fiscal Subsidies
3.4. Discussion
4. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Jin, Y.; Dai, H.; Xie, Y.; Zhang, S. Health and economic benefits of cleaner residential heating in the Beijing–Tianjin–Hebei region in China. Energy Policy 2019, 127, 165–178. [Google Scholar] [CrossRef]
- Li, H.; You, S.; Zhang, H.; Zheng, W.; Lee, W.; Ye, T.; Zou, L. Analyzing the impact of heating emissions on air quality index based on principal component regression. J. Clean. Prod. 2018, 171, 1577–1592. [Google Scholar] [CrossRef]
- NDRCC. Cleaner Heating Plan for Northern China in Winter (2017–2021); National Development and Reform Commission of China: Beijing, China, 2017. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/tz/201712/t20171220_962623.html (accessed on 5 June 2020).
- Zhou, M.; He, G.; Fan, M.; Wang, Z.; Liu, Y.; Ma, J.; Ma, Z.; Liu, J.; Liu, Y.; Wang, L.; et al. Smog episodes fine particulate pollution and mortality in China. Environ. Res. 2015, 136, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; He, G.; Zhou, M. The winter choke: Coal-Fired heating air pollution and mortality in China. J. Health Econ. 2020, 71, 102316. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Ru, M.Y.; Du, W.; Zhu, X.; Zhong, Q.R.; Li, B.G.; Shen, G.F.; Pan, X.L.; Meng, W.J.; Chen, Y.L.; et al. Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey. Nat. Energy 2018, 3, 567–573. [Google Scholar] [CrossRef]
- Shen, G.; Ru, M.; Du, W.; Zhu, X.; Zhong, Q.; Chen, Y.; Shen, H.; Yun, X.; Meng, W.; Liu, J.; et al. Impacts of air pollutants from rural Chinese households under the rapid residential energy transition. Nat. Commun. 2019, 10, 3405. [Google Scholar] [CrossRef] [Green Version]
- Zou, B.; Luo, B. Rural household energy consumption characteristics and determinants in China. Energy 2019, 182, 814–823. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, Z. Energy consumption in China’s rural areas: A study based on the village energy survey. J. Clean. Prod. 2017, 143, 452–461. [Google Scholar] [CrossRef]
- Yan, Y.; Jiao, W.; Wang, K.; Huang, Y.; Chen, J.; Han, Q. Coal-to-gas heating compensation standard and willingness to make clean energy choices in typical rural areas of northern China. Energy Policy 2020, 145, 111698. [Google Scholar] [CrossRef]
- Cummings, R.G.; Brookshire, D.S.; Shulze, W.D. Valuing Environmental Goods: An Assessment of the Contingent Valuation Method Rowman and Allenheld New Jersey. Econ. Geogr. 1986, 63, 358–359. [Google Scholar] [CrossRef]
- Katz, K.; Sterner, T. The value of clean air: Consumers’ willingness to pay for a reduction in gasoline vapours at filling stations. Energy Stud. Rev. 1990, 2, 39–47. [Google Scholar] [CrossRef]
- Irfan, M.; Zhao, Z.; Li, H. The influence of consumers’ intention factors on willingness to pay for renewable energy: A structural equation modeling approach. Environ. Sci. Pollut. Res. 2020, 27, 21747–21761. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, M.; Song, B. Public perceptions of and willingness to pay for sponge city initiatives in China. Resour. Conserv. Recycl. 2017, 122, 11–20. [Google Scholar] [CrossRef]
- Han, Z.; Zeng, D.; Li, Q.; Cheng, C.; Shi, G.; Mou, Z. Public willingness to pay and participate in domestic waste management in rural areas of China. Resour. Conserv. Recycl. 2019, 140, 166–174. [Google Scholar] [CrossRef]
- Jia, J.J.; Wu, H.Q.; Nie, H.G.; Fan, Y. Modeling the willingness to pay for energy efficient residence in urban residential sector in China. Energy Policy 2019, 135, 111003. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Song, J.; Duan, H.; Fang, K.; Diao, W. Urban consumers’ willingness to pay for higher-level energy-saving appliances: Focusing on a less developed region. Resour. Conserv. Recycl. 2020, 157, 104760. [Google Scholar] [CrossRef]
- Sun, C.; Yuan, X.; Yao, X. Social acceptance towards the air pollution in China: Evidence from public’s willingness to pay for smog mitigation. Energy Policy 2016, 92, 313–324. [Google Scholar] [CrossRef]
- Yang, J.; Zou, L.; Lin, T.; Wu, Y.; Wang, H. Public willingness to pay for CO2 mitigation and the determinants under climate change: A case study of Suzhou China. J. Environ. Manag. 2014, 146, 1–8. [Google Scholar] [CrossRef]
- Bazrbachi, A.; Sidique, S.F.; Shamsudin, M.N.; Radam, A.; Kaffashi, S.; Adam, S.U. Willingness to pay to improve air quality: A study of private vehicle owners in Klang Valley.; Malaysia. J. Clean. Prod. 2017, 148, 73–83. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, M.; Yang, X.; Yuan, X. Public awareness and willingness to pay for tackling smog pollution in China: A case study. J. Clean. Prod. 2016, 112, 1627–1634. [Google Scholar] [CrossRef]
- Wang, K.; Wu, J.; Wang, R.; Yang, Y.; Chen, R.; Maddock, J.E.; Lu, Y. Analysis of residents’ willingness to pay to reduce air pollution to improve children’s health in community and hospital settings in Shanghai China. Sci. Total Environ. 2015, 533, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Bishop, R.C.; Mitchell, R.C.; Carson, R.T. Using Surveys to Value Public Goods: The Contingent Valuation Method. Am. J. Agric. Econ. 1990, 72, 249–250. [Google Scholar] [CrossRef]
- Wu, X.; Guo, J.; Wei, G. Economic losses and willingness to pay for haze: The data analysis based on 1123 residential families in Jiangsu province China. Environ. Sci. Pollut. Res. 2020, 27, 17864–17877. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, C.; Cui, C.; Liu, H.; Cai, B. Cleaner heating choices in northern rural China: Household factors and the dual substitution policy. J. Environ. Manag. 2019, 249, 10943. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, H.; Xu, S.; Wu, L. How cognitive bias and information disclosure affect the willingness of urban residents to pay for green power? J. Clean. Prod. 2018, 189, 552–562. [Google Scholar] [CrossRef]
- Liu, R.; Ding, Z.; Jiang, X.; Sun, J.; Jiang, Y.; Qiang, W. How does experience impact the adoption willingness of battery electric vehicles? The role of psychological factors. Environ. Sci. Pollut. Res. 2020, 27, 25230–25247. [Google Scholar] [CrossRef]
- Gong, Y.; Cai, B.; Sun, Y. Perceived fiscal subsidy predicts rural residential acceptance of clean heating: Evidence from an indoor-survey in a pilot city in China. Energy Policy 2020, 144, 111687. [Google Scholar] [CrossRef]
- Liu, H.; Mauzerall, D. Costs of clean heating in China: Evidence from rural households in the Beijing-Tianjin-Hebei region. Energy Econ. 2020, 90, 104844. [Google Scholar] [CrossRef]
- Ma, S.C.; Xu, J.H.; Fan, Y. Willingness to pay and preferences for alternative incentives to EV purchase subsidies: An empirical study in China. Energy Econ. 2019, 81, 197–215. [Google Scholar] [CrossRef]
- Hebi Municipal Government. Implementation Plan of Clean Heating in Winter in the Pilot City Hebi; Hebi Municipal Government: Hebi, China, 2017. Available online: https://www.hebi.gov.cn/zghb/436404/436461/436468/968620/1872282/index.html (accessed on 5 June 2020).
- Karytsas, S.; Polyzou, O.; Karytsas, C. Factors affecting willingness to adopt and willingness to pay for a residential hybrid system that provides heating/cooling and domestic hot water. Rene. Energy 2019, 142, 591–603. [Google Scholar] [CrossRef]
- Carter, E.; Yan, L.; Fu, Y.; Robinson, B.; Kelly, F.; Elliott, P.; Wu, Y.; Zhao, L.; Ezzati, M.; Yang, X.; et al. Household transitions to clean energy in a multiprovincial cohort study in China. Nat. Sustain. 2020, 3, 42–50. [Google Scholar] [CrossRef]
- Lange, I.; Moro, M.; Traynor, L. Green hypocrisy? Environmental attitudes and residential space heating expenditure. Ecol. Econ. 2014, 107, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Sun, H.; Chen, B.; Xia, X.; Li, P. China’s rural human settlements: Qualitative evaluation quantitative analysis and policy implications. Ecol. Indic. 2019, 105, 398–405. [Google Scholar] [CrossRef]
- Reseach Group in Zhejiang University. China Rural Household Panel Survey Report; Zhejiang University Press: Hangzhou, China, 2019. [Google Scholar]
- Laroche, M.; Bergeron, J.; Barbaro-Forleo, G. Targeting consumers who are willing to pay more for environmentally friendly products. J. Consum. Marking 2001, 18, 503–520. [Google Scholar] [CrossRef] [Green Version]
- National Ministry of Environmental Protection of China. A National Survey Report on Public Environmental Behaviours; China Environmental Press: Beijing, China, 2020. [Google Scholar]
- Su, D.; Zhou, W.; Gu, Y.; Wu, B. Individual motivations underlying the adoption of cleaner residential heating technologies: Evidence from Nanjing China. J. Clean. Prod. 2019, 224, 142–150. [Google Scholar] [CrossRef]
Abbreviation of Variables | Type | Definition and Description | |
---|---|---|---|
Explained variables | |||
tWTP1 | Numerical | Annual WTP for cleaner heating | |
tWTP2 | Numerical | Annual WTP for cleaner heating per unit area | |
tWTP3 | Numerical | Annual WTP for cleaner heating per capita | |
eWTP1 | Numerical | Annual WTP for cleaner energy | |
eWTP2 | Numerical | Annual WTP for cleaner energy per unit area | |
eWTP3 | Numerical | Annual WTP for cleaner energy per capita | |
fWTP1 | Numerical | WTP for cleaner heating facilities | |
fWTP2 | Numerical | WTP for cleaner heating facilities per unit area | |
fWTP3 | Numerical | WTP for cleaner heating facilities per capita | |
Explanatory variables | |||
R | Area | Numerical | The area of living space in the house (m2) |
Income | Ordinal | 1–5, higher score means higher income | |
D | Fsize | Numerical | The number of household members |
Phome | Numerical | 0–100%, higher value means higher living rate | |
Pchild | Numerical | 0–100%, higher value means higher raising rate | |
Paged | Numerical | 0–100%, higher value means higher aging rate | |
Edu | Ordinal | 1–5, higher score means higher level of education | |
E | Ecle | Ordinal | 1–5, higher score means higher expectation for indoor cleanliness |
Equa | Ordinal | 1–5, higher score means higher expectation for good air quality | |
P | Appro | Ordinal | 1–5, higher score means higher level of support for cleaner heating policies |
Resub | Ordinal | 1–5, higher score means higher request for subsidy |
Frequency | Percentage (%) | |
---|---|---|
Gender | ||
Male | 340 | 48.1 |
Female | 367 | 51.9 |
Age | ||
20–40 | 81 | 11.5 |
40–60 | 418 | 59.1 |
>60 | 208 | 29.4 |
Education level | ||
Primary school and below | 259 | 36.6 |
Junior high school | 297 | 42.0 |
High school/Technical secondary school | 119 | 16.8 |
University/Junior college | 32 | 4.5 |
Household annual income (RMB, RMB 100 ≈ USD 15 in 2018) | ||
10–30 k | 295 | 41.7 |
30–50 k | 227 | 32.1 |
50–100 k | 132 | 18.7 |
100–200 k | 51 | 7.2 |
>200 k | 2 | 0.3 |
Heating Facilities | Average Price (RMB) |
---|---|
Air conditioner or heat pump machine | 2500 |
Centralized heating by burning natural gas | 2000 (Pipeline) |
Distributed heating by burning natural gas | 8000 (Boiler) + 2000 (Pipeline) |
Simple stove by burning natural gas | 400 |
Solar cooker | 1500 |
Simple air heater | 200 |
Electric blanket | 100 |
Electric radiator | 200 |
Stove by burning biomass fuels | 2000 |
Abbreviation | Type | Mean | Std. dev. | Min | Max |
---|---|---|---|---|---|
Ln(tWTP1) | Numerical | 7.20 | 0.82 | 5.5 | 8.8 |
Ln(tWTP2) | Numerical | 2.25 | 0.80 | −1.1 | 5.5 |
Ln(tWTP3) | Numerical | 5.82 | 0.80 | 3.5 | 7.8 |
Ln(fWTP1) | Numerical | 8.02 | 2.00 | 3.0 | 10.5 |
Ln(fWTP2) | Numerical | 3.08 | 1.91 | −2.9 | 6.9 |
Ln(fWTP3) | Numerical | 6.65 | 1.92 | 1.0 | 9.4 |
Ln(eWTP1) | Numerical | 6.62 | 0.84 | 5.5 | 8.0 |
Ln(eWTP2) | Numerical | 1.68 | 0.88 | −1.5 | 5.0 |
Ln(eWTP3) | Numerical | 5.24 | 0.85 | 3.3 | 7.3 |
Area | Numerical | 163.5 | 105.8 | 5 | 1225 |
Income | Ordinal | ||||
Fsize | Numerical | 4.45 | 1.94 | 1 | 12 |
Phome | Numerical | 0.82 | 0.2 | 0 | 2 |
Pchild | Numerical | 0.12 | 0.15 | 0 | 0.6 |
Paged | Numerical | 0.24 | 0.32 | 0 | 1 |
Edu | Ordinal | ||||
Ecle | Ordinal | ||||
Equa | Ordinal | ||||
Appro | Ordinal | ||||
Resub | Ordinal |
Income | Area | Fsize | Phome | Pchild | Paged | Edu | Ecle | Equa | Appro | |
---|---|---|---|---|---|---|---|---|---|---|
Area | 0.335 *** | |||||||||
Fsize | 0.416 *** | 0.27 *** | ||||||||
Phome | −0.065 * | −0.024 | −0.184 *** | |||||||
Pchild | 0.217 *** | 0.051 | 0.471 *** | 0.119 *** | ||||||
Paged | −0.323 *** | −0.193 *** | −0.372 *** | 0.214 *** | −0.292 *** | |||||
Edu | 0.048 | 0.036 | 0.038 | 0.011 | 0.032 | −0.014 | ||||
Ecle | 0.417 *** | 0.352 *** | 0.27 *** | −0.005 | 0.071 * | −0.212 *** | 0.016 | |||
Equa | 0.118 *** | 0.154 *** | 0.034 | −0.015 | −0.005 | −0.132 *** | 0.03 | 0.21 *** | ||
Appro | −0.206 *** | −0.157 *** | −0.132 *** | −0.045 | −0.026 | 0.152 *** | −0.032 | −0.251 *** | −0.127 *** | |
Resub | −0.296 *** | −0.261 *** | −0.186 *** | 0.042 | −0.045 | 0.232 *** | −0.011 | −0.307 *** | −0.21 *** | 0.394 *** |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | |
---|---|---|---|---|---|---|---|---|---|
Ln(tWTP1) | Ln(tWTP2) | Ln(tWTP3) | Ln(fWTP1) | Ln(fWTP2) | Ln(fWTP3) | Ln(eWTP1) | Ln(eWTP2) | Ln(eWTP3) | |
Constant | 6.934 *** (0.136) | 2.768 *** (0.149) | 6.524 *** (0.139) | 9.631 *** (0.330) | 5.465 *** (0.338) | 9.230 *** (0.333) | 5.897 *** (0.198) | 1.731 *** (0.208) | 5.472 *** (0.200) |
Area | −0.001 ** (0.000) | −0.005 *** (0.000) | −0.001 *** (0.000) | −0.001 * (0.000) | −0.005 *** (0.000) | −0.001 * (0.000) | −0.001 ** (0.000) | −0.005 *** (0.000) | −0.001 *** (0.000) |
Income | 0.152 *** (0.023) | 0.137 *** (0.025) | 0.160 *** (0.023) | −0.010 (0.055) | −0.025 (0.057) | 0.005 (0.056) | 0.261 *** (0.033) | 0.246 *** (0.035) | 0.267 *** (0.033) |
Fsize | 0.032 ** (0.012) | 0.017 (0.013) | −0.207 *** (0.012) | 0.058 ** (0.029) | 0.044 (0.030) | −0.181 *** (0.029) | 0.039 ** (0.017) | 0.024 (0.018) | −0.196 *** (0.017) |
Phome | 0.336 ** (0.096) | 0.430 *** (0.108) | 0.425 *** (0.100) | −0.089 (0.239) | −0.001 (0.245) | −0.001 (0.241) | 0.562 *** (0.143) | 0.653 *** (0.150) | 0.653 *** (0.144) |
Pchild | −0.336 * (0.14) | −0.388 * (0.155) | −0.354 ** (0.144) | −0.320 (0.341) | −0.378 (0.350) | −0.334 (0.344) | −0.649 *** (0.204) | −0.693 *** (0.215) | −0.665 *** (0.206) |
Paged | −0.237 *** (0.064) | −0.187 *** (0.071) | −0.067 (0.023) | −0.208 (0.156) | −0.141 (0.160) | −0.042 (0.158) | −0.272 *** (0.094) | −0.212 ** (0.098) | −0.102 (0.095) |
Edu | 0.031 (0.021) | 0.027 (0.023) | −0.029 (0.022) | −0.004 (0.051) | −0.009 (0.052) | −0.009 (0.052) | 0.052 * (0.031) | 0.048 (0.032) | 0.047 (0.031) |
Ecle | 0.021 *** (0.001) | 0.019 *** (0.001) | 0.021 *** (0.001) | 0.052 *** (0.003) | 0.050 *** (0.003) | 0.051 *** (0.003) | 0.009 *** (0.002) | 0.007 *** (0.002) | 0.008 *** (0.002) |
Equa | 0.44 (0.24) | 0.007 (0.026) | 0.041 * (0.024) | −0.001 (0.058) | −0.039 (0.059) | −0.005 (0.058) | 0.041 (0.035) | 0.005 (0.036) | 0.039 (0.035) |
Appro | −0.193 *** (0.023) | −0.189 *** (0.025) | −0.181 *** (0.023) | −1.067 *** (0.056) | −1.063 *** (0.057) | −1.054 *** (0.056) | −0.082 ** (0.033) | −0.081 ** (0.035) | −0.068 ** (0.034) |
Resub | −0.17 *** (0.019) | −0.162 *** (0.021) | −0.175 *** (0.020) | −0.285 *** (0.047) | −0.278 *** (0.048) | −0.291 *** (0.047) | −0.130 *** (0.028) | −0.122 *** (0.029) | −0.135 *** (0.028) |
F | 132.314 | 90.741 | 114.061 | 135.276 | 108.072 | 116.047 | 33.541 | 34.277 | 35.279 |
Adjusted R2 | 0.672 | 0.584 | 0.639 | 0.677 | 0.626 | 0.643 | 0.337 | 0.342 | 0.349 |
N | 707 | 707 | 707 | 707 | 707 | 707 | 707 | 707 | 707 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Chen, C.; Li, F.; Cai, B.; Yang, R.; Cao, L.; Wu, P.; Pang, L. Key Factors of Rural Households’ Willingness to Pay for Cleaner Heating in Hebi: A Case Study in Northern China. Sustainability 2021, 13, 633. https://doi.org/10.3390/su13020633
Xie W, Chen C, Li F, Cai B, Yang R, Cao L, Wu P, Pang L. Key Factors of Rural Households’ Willingness to Pay for Cleaner Heating in Hebi: A Case Study in Northern China. Sustainability. 2021; 13(2):633. https://doi.org/10.3390/su13020633
Chicago/Turabian StyleXie, Wu, Chen Chen, Fangyi Li, Bofeng Cai, Ranran Yang, Libin Cao, Pengcheng Wu, and Lingyun Pang. 2021. "Key Factors of Rural Households’ Willingness to Pay for Cleaner Heating in Hebi: A Case Study in Northern China" Sustainability 13, no. 2: 633. https://doi.org/10.3390/su13020633
APA StyleXie, W., Chen, C., Li, F., Cai, B., Yang, R., Cao, L., Wu, P., & Pang, L. (2021). Key Factors of Rural Households’ Willingness to Pay for Cleaner Heating in Hebi: A Case Study in Northern China. Sustainability, 13(2), 633. https://doi.org/10.3390/su13020633