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Abstract: Although many publications have noted the impact of urban planning on urban develop-
ment and land-use change, the incorporation of planning constraints into urban growth simulation
has not been adequately addressed so far. This study aims to develop a planning-constrained
cellular automata (CA) model by combining cell-based trade-off between urban growth and nat-
ural conservation with a zoning-based planning implementation mechanism. By adjusting the
preference parameters of different planning zones, multiple planning-constrained scenarios can
be generated. Taking the Wuhan Urban Development Area (WUDA), China as a case study, the
planning-constrained CA model was applied to simulate current and future urban scenarios. The
results show a higher simulation accuracy compared to the model without planning constraints. With
the weakening of planning constraints, urban growth tends to occupy more ecological and agricul-
tural land with high conservation priority. With the increase in preference on urban growth or natural
conservation, the future urban land pattern will become more fragmented. Furthermore, new urban
land beyond the planned urban development area can be captured in future urban scenarios, which
will provide certain early warning. The simulation of the current urban spatial pattern should help
planners and decisionmakers to evaluate the past implementation of urban planning, and scenarios
simulation can provide effective support for future urban planning by evaluating the consequences.

Keywords: cellular automata; planning constraints; scenario simulation; urban growth

1. Introduction

Urbanization is one of the greatest social transformations in human history [1,2]. In
order to meet the unprecedented demand of urban population growth and economic de-
velopment, urban land presents a violent and disorderly expansion trend [3]. Nowadays,
the average growth rate of urban land is twice that of their populations [4]. Although
urban land is only a small part of the Earth’s surface, its rapid growth has been identified
as a major contributor to natural habitat loss, cropland reduction and ecosystem services
degradation [5–7], posing great threat to the world’s sustainable development [8,9]. Thus,
it raises continuous competition for land between urban development and natural conser-
vation [10], which is especially relevant to China due to its limited land resources and huge
population living in urban areas [11]. Currently, Chinese local governments have put for-
ward a series of administrative regulations and spatial planning policies, including major
function-oriented zoning, land-use planning, urban spatial regulations, ecological redlines
and so on. These policies and regulations have played a vital role in restraining the decrease
in ecological and agricultural land and guiding urban compact development [12–14], al-
though illegal urban encroachment on protected areas frequently occurs [15,16]. Therefore,
simulation of future urban expansion and encroachment incorporating different planning
policies is of great significance for authorities and planners to make effective decisions in
optimizing urban spatial patterns and achieving urban sustainable development.
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Since the first application of Tobler in 1979 [17], cellular automata (CA) and its derived
models have been widely used in urban growth modeling and land-use simulation due to
their simple and flexible structure, among which the transition rule is a core part [7,18,19].
The process of urban growth and urban land change is influenced by multiple drives across
different scales, including socio-economic factors, geophysical factors, proximity factors,
environmental factors and planning factors [18,20–22]. In order to link these multiple
driving factors with the transition rules of the CA model, scholars have explored various
methods including multivariate statistics methods, intelligent algorithms, agent-based
models and multi-criterion decision analysis [3,23–25]. Although the combination of
these models and cellular automata has made many important achievements in urban
land-use simulation, the applicability of these models in reproducing urban patterns
resembling reality and solving actual planning problems in complex urban systems is still
challenging [18,20].

In recent decades, many researchers have increasingly recognized the important influ-
ence of urban planning and other policies on urban growth and land-use change [15,26,27].
Thus, scenario simulation of urban land use incorporated with planning information and
conventional urban CA models has attracted considerable attention from scholars and
planners. Through the constraint layers or exclusion layers in urban CA models, policy
information including supportive planning and restrictive planning can be implemented to
simulate and predict urban growth by either a Boolean-constraint mechanism or a gradual
mechanism [27–29]. With regard to Boolean-constraint, for example, He et al. consider the
primary farmland protection area as mandatory constraints to prohibit urban encroach-
ment [12]; Zhou et al. set water areas, historical protection areas, restricted development
areas, prohibited development areas and large-scale parks in planning as constraint layers
to simulate urban spatial patterns under the planning intervention scenario [3]. While the
binary planning constraint design is too absolute and simplistic [30], some studies have
attempted to simultaneously consider the gradual constraints into their urban CA models.
Onsteda et al. incorporated zoning policy information into the CA-based SLEUTH model
by assigning gradual values to the different zoning categories, which obviously improves
model performance with respect to a model without zoning [26]. Liang et al. proposed
a random seeding mechanism to simulate the potential effect of planning development
zones [20]. Wang et al. integrated a series of urban spatial planning to construct synthetical
planning constraint layers in urban CA model by a multi-criteria evaluation (MCE)-based
weighting method [31]. These studies have achieved remarkable results and provide good
references for building a realistic planning constraint mechanism.

However, in previous studies, the planning constraints in a planning zone are often
set to a unified value, ignoring the spatial heterogeneity of different cells in the same
planning zone [32,33]. In the real complex urban systems, the planning influence on the
cells in a specific planning zone is often not homogeneous. The application of planning
constraints in urban CA models should not be restricted to considering the zone effects;
it should take the natural environment and socio-economic factors based on the land-use
cell into account [34–36]. For example, in the planned ecological protection area, cells with
high ecological importance tend to be retained, while cells with low ecological importance
located in urban fringe areas are more likely to be occupied. Currently, the influence effects
of planning policies based on the trade-off between urban growth and conservation has
received little attention. In addition, existing studies often set the restriction or impact
coefficients of different planning zones based on subjective or historical experience [27,37].
Once these parameters are determined, they will not change with time in the simulation
process, which is not conducive to the dynamic urban growth scenario simulation.

This study aims to explore the potential influence of integrated urban spatial planning
on urban growth and realize the planning-constrained urban multi-scenario simulation.
Thus, we propose an innovative synthetical planning-constrained strategy to quantitatively
characterize the influence of integrated urban spatial planning on realistic urban growth
process by combining the cell-based trade-off between urban growth and conservation
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with a zoning-based planning implementation mechanism. By incorporating the strategy
into urban CA models, a planning-constrained CA model is developed. Taking Wuhan
city, one of the mega cities in China, as a case study, we applied the planning-constrained
CA model to assess the impact of urban planning implementation on the urban growth
process and simulate the urban spatial patterns under different future scenarios. The
results should help planners and authorities evaluate the guiding effects of urban planning
implementation.

The rest of the sections of this article are organized as follows. Section 2 describes
the study area and the datasets used in this study. Section 3 introduces in detail the
methodology of the planning-constrained CA model. Section 4 presents the multi-scenario
simulation results under planning constraints. The discussion and conclusion are given in
Sections 5 and 6.

2. Study Area and Datasets
2.1. Study Area

Wuhan, the capital city of Hubei Province, is the key city in Central China and one of
the core cities in the Yangtze River economic belt. As shown in Figure 1, Wuhan adminis-
ters seven central districts (Hanyang, Hongshan, Jiangan, Jianghan, Qiaokou, Qingshan,
Wuchang) and six suburban districts (Caidian, Dongxihu, Hannan, Huangpi, Jiangxia,
Xinzhou), covering a total area of 8569.15 km2. In past decades, Wuhan has experienced an
unprecedented urbanization process. By the end of 2020, the total population of Wuhan
was 12.32 million, of whom 10.39 million were urban residents. Rapid urbanization has
led to a large amount of urban land expansion and encroachment on other lands, resulting
in strong contradictions between urban growth and natural conservation [38,39]. From
2002 to 2019, the area of urban construction land increased by 98.7%, from 1338.75 km2

to 2646.26 km2. Therefore, Wuhan has formulated a series of spatial planning policies,
which have greatly affected the process of urban growth [11,13,28]. In this study, we will
specifically target the Wuhan Urban Development Area (WUDA), which was designated
as the centralized area of urban development in the 2010–2020 Wuhan Master Plan. The
WUDA spans a total area of 3261 km2, consists of all central districts and parts of the six
suburban districts.

Figure 1. Location of the Wuhan Urban Development Area (WUDA).
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2.2. Datasets

The datasets used in this study consist of land-use, socioeconomic, natural eco-
environment and planning datasets, including the following:

1. Land-use maps of 2009 and 2017 in vector format were obtained from Wuhan Natural
Resources and Planning Information Center. The original land-use maps were catego-
rized into 38 classes and, then, reclassified into nine land-use types: urban land, rural
settlements, cropland, orchard land, forests, grassland, waterbodies, traffic land and
other land.

2. Socioeconomic datasets were collected from various sources. The demographic
and GDP data of 2015 were downloaded from the Resource and Environment Data
Cloud Platform website http://www.data.ac.cn (accessed on 20 October 2018). POI
data were obtained from Baidu Map website http://map.baidu.com (accessed on
20 December 2017). The vector road network and park data were derived from Wuhan
Geographical Conditions Monitoring Datasets, which are produced by Wuhan Geo-
matics Institute in 2017. Other socioeconomic datasets, including land value, ur-
ban centers, commercial centers and subway stations, were downloaded in pic-
ture format from the Wuhan Natural Resources and Planning Bureau website
http://zrzyhgh.wuhan.gov.cn/ (accessed on 6 January 2019) and, then, digitized
in ArcGIS 10.2 software. These socioeconomic datasets were mainly used to process
the driving factors of the urban CA model.

3. Natural eco-environment datasets include topographical, meteorological, soil, vege-
tation and farmland quality data. The topographical information was derived from
a digital elevation model (DEM) in raster format with a resolution of 30 m × 30 m,
supplied by Geospatial Data Cloud website http://www.giscloud.cn/ (accessed on
30 January 2017). Meteorological data for 2015 obtained from China Meteorological
Data Sharing Service System website http://data.cma.cn/site/index.html (accessed
on 9 March 2016) include monthly air temperature, monthly rainfall and monthly
radiation. Soil data, such as soil type, soil particle proportion and soil organic mat-
ter, were extracted from the Harmonized World Soil Database version 1.2 website
http://westdc.westgis.ac.cn (accessed on 30 August 2019). Vegetation data, incorpo-
rating normalized difference vegetation index (NDVI) and leaf area index (LEI), were
obtained from MODIS products. Farmland quality data were derived from the grade
evaluation result of cultivated land quality in 2015, produced by Wuhan Natural
Resources and Planning Information Center. These natural eco-environment datasets
were mainly utilized to evaluate the cell-based conservation priority.

4. Planning datasets, consisting of the Wuhan City Master Plan (2010–2020), Wuhan
Land Use Master Plan (2006–2020) and its adjustment and improvement result (2017),
Wuhan Basic Farmland Protection Plan (2006–2020), Wuhan Comprehensive Trans-
portation Plan (2009–2020) and Wuhan Ecological Protection Plan (2012), were ac-
quired from Wuhan Natural Resources and Planning Bureau website http://zrzyhgh.
wuhan.gov.cn/ (accessed on 30 January 2019). These planning datasets were inte-
grated to produce urban growth scenarios based on dynamic planning constraints.

All these datasets were preprocessed and rasterized with a spatial resolution of 30 m
in ArcGIS 10.2 software as input of the urban CA model.

3. Methodology

A planning-constrained CA model is developed in this study to simulate urban growth
and encroachment under different scenarios. Figure 2 shows the model procedure and
flowchart. Firstly, cell-based conservation priority and urban growth potential can be
calculated by multi criteria analysis and a logistic regression model, respectively. In terms
of conservation priority, it consists of ecological land conservation priority and cultivated
land conservation priority. The ecological priority is mainly based on relevant indicators
such as ecosystem functional importance and ecological vulnerability, while the cultivated
land conservation priority mainly depends on the agricultural production suitability of

http://www.data.ac.cn
http://map.baidu.com
http://zrzyhgh.wuhan.gov.cn/
http://zrzyhgh.wuhan.gov.cn/
http://www.giscloud.cn/
http://data.cma.cn/site/index.html
http://westdc.westgis.ac.cn
http://westdc.westgis.ac.cn
http://zrzyhgh.wuhan.gov.cn/
http://zrzyhgh.wuhan.gov.cn/
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cultivated land. The urban development potential is determined by natural, socioeconomic
and location-based factors. Secondly, we defined the synthetical planning-constrained
mechanism by integrating the cell-based tradeoff between urban growth potential and
conservation priority with zoning-based planning preference. By adjusting the prefer-
ence parameters of different planning zones, multiple planning-constrained urban growth
scenarios can be generated. Thirdly, we combine the synthetical planning-constrained
mechanism with urban development potential, neighborhood effect and random distur-
bance to construct the transition rule of urban CA model. Markov chain is used to predict
the amount of urban land-use change. Kappa and FoM coefficients are used to calibrate
and verify the model. Finally, future urban growth pattern under different scenarios are
simulated. These phases are presented separately as following.

Figure 2. Flowchart for planning-constrained CA model.

3.1. Cell-Based Conservation Priority and Urban Growth Potential
3.1.1. Conservation Priority Evaluation

Urban growth is often at the expense of the loss of ecological land and cultivated
land [12,40,41]. In this study, conservation priority includes ecological land conservation
priority (ELCP) and cultivated land conservation priority (CLCP). For an ecological land
unit such as forest land, grassland, water area and garden land, its conservation priority
depends on relevant factors of ecosystem functional importance and ecological vulnerabil-
ity [42,43], while for a cultivated land unit, its conservation priority should also consider
agricultural production suitability [44].

The ecosystem functional importance refers to the ecological conditions and utility
formed in the ecosystem and its ecological process, which are conducive to human survival
and development [45,46]. According to the ecological status of the study area, biodiversity
conservation (BC), carbon storage (CS), water conservation (WR), soil conservation (SC) and
flood regulation (FR) are selected as the factors for the evaluation of ecosystem functional
importance. Ecological vulnerability refers to the sensitive response and self-recovery
ability of ecosystem relative to external interference at a specific time and space scale,
wherein a higher vulnerability indicates worse self-recovery ability of the ecosystem [47].
Here, ecological vulnerability includes soil erosion sensitivity (SES), land desertification
sensitivity (LDS) and stony desertification sensitivity (SDS). The acquisition and calculation
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of ecological related factors are mainly based on the Technical Guide for Delimitation of
Ecological Protection Red Line issued by the Ministry of Environment Protection of China
in 2015 and partly adjusted according to the study area. Table 1 presents the methods for
ecosystem functional importance evaluation. Cultivated land quality grade data were used
to describe the agricultural production suitability. Then, through ArcGIS 10.2 software,
each factor was reclassified to values ranging from 0 to 1, by using the standardized
function. The higher the value, the higher the conservation priority. The weight of each
factor is obtained by the analytic hierarchy process (AHP) model. Finally, the conservation
priority equation can be expressed as:

Ci = we × (ELCP) + wc × CLCP (1)

ELCP =
M

∑
k=1

bkxk (2)

where Ci is the conservation priority for cell i, ranging from 0 to 1; we and wc are the weights
of ELCP and CLCP, respectively; we = 1.0 and wc = 0.0 for an ecological land unit, while
we = 0.5 and wc = 0.5 for a cultivated land unit; xk represents the value of kth factor, and bk
is the corresponding weight. M is the total number of variables. Figure 3 illustrates the
results for conservation priority evaluation.

Table 1. Methods for ecosystem functional importance evaluation.

Indicators Models Parameter Explanation

Biodiversity conservation (BC) The habitat quality model of InVEST:
Qxi = Hi

(
1−

(
D2

xi

(
D2

xi + k2
)) ) Qxi is the habitat quality index of patch group x in LULCi(dimensionless).

Hi and Dxi are the habitat suitability score and the total stress level of grid
x in LULCi, respectively. k is the scale factor (constant).

Carbon storage (CS)

Carnegie–Ames–Stanford approach model
(CASA): NPPxt = APARxt × εxt ;

APARxt = SOLxt × FRAPxt × 0.5;
εxt = T1xt × T2xt ×Wxt × εmax

NPPxt is the ecosystem net primary productivity of pixel x in tst month
(gC·m−2·month−1), APARxt and εxt are its corresponding absorbed
photosynthetic effective radiation and actual light energy utilization,
respectively. SOLxt , FRAPxt ,and Wxt are the total solar radiation, the

absorption ratio of vegetation layer to incident photosynthetic effective
radiation, the influence coefficient of water stress of pixel x in tst

month, respectively. T1 and T2 indicate the stress effect of low and high
temperature on light energy utilization, εmax is the maximum light

energy utilization under ideal conditions.

Water conservation (WR)

Water balance equation:

WR =
n
∑

i=1
WRi ;WRi =

(Pi − Ri − ETi)× Ai × 103

WRi is the water conservation capacity of type i (m3), and n is the
number of ecosystem types. Pi , Ri , ETi and Ai are the rainfall, surface
runoff, evapotranspiration and ecosystem area of type i, respectively.

Soil conservation (SC)
Revised universal soil loss equation (RUSLE):

SC = Sp − Sa ; Sp = R× K× LS;
Sa = R× K× LS× C× P

SC is the quantity of soil conservation (t/hm2·a), Sp and Sa are the
quantity of potential and actual soil erosion, respectively. R, K, LS, C

and P are the rainfall erosivity, soil erosion factor, slope factor,
vegetation cover factor and the soil conservation practices

factor, respectively.

Flood regulation (FR) The assessment is based on the water level
and area of the water body.

The main rivers of the Yangtze River and Han River, large lakes
(>1 km2), large- and medium-sized reservoirs are extremely important

flood control ecological function areas; others belong to
important areas.

Soil erosion sensitivity (SES) SES = 4√R× K× LS×C
SES is the sensitivity index of soil erosion (dimensionless). R, K, LS and
C are the sensitivity grades of rainfall erosivity, soil erosion, slope factor

and vegetation cover, respectively.

Land desertification sensitivity (LDS) LDS = 4√I ×W × K× C
LDS is the sensitivity index of land desertification (dimensionless). I, W,
K and C are the sensitivity grades of dryness index, sand-driving wind

days, soil texture and vegetation cover, respectively.

Stony desertification sensitivity (SDS). SDS = 3√D× S× C
SDS is the sensitivity index of stony desertification (dimensionless). D,

S and C are the sensitivity grades of exposed area percentage of
carbonate stony, terrain slope and vegetation coverage, respectively.
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Figure 3. Conservation priority evaluation indicators and results. (a) biodiversity conservation
(BC); (b) carbon storage (CS); (c) water conservation (WR); (d) soil conservation (SC); (e) flood
regulation (FR); (f) soil erosion sensitivity (SES); (g) land desertification sensitivity (LDS); (h) stony
desertification sensitivity (SDS); (i) ecological land conservation priority (ELCP); (j) cultivated land
conservation priority (CLCP); (k) conservation priority.

3.1.2. Urban Growth Potential Evaluation

While urban growth is affected by various factors, the literature shows that the fol-
lowing factors are crucial: natural environment, socio-economic status and location condi-
tions [22,34,48]. A variety of methods, such as multivariate statistics, intelligent algorithms
and multi-criterion analysis, were used by researchers to define the contribution of diverse
driving factors to historical urban growth [18,49–51]. In this study, a widely used binary
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logistic regression (BLR) method [6] was used to produce the urban growth potential map.
The BLR equation can be expressed as:

Ui =
exp

(
b0 + ∑N

k=1 bkxk

)
1 + exp

(
b0 + ∑N

k=1 bkxk

) (3)

where Ui is the urban growth potential for cell i, ranging from 0 to 1. b0 is the constant, xk
represents the kth independent variable, and bk is the corresponding weight. N is the total
number of independent variables.

Based on previous researches [15,51], we selected 14 driving factors, such as dem,
slope, distance from water area, distance from highway, distance from main road, distance
from secondary road, distance from branch road, distance from subway station, distance
from city center, distance from parks, distance from commercial center, land value, POI
density and population density, to evaluate their impacts on Wuhan urban growth and
produce the urban growth potential map. In addition to the population density data from
2015, other factor layers were acquired in 2017. We mapped all factors using ArcGIS 10.2
software and processed them by standardized methods. Thirty thousand sample points
were extracted from the actual urban land-use change map (2009–2017) and the variable
maps by a stratified random sampling method to construct the logistic regression equation.
Table 2 presents the variables and their coefficients of BLR model. Figure 4 illustrates their
spatial distributions and the final urban growth potential map.

Table 2. Independent variables and coefficients of logistic regression model.

Independent Variables Coefficients Sig.

Constant 1.788 0.000
Dem −2.507 0.000
Slope −0.801 0.000

Distance from water area 1.763 0.000
Distance from highway −1.557 0.000

Distance from main road −6.135 0.000
Distance from secondary road −2.627 0.000

Distance from branch road −1.481 0.000
Distance from subway station −0.299 0.000

Distance from city center −2.424 0.000
Land value 6.358 0.000

Population density 8.528 0.000
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Figure 4. Urban growth potential evaluation indicators and results. (a) dem; (b) slope; (c) distance
from water area; (d) distance from highway; (e) distance from main road; (f) distance from secondary
road; (g) distance from branch road; (h) distance from subway station; (i) distance from city center;
(j) land value; (k) population density; (l) urban growth potential.

3.2. Planning-Constrained Mechanism

Urban spatial planning, widely used in urban growth management, has an obvious
impact on guiding and controlling the urban development [3,20]. Planning constraints have
become an indispensable part of urban simulation. Different planning zones represent
the different preferences of the government and planners for urban development and
natural conservation. Previous studies established the planning constraint mechanism
through binary planning constraints or preset planning zoning preferences [32,33], ignoring
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the cell-based trade-off between urban growth and conservation in the same planning
zone [35]. In this study, by integrating the cell-based tradeoff between urban growth
potential and conservation priority with zoning-based planning preference, a synthetical
planning-constrained mechanism was defined as follows.

PCi = f
(
Ui, Ci, Zj

)
=

Ui × Zj

Ui × Zj + Ci ×
(
1− Zj

) (4)

where PCi is the planning constraints for cell i, ranging from 0 to 1. Ui and Ci are the
value of urban growth potential and conservation priority, respectively. Zj represents the
planning preference on urban growth in planning zone j, ranging from 0 to 1. Zj = 0 means
planning zone j is completely unbuildable, Zj = 1 means planning zone j has no planning
restrictions on urban development.

In past decades, Chinese local governments have issued a series of spatial planning
policies to restrain the decrease in ecological and agricultural land and guide urban compact
development, among which Overall Land Use Planning, Urban Master Planning, Primary
Farmland Protection Planning and Ecological Protection Planning played extremely impor-
tant roles [13,28,52]. By integrating these plans of the study area, we classified the study
area into three categories of planning zones: the urban development zone (UDZ), ecological
and agricultural conservation zone (EAZ) and completely prohibited undevelopable zone
(PUZ). The UDZ refers to areas where cities and towns are intensively developed and
constructed and can meet the needs of urban production and life. The value of the ZUDZ
is set to 1, considering a higher preference on urban growth in the UDZ. The PUZ includes
primary farmland protection area, mountains, water bodies and natural reserves wherein
urban development is strictly prohibited. Thus, the value of ZPUZ is set to 0 in this study.
The EAZ refers to agricultural and ecological areas besides the PUZ that need to retain
their original appearance, strengthen natural conservation and ecological construction
and restrict urban development. The value range of the ZEAZ is [0,1]. By adjusting the
planning preference parameter in the EAZ, various planning constraints can be generated.
Furthermore, considering the timeliness of planning, planning in different time stages
should be applied to build the corresponding planning zones. In this study, the planning
zones of 2009–2017 and 2017–2025 were established, respectively, and applied to simulate
the urban growth process of corresponding phases.

3.3. Planning-Constrained CA Model

CA is a dynamic system with a finite set of state elements, which evolves in discrete
time intervals based on transition rules [53,54]. CA-based models have been widely used
in urban growth modeling and land-use simulation due to its simple and flexible structure.
In general, the conceptual formula of the urban CA model can be described as follows [48]:

St+1
i = f

(
St

i , Ui, Ωt
i , Con, R

)
(5)

where St+1
i and St

i denote the state of the cell i at the moment of t+1 and t, respectively; Ui
is the urban growth potential of cell i, Ωt

i is the neighborhood effect, Con is a constraint
function, R is the random perturbation, and f represents the function of transition rules.

Specifically, the urban growth potential has been described in Section 3.1.2. The
neighborhood effect is defined and calculated based on the ratio of adjacent developed
cells by using a regular n × n Moore neighborhood [25], which is expressed in Equation (6).
Con can be replaced by PCi, which has been introduced in Section 3.2. R represents the
uncertainties and random perturbations in the urban land evolution process, which is
calculated by Equation (7).

Ωt
i =

c
n× n− 1

(6)

R = 1 + (−ln(γ))α (7)
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where c is the number of adjacent developed cells, γ is a random number ranging from
0 to 1, and α is a parameter for adjusting the stochastic magnitude, which was set to 1 to
represent a small probability of randomness in this study.

By combining the aforementioned planning-constrained mechanