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Abstract: With the continuous advancement of urbanization, the impervious surface expands. Ur-
banization has changed the structure of the natural land surface and led to the intensification of the
urban heat island (UHI) effect. This will affect the surface runoff temperature, which, in turn, will
affect the surface water temperature of urban lakes. This study will use UAS TIR (un-manned aerial
system thermal infrared radiance) remote sensing and in situ observation technology to monitor the
urban space surface temperature and thermal runoff in Kunming, Yunnan, in summer; explore the
feasibility of UAS TIR remote sensing to continuously observe urban surface temperature during day
and night; and analyze thermal runoff pollution. The results of the study show that the difference
between UAS TIR LSTs and in situ LSTs (in situ air temperature 10 cm above the ground.) varies with
the type of land covers. Urban surface thermal runoff has varying degrees of impact on water bodies.
Based on the influence of physical factors such as vegetation and buildings and meteorological
factors such as solar radiation, the RMSE between UAS LSTs and in situ LSTs varies from 1 to 5 ◦C.
Land cover types such as pervious bricks, asphalt, and cement usually show higher RMSE values.
Before and after rainfall, the in situ data of the lake surface water temperature (LSWT) showed a
phenomenon of first falling and then rising. The linear regression analysis results show that the
R2 of the daytime model is 0.92, which has high consistency; the average R2 at night is 0.38; the
averages R2 before and after rainfall are 0.50 and 0.83, respectively; and the average RMSE is 1.94 ◦C.
Observational data shows that thermal runoff quickly reaches thermal equilibrium with the land
surface temperature about 30 min after rainfall. The thermal runoff around the lake has a certain
warming effect on LSWT.

Keywords: urban heat island; UAS TIR; remote sensing; land covers; thermal runoff; LSWT

1. Introduction

Urbanization [1] is the most important process of human activities since the 20th cen-
tury [2], and the impervious surface shows a tendency of rapid expansion. The impervious
surface [3] is mainly composed of urban roads, parking lots, city squares, building roofs,
and other infrastructure. It has a low permeability coefficient, which prevents surface
water from infiltrating or soaking into the ground, resulting in large areas of accumulation
during the flood and rainy seasons. Accumulation water causes regional waterlogging
in cities, which, in turn, forms the phenomenon of urban rain islands [3]. The United
States once set up a dense rainfall observation network in St. Louis, Missouri, and its
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nearby suburbs [4] for 5 years of observational research, which confirmed that the city and
its downwind direction do experience the “rain island effect”. In addition, impervious
surfaces also exhibit the characteristics of high heat absorption [5], causing the urban heat
island (UHI) effect. UHI will cause a series of environmental changes, such as regional
climate, vegetation growth, and water and air quality [6]. Today, more than 55% of the
world’s population now live in urban areas, a proportion that is expected to increase to 68%
by 2050 [7]. With climate warming [8] and the world’s rapid urbanization, UHI and related
consequences are expected to be more serious. This is especially true for developing coun-
tries (particularly China and India), which are expected to account for 35% of the global
urban population growth between 2018 and 2050 [9]. In the past decades, many scholars
have found that the increase of impervious surfaces is the main cause of heat islands and
rain islands [10]. The observation of urban surface temperature and impervious surface
through satellite sensors is the main source of research data [11]. Among high-latitude
lakes, shallow lakes respond faster to meteorological factors than deep-water lakes [12].
Remote sensing offers an important means of detecting and analyzing surface temperature
changes. This includes satellite sensors such as ASTER, MODIS, and Landsat, which can
capture surface temperature with a spatial resolution of 30 m to 1 km [13–16]. However, the
revisit period of these satellite sensors is long, resulting in low time resolution of remote
sensing image data [17]. Therefore, these methods are not sufficient to assess changes in
urban surface temperature throughout the day or to capture the spatial heterogeneity of
urban surface temperature on a small scale.

The rapid development of unmanned aerial system (UAS) technology in recent years
seems to be able to make up for the lack of satellite remote sensing technology [18–21]. UAS
carrying visible light lenses were used to observe night lights in local areas of the city [20].
UAS remote sensing technology is used to carry out surface temperature observations in
complex urban environments [22]. The study found that surface temperature is affected
by land cover materials, weather, urban geometry, and traffic characteristics. The three-
dimensional thermal characteristics of the forest canopy were studied by using UAS remote
sensing technology [23]. For the first time, the obtained RGB image and thermal image
were combined to generate a three-dimensional structure of separate RGB image and point
cloud data. The research results are of great significance to atmospheric, hydrological, and
ecological simulations. One study used UAS and satellite data to obtain and analyze the
distribution of surface temperature and thermal characteristics in the geothermal area of
Tuscany, Italy [24]. Therefore, it can be concluded that UAS remote sensing technology has
significant advantages in urban thermal environment assessment.

Suburban areas might experience high flood risk as urbanization develops even
though the impact at the whole basin level might be not remarkable [25]. The amount
of heat added to the runoff is highly dependent on both the characteristics of the rainfall
event and the weather conditions prior to the storm event [26]. In sunny conditions, the
land cover of the city absorbs solar radiation, causing the LSTs to rise [27]. In summer,
impervious surfaces in urban areas may store large amounts of heat [28]. The impact of
climate warming on lake surface water temperature will not change in the short term [29].
There is the most strongly correlated near surface air temperature (NSAT) and lake surface
water temperature (LSWT)-day [30]. The authors of [31] show that, when rainfall occurs
on a sunny day, the runoff formed on the surface will be heated, and the temperature of
runoff will rise significantly. Because urban lakes are the final receiving water body of
runoff, the Lake Surface Water Temperature (LSWT) will rise. This process will seriously
affect the aquatic communities. It also leads to the deterioration of water quality [31]
and the degradation of the cold-water ecosystem [25]. Sabouri et al. [32] found that the
average asphalt runoff temperature strongly depends on the initial asphalt temperature
at the beginning of the rainfall. Rapid urban development, the expansion of impervious
surfaces and global warming are the main causes of LSWT changes [33].

In summary, the use of UAS thermal infrared remote sensing technology to carry out
urban thermal environment research has become mature. Compared with satellite remote
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sensing, UAS has a high resolution, which can better reflect the macroscale temperature
changes. The increase of various underlying surfaces is the main cause of the heat island
and rain island. Therefore, it is very meaningful to monitor the surface temperature and
evaluate the pollution of thermal runoff. This study selects typical areas of the city to carry
out a demonstration study. It uses UAS to apply thermal infrared and visible light lenses
to different land covers in the study area under sunny and rainy conditions for 24 h of
continuous observation; analyzes the temperature change characteristics of different land
cover types; reveals the variability of urban surface temperature in different weathers; and
evaluates the daily variation and uncertainty of surface temperature. The feasibility of
using UAS remote sensing technology to carry out air-to-water heat exchange in urban
space is discussed from a macro perspective. It also evaluates in detail the effects of
different land cover surfaces on thermal runoff and then on the changes in lake water
quality from sunny days and rainfall.

2. Materials and Methods
2.1. Study Area

This study was conducted in an area of the Yunnan Normal University Campus
located in Kunming City, Southwest China. Kunming is the economic development center
of Yunnan Province [34]. With the acceleration of construction in South Asia and Southeast
Asia, the process of industrialization and urbanization is advancing rapidly. In the past
30 years, those areas have experienced extensive urbanization, and the urban expansion
has been significant. This study provides a natural test site [35]. This study selects a
representative community in Kunming (Figure 1). The area of the study area is 2,200,000 m2,
and the altitude is about 1945 m. The study area includes the main land cover types of
urban surface space, such as asphalt, concrete, pervious bricks, lawns, and lakes. The
location of each land cover surface is distributed as follows: the average depth of Lake
1 and Lake 2 is about 2 m; the area is about 4340 m2 and 15,000 m2; and Lake 3 is about
1 m with an area of about 6000 m2. Due to the limited battery life of UAS, one flight
mission cannot cover the entire study area, so that the study area is divided into three areas
for observation.

Figure 1. Location map of the study area and images of monitoring site.
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2.2. Acquisition of UAS Images

This study selected 24 July 2020, 9:00 a.m., to 25 July 2020, 7:00 a.m. (clear, windy, and
little cloud cover); 26 July 2020, 4:00 p.m. to 7:00 p.m. (rainfall); and 2 August 2020 9:00 a.m.
to 9:00 p.m. (rainfall). On-site experimental observations were carried out in three time
periods in 2020. It was a dubious task to complete the measurement of all three areas at
one time, and each set was separated by two hours. (The detailed task time is shown in
Supplementary Materials Tables S1–S3). UAS flew 21 times, day and night, regardless of
sunny and rainy weather.

The project team used DJI Matrice 210 quadrotor UAS equipped with Zenmuse XT2
thermal infrared camera to obtain thermal infrared images of the study area (spectral range:
7.5–13.5 µm, accuracy: ±5 ◦C, and emissivity: 0.98). The relevant equipment parameters are
shown in Table S4 (See Supplementary Materials). UAS have a flying speed of 8 m–10 m/s,
a flying altitude of 120 m–150 m, an image overlap rate of 85%, and a spatial resolution of
10 cm. Emissivity is an important parameter for measuring the LSTs. For the emissivity of
different land covers in this study, please refer to Table S5 in the Supplementary Materials.

2.3. Acquisition of LST In Situ Data

Considering the land cover types and the measurement time distributed in the study
area, a total of 1176 points were selected for in situ measurement. Thermometers were
held by hand vertical to the ground and about 10 cm away from the ground during
measurement. We would randomly take seven measurement points for each land cover
and take the average value as the in situ data. We would complete a set of measurement
tasks every two hours, with each set being completed within 30 min. In addition, we
deployed thermal environment monitoring nodes in 4 different areas of the study area. The
node obtains atmospheric humidity, atmospheric temperature, LSTs, LSWT, wind speed,
wind direction, rainfall, total solar radiation, etc. parameters every 1 min (detailed See
Table S6).

2.4. The Influence of Various Land Cover Types on Surface Thermal Runoff during Rainfall Events

Due to the in situ measurement, data of the first type of pervious brick and the second
type of pervious brick in Figure 2 are different (1 ◦C), because, for the purpose of this study,
we established that these are two different materials. In order to explore the influence
of different land covers on rainfall runoff temperature, we selected two sunny rainfall
events (July 26 and August 2) for observation. During these two days of observation, the
ground surface was exposed to the sun before the rainfall, storing a lot of heat. When
rainfall reaches the ground in such conditions, surface runoff is formed, and intense heat
exchange with the ground occurs in a short period of time, which meets the requirements
of observation conditions. We analyzed the characteristics of the LSTs change before and
after two rainfall events to reveal the impact of different land cover types on surface runoff.

2.5. Stitching Method of UAS Images

The images acquired by UAS need to be further stitched. The quality of stitching
is related to the flight stability of UAS and the stitching algorithm. Therefore, it is very
important to obtain clear images and select a suitable image stitching algorithm. In this
study, the method of extracting scale-invariant feature transform (SIFT) feature points was
used to register the relationship between images. This method can keep the image scaling,
rotation, and affine transformation invariant when describing the local features of the
image [36]. The SIFT algorithm is mainly divided into four steps: scale space construction,
Gaussian pyramid establishment, extremum detection, and feature point description vector
construction. The results of many experiments have shown that the flying height and image
overlap rate of UAS will also affect the stitching results. A large number of experiments
has verified that setting the flying height of UAS to between 120 and 150 m and the overlap
rate of images to 85% can achieve the best stitching effect.
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Figure 2. Images of land cover types.

3. Results
3.1. LSTs Change Based on UAS Images

Figure 3 shows the stitching results of thermal infrared images of the study area at
9:12 a.m., 10:58 a.m., and 5:16 p.m. on July 24. The results show that the temperature of
trees is lower than that of the lake surface. Due to the oblique effect of the sun, the shadows
of surrounding buildings will affect the observation.

Figure 3. Visual presentation of UAS TIR images.

The image shows that the land cover of the ground quickly absorbs heat and increases
at 10:58 a.m. The temperature of the first type of pervious brick changes from 26.0 ◦C
to 30.7 ◦C, and the average temperature rise was 4.7 ◦C. The building roof is the hottest
place; it is about ten degrees away from the ground under the shade of the trees, indicating
that the vegetation has a good function of reflecting solar radiation, thereby reducing
the absorption of ground heat. Figure 3 also shows that the exposed pervious bricks at
10:58 a.m. have some obvious heat shadows. Due to the action of wind, part of the heat on
the surface of pervious brick is taken away, resulting in uneven temperature distribution
on the ground. The LSTs increased rapidly due to the effect of solar radiation; the highest
temperature reached 58.6 ◦C at 10:58 a.m. Figures S1–S13 (see Supplementary Materials A)
show the thermal infrared images of different land covers from 24 flight missions. Each
image corresponds to at least one land cover type.
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3.2. The Temperature Change Characteristics of Each Land Cover in a Daytime Series

Figure 4 shows the in situ measurement results and UAS measurement results on
July 24. Figure 4a shows the daytime observation at 3:17 p.m. after UAS underestimated
the temperature of the asphalt surface by 5.8 ◦C and overestimated the temperature of
lawn and water body by 1.2–12.5 ◦C. UAS observed that various land covers at 12 p.m.
and 1 p.m. had relatively small error values. Figure 4b shows that the changes in the
two observation results of asphalt, concrete, and pervious bricks (two types) observed at
nighttime tend to be consistent.

Figure 4. UAS and in situ temperature trends. (a) The daytime temperature trend on July 24. (b) The nighttime temperature
trend on July 24.
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Figure 5 shows the in situ observation results and UAS observation results of the
land cover types during the day and night on July 24. The results show that, although the
two observation methods have certain errors and lags, the two observation results show
strong consistency.

Figure 5. The trend of day and night temperature values of different land covers. (a) Daytime in situ
temperature trends of different land covers. (b) Daytime UAS temperature trends of different land
covers. (c) Night in situ temperature trends of different land covers. (d) Night UAS temperature
trends of different land covers.

Figure 6 shows that the two observation results of asphalt, concrete, and pervious
brick land surfaces show a high degree of consistency. Observations of lawn and three
lakes indicate that the observed temperature of UAS is relatively high.
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Figure 6. UAS and in situ measured daily temperature trends on August 2.

Since a rainfall event occurred between 3:59 p.m. and 4:40 p.m. on August 2, we used
two measurement results to explore the impact of rainfall runoff on lake water temperature.
Figure 7a is the temperature value measured in situ, and Figure 7b is the temperature value
measured by UAS. The peak value of the data in Figure 7a is higher than that in Figure 7b,
and, compared with the observed data on July 24 (Figure 5), the overall fluctuation of the
data observed by UAS is smaller.

Figure 7. The temperature changes of different land surfaces on August 2. (a) In situ temperature
changes of different land surfaces; (b) UAS temperature changes of different land surfaces.

3.3. The Influence of Different Land Covers on Rainfall Runoff Temperature

Figure 8 shows the temperature changes of different land surfaces before and after the
rainfall on July 26 and August 2. Due to the rainfall during the observation, the UAS did
not have the flight conditions, resulting in the missing of the temperature value of Lake 1.
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Both rainfall events were moderate rain and shower, which quickly formed runoff on the
ground, and the cooling degree of the four land surfaces was close to 10 ◦C.

Figure 8. Changes in temperature before and after rainfall on different land surfaces on July 26 and
August 2.

The research results show that the temperature of runoff rose rapidly within 4–9 min
after rainfall and reached a thermal equilibrium state in about half an hour [27]. Therefore,
after the rainwater temperature and the ground temperature reach the equilibrium state,
the LST observed by meteorological observatories can be equivalent to the temperature
of runoff.

By analyzing the LSWT changes of the three lakes before and after the rainfall, we
found that the LSWT of Lake 1 and Lake 2 before and after the rainfall on August 2
changed (Tables S7–S13), which was caused by rainfall runoff. Figure 7 shows that the water
temperature of the three lakes changes to different degrees before and after the rainfall. The
measured temperature shows that the LSWT of the lake first decreases (3:13 p.m.–5:12 p.m.)
and then rises (5:12 p.m.–7:14 p.m.) after rainfall. The depth of Lake 1 is twice as deep
as that of Lake 3. It can be seen from Figure 8 that Lake 3 shows more obvious changes
than Lake 1, so it can be concluded that shallower lakes react more quickly to thermal
runoff. The LSWT rise rate of Lake 2 is not as high as that of Lake 1 and Lake 3, because the
temperature of Lake 2 was measured using a fixed monitoring station. Before rainfall, the
lake body absorbs heat radiation, and the temperature is relatively high; the temperature of
rainwater at the beginning of rainfall is lower than the temperature of the lake body, which
has a cooling effect on the lake body, while runoff is formed in the middle of rainfall, and
the temperature of the runoff is higher than the temperature of the lake body, making the
lake body temperature rise. We observed that the LSWT of Lake 2 at 3:13 p.m., 5:12 p.m.,
and 7:14 p.m. were all 25.1 ◦C (Tables S8–S10); we speculated that this was caused by sensor
errors. In order to verify the invariance of the water temperature of Lake 2, we obtained
historical data from Lake 3 monitoring station to ensure that these data are in the same
time series of August 2. Figure 9 shows that the surface temperature of Lake 3 showed a
downward trend after rainfall. Handheld thermometers and UAS observed runoff leading
to an increase in the lake’s water temperature. Studies have shown that rainfall runoff
has a warming effect on lake water. Our on-the-spot investigation found that the sensor
measuring LSWT of Lake 2 sank to the bottom of the lake (Figure 10) and measured the
temperature of the mud at the bottom of the lake instead of the water temperature.
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Figure 9. The impact of runoff on LSWT.

Figure 10. Error of Lake 2 sensor.

The data in Tables S14 and S15 show that, based on the rainfall on July 26 and August
2, the temperature rose slightly after 20 min of these two rainfalls. Both the surface lake
monitoring stations and the LSWT monitored by UAS reported temperatures higher than
the runoff temperature in the equilibrium state.

3.4. Analysis of LST Observation Error

Tables S16–S27 record the temperature data of each land surface from 9:00 a.m. on 24
July 2020 to 7:00 a.m. on 25 July 2020. This study used UAS to obtain the temperature data
and in situ data of each land surface perform comparative analysis. For the observation
data, we used the standard deviation reflecting the degree of dispersion of the observation
data as the evaluation standard. The experimental data showed that the error value of the
UAS observation of lawn temperature was relatively large. We found that the accuracy of
lawn temperature observed by UAS was negatively correlated with solar radiation, that
is, the weaker the solar radiation, the more accurate the lawn temperature observed by
UAS; the stronger the solar radiation, the less accurate the lawn temperature observed by
UAS. In our statistical data, the standard deviation of the temperatures of the lawn surface
(July 24), the concrete surface, and Lake 2 observed in situ are all zero. These three land
surfaces used fixed monitoring. For site measurement, due to the short observation period,
the temperature data measured at the three sites are constant, so their standard deviation
is zero, but the observation data is true and valid.
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The data in Table S16 shows that the land surface temperature differences between the
UAS at 9:00 a.m. and observed in situ are relatively small. Based on UAS and handheld
thermometer, the error value of lawn temperature is 3.6 ◦C, the error value of concrete
surface temperature is 1 ◦C, and the error value of asphalt surface temperature is 0.04 ◦C.
Obviously, the lawn error value is larger, and the error value of other land surfaces is
smaller. Based on the site measurement, the LSWT of Lake 1 and Lake 3 were overestimated
1.3 ◦C and 2 ◦C by UAS, while the LSWT of Lake 2 was the same. In summary, the
observation results of UAS and in situ show a high degree of consistency. The data in
Table S17 shows that the temperature difference of the lawn surface at around 10:58 a.m.
based on UAS and the in situ observation data reached 8.6 ◦C and above. UAS seriously
overestimated the temperature of the lawn surface. The study of Song and Park [37]
pointed out that, for vegetation, the LSTs were significantly different depending on the
measurement points, because vegetation and non-vegetation areas were mixed, or the
absorption of solar radiation varied depending on the leaf direction. The lawn area of this
study is located next to a school building, and there are some street trees beside the lawn.
Based on related studies, it is shown that the two factors of buildings and woods cause the
high inconsistency of the lawn observation data. In this study, the lawn was affected by
these two factors, which caused large errors in the observation of UAS. It is necessary for us
to reduce discrepancies by continuously protecting on-site measurement data. The data in
Table S18 shows that the inconsistency between the UAS image and the in situ observation
temperature at around 1:21 p.m. is higher than that of the previous two observations.
In particular, the lawn is overestimated by UAS by 12.5 ◦C, and Lake 2 has the highest
consistency; the difference is only 1 ◦C. The data in Table S19 shows that, based on the
two observation methods, in addition to the large temperature difference (12.5 ◦C) on the
lawn surface affected by the building, the temperature difference of the asphalt surface also
reached 5.8 ◦C. This is because UAS images are based on thermal radiation, and when the
clouds block the solar radiation, the solar radiation received by the UAS camera decreases.
The handheld thermometer is very close to the ground and is not affected by solar radiation.
Therefore, UAS underestimated the asphalt surface temperature. In the observations of
three small lakes, the LSWT of Lake 2 always maintained a high consistency. As time
passes, when the solar radiation decreases significantly, the lawn research area is affected
by both solar radiation and buildings. Tables S20 and S21 show that the inconsistency of
the lawn surface temperature is significantly reduced, and in Tables S22–S27, it is finally
constantly below 2 ◦C. There is no solar radiation at night, so the ground receives less
solar radiation. The main factor that affects the LSTs is wind. The surface shows a stable
heat exchange. The temperature difference of various land surfaces based on the two
observation methods of UAS and in situ measurement is very small (0.1–2 ◦C). Because
the specific heat capacity of the water body is larger than other land surfaces, the data at
5:16 a.m. and 7:16 a.m. (Tables S26 and S27) show that the water temperature was higher
than that of lawn and asphalt pavement. This verifies the previous research and the need
to build more park reservoirs conducive to alleviating the urban heat island effect.

3.5. Discussion on the Possibility of UAS Carrying out Surface Thermal Runoff Pollution

Tables S28 and S29 record the data under the rainfall conditions from 4:00 p.m. to 7:00 p.m.
on 26 July 2020. The data shows that the temperature difference of the land surface of
the lawn measured by the two observation methods before rainfall was 3.8 ◦C, and for
the other land surfaces, the temperature difference was small; after the rainfall stopped,
the temperature difference between the pervious brick surface and the concrete surface
measured by the two observation methods doubled. This is because the UAS lens is far
away from the ground during measuring, and the lens receives the solar radiation reflected
from the ground. After the rain, the temperature was lower and the air humidity was
higher, which caused the heat radiation to attenuate during the transmission process. In
contrast, the in situ observation was closer to the ground and received the solar radiation
reflected by the ground at a closer distance. This study carried out seven consecutive
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observations on rainfall from 9:00 a.m. to 9:00 p.m. on 2 August 2020. The data in Table S7
shows that concrete and asphalt are the two land surfaces with the fastest temperature
rises in the study area on a sunny day. The similarity is consistent with the previous two
observations. The data in Table S8 shows the same conclusion as the previous rainfall event.
Before the rainfall, the influx of clouds blocked part of the solar radiation. UAS calculates
the surface temperature based on the amount of heat radiation received by the lens, which
resulted in a large error (about 3.0 ◦C) in the temperature of the asphalt land surface before
and after the rainfall event. The data in Table S11 show that UAS showed a small error after
rainfall, while the error of each observation on the land surface of the lawn was large. In
this observation, UAS showed good accuracy, indicating that UAS equipped with thermal
infrared lenses can be used in the observation and research of urban surface temperature.
Figure 11 shows the linear regression analysis results of the three-day observation data of
in situ LSTs and UAS LSTs.

Figure 11. Cont.
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Figure 11. Linear regression results of UAS and in situ observations for different land cover types. (a) July 24. (b) July 26.
(c) August 2.

Figure 11a shows that, based on UAS and in situ observation, the goodness of fit is
relatively high in the 9:12 a.m.–11:08 p.m. time period. The value of R ˆ 2 is between 0.68
and 0.92; then, R ˆ 2 begins to decline to 0.42. Because the UAS lens is based on the received
thermal radiation imaging, the solar radiation intensity is high in the daytime, resulting in
the gradual decline of R ˆ 2 at night, which eventually leads to the low fitting degree of
1:20 a.m.–7:16 a.m. (R ˆ 2 = 0.078). These slopes indicate that the increment of UAS LST
is smaller than that of in situ LST. Figure 11b fits the observation data before and after
the rainfall on July 26; the fitted results show a high consistency (R ˆ 2 = 0.94), indicating
that UAS can be used to observe the surface temperature before and after the daytime
rainfall with high accuracy. Figure 11c fits the observation data on August 2. The rainfall
event occurred between 3:59 p.m. and 4:40 p.m. and at 9:15 a.m. The two observation
methods of each land surface had low consistency. Both 11:10 a.m. and 1:13 p.m. show
a very high degree of fit (R ˆ 2 = 0.94), which is the reason why much UAS research on
earth observation chooses this time period for observation. Suddenly, a low degree of fit
(R ˆ 2 = 0.067) appeared at the rainfall event at 3:13 p.m. After the rainfall stopped, the
cloud cover was greatly reduced, and the accuracy of UAS observation was significantly
improved (5:12 p.m., R ˆ 2 = 0.76) The R ˆ 2 value of 9:08 p.m. was low due to the influence
of solar radiation.
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The data in Tables S30–S33 show the RMSE and MAE between in situ LSTs and UAS
LSTs at different times on July 24 and August 2. At 9:12 a.m. on July 24, except for lawn,
the RMSE and MAE of other different types of land covers were smaller; the LSWT of Lake
2 was the smallest (RMSE = 0.21 ◦C, MAE = 0.18 ◦C), and the asphalt ground was also very
small (RMSE = 0.42, MAE = 0.35 ◦C). The standard deviation of on-site LSTs is 0 ◦C, which
is less than the RMSE value, which shows the reliability of the analysis results. The study
at 12:00 p.m. in the summer shows that the average RMSE of vegetation is the highest
at 8.21 ◦C [37]. With the enhanced solar radiation intensity, the RMSE of different land
surfaces also increased. This study the average RMSE value and the average MAE value
during the day reached their maximums (respectively 4.33 ◦C and 4.12 ◦C) at 3:17 p.m. The
RMSE and MAE of pervious bricks started to increase at 9:12 a.m., reached the highest
value (respectively 4.07 ◦C and 3.84 ◦C) at 5:16 p.m., and then decreased to about 1 ◦C.
Concrete and asphalt reached their maximum values (RMSE: 3.73 ◦C and 5.84 ◦C, MAE:
3.37 ◦C and 5.84 ◦C) at 3:17 p.m. The RMSE and MAE of the three lakes showed different
fluctuating trends. The RMSE and MAE of Lake 2 was the smallest (respectively 0.21 ◦C
and 0.18 ◦C). Observational data show that, at night (9:07 p.m.–7:16 a.m.), the average
RMSE and MAE of all land surfaces were less than 1.19 ◦C and 1.30 ◦C, and the RMSE of
the land surface of the lawn was also close to that of other land surfaces. It shows that UAS
is suitable for the observation and research of the surface temperature at night.

4. Discussions
4.1. Accuracy Verification of UAS

This study compared UAS LSTs with in situ LSTs, and the accuracy of UAS LSTs was
verified by linear regression and RMSE analysis. The study found that the accuracy of UAS
LSTs is affected by weather conditions and time periods, such as solar radiation and cloud
influx. Due to these factors, the RMSE between UAS LSTs and in situ LSTs varies between
1 and 5 ◦C (except for daytime lawn). Land surfaces such as pervious bricks, asphalt, and
concrete exhibit high RMSE values. The linear regression analysis results show that the
determination coefficient of the daytime model is close to 0.92, which has a high goodness
of fit.

This study shows that the accuracy of UAS observation LSTs depends on different land
cover materials and different measurement time series, which is of great significance to the
use of UAS thermal infrared images to study the change process of surface temperature.
Kraaijenbrink et al. [38] used UAS to carry thermal infrared lenses to observe and map the
surface temperature of the debris-covered glacier in the central Himalayas and compared
UAS LST, Landsat8 images, and in situ LSTs of the glacier-covered area. UAS LST showed
differences of −1.4 ± 1.8, 11.0 ± 5.2, and 15.3 ± 4.7 ◦C during three flights. Kelly et al. [39],
based on laboratory and on-site experiments, analyzed the accuracy of the thermal radiation
FLIR Vue Pro 640 camera mounted on UAS. Although the accuracy was stable under
laboratory conditions (about 0.5 degrees Celsius), due to the influence of environmental
conditions, on-site experiments the accuracy was reduced to 5 degrees Celsius. The study
on TIR satellite imagery showed that the difference between the satellite image LST and
the on-site LST varies with time [37]. When the summer temperature is high, the difference
may be greater than 10 ◦C. Based on these research results, due to the accumulation of the
earth’s radiation energy released into the atmosphere in the space of dense buildings, UAS
and in situ observations are very different.

4.2. UAS Observation of Rainfall Runoff

Above, we analyzed the accuracy of UAS. R ˆ 2 and RMSE showed different goodness
of fit and error values in different observation time periods (Figure 11, Tables S28 and S31).
We also explored the feasibility of UAS thermal infrared remote sensing technology to
monitor rainfall runoff. For summer rainfall events, the data showed that surface runoff
had a certain warming effect on the LSWT. In this study, after the runoff temperature and
the air temperature reached equilibrium, the air temperature was equivalent to the runoff
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temperature. The advantage of UAS is the ability to collect distributed temperature data
with high spatial resolution, which reflects small-scale changes in the urban environment.
The research results show that UAS can be a good tool for evaluating the variability of
other parameters of the urban environment, which are very important for environmental
studies such as soil moisture, leaf area index, or impervious cover.

5. Conclusions

This study used UAS to carry thermal infrared lenses to obtain UAS LSTs on three
dates (July 24, July 26, and August 2), and verified the accuracy of thermal infrared lenses.
The research covered sunny and rainy days and daytime and nighttime. During rainfall
events, we tried to use UAS to observe runoff temperature of the land surface of the city
during the day and night and explore the feasibility of UAS to monitor and evaluate surface
thermal runoff.

The study found that UAV overestimated the temperature of some types of land
cover during the period from morning to noon on a sunny day. The temperature of the
concrete surface was overestimated by 1 ◦C, and the temperature of the asphalt surface was
different by 0.04 ◦C. The LSWTs of Lake 1 and Lake 3 were overestimated by 1.3 ◦C and
2 ◦C, respectively. The temperature of Lake 2 remained the same. The temperature of the
lawn surface was overestimated by UAS by 3.6 ◦C. Based on the small difference between
UAS observations and in situ observations during the noontime period, many studies
using UAS choose noon observations. From noon to afternoon, the influx of clouds and the
sudden decrease in solar radiation received caused UAS to underestimate the LSTs. The
lawn research area in this study was affected by woods and buildings, and the temperature
difference observed between the two observation methods at noon was the largest (12.5 ◦C).
At night, the temperature difference of the surface of the lawn was within 2 ◦C. Both the
standard deviation of the observation data and the temperature difference between the two
observation methods were small (0.1–2 ◦C). In a clear day, the linear regression analysis
result is 0.69 ≤ R ˆ 2 ≤ 0.92, indicating that there is a high degree of consistency between
UAS LSTs and in situ LSTs.

In the summer rainfall events, the lawn temperature difference between UAS and
the in situ observation was 3.8 ◦C before the rainfall; the temperature difference of other
land surfaces was small. The two observation methods showed high consistency. The
temperature difference between the two measurement methods doubled after the rainfall.
Linear regression and RMSE analysis showed that there was a certain difference between
the data observed by UAS and the on-site observation data in different weather. The
water temperature of the three lakes changed to different degrees before and after the
rainfall. The measured temperature showed that the LSWT of the lakes first decreased
(3:13 p.m.–5:12 p.m.) and then increased (5:12 p.m.–7:14 p.m.) after the rainfall. The lake
body absorbs heat radiation before rainfall, resulting in a higher LSWT; at the beginning of
rainfall, the temperature of rainwater is lower than the lake body temperature, which has
a cooling effect on the lake body. In this study, the water temperature of Lake 3 dropped
from 24.5 ◦C to 22.9 ◦C at the beginning of the rainfall. Runoff is formed in the middle
of rainfall. Runoff temperature is higher than lake water temperature, which caused the
LSWT of Lake 3 to rise from 22.9 ◦C to 23.7 ◦C, so we concluded that the temperature of
the lake had risen. However, the performance of the UAS camera we tested has some
deviations that have not been successfully explained. During the flight, not measuring
the camera sensor temperature was the main limitation of the camera’s performance. We
recommend buying a radiometric UAS camera with relatively high (±2 ◦C) accuracy,
which is very worthwhile for applications where the absolute temperature difference is
small. It is extremely important to effectively observe LST changes on a fine scale and to
identify the thermal characteristics of various spatial factors distributed in urban areas.
Small UAS equipped with thermal infrared lenses can be effectively used to observe the
variability of different surface temperatures in cities. UAS can well make up for the low
time and low spatial resolution of traditional satellite observations. This study used UAS
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to reveal the change of urban environmental temperature during daytime and nighttime
and explored the feasibility of UAS to observe the LST during daytime and nighttime; we
then monitored and analyzed day and night thermal runoff and explored the impact of
thermal runoff on lake surface temperature changes. The study revealed the temperature
changes of the surface types of hot runoff and the degree of pollution to urban lakes
after rainfall. Due to the expansion of urbanization, impervious surfaces are the main
cause of the UHI phenomenon. Current research on impervious surfaces is biased toward
macroscopic research, while there is less research on the microscopic mechanisms. Through
this study, we found the temperature changes of each surface type, clearly capturing the
pollution degree of each surface cover type thermal runoff to urban lakes, and offered a
more excellent choice for the urban surface cover type. This provides a solid foundation
to alleviate the UHI phenomenon, an important basic condition for reducing urban lake
pollution, and decision-making reference for the construction of beautiful cities.
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UAV TIR LSTs and in-situ LSTs by land cover type 5:16 AM at July 25, Table S27. UAV TIR LSTs and
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RMSE between the in-situ LSTs and UAV TIR LSTs (◦C) at August 2, Table S32. MAE between the
in-situ LSTs and UAV TIR LSTs (◦C) at July 24, Table S33. MAE between the in-situ LSTs and UAV
TIR LSTs (◦C) at August 2, Figure S1. Images UAV’s of the first and second flight on July 24, Figure S2.
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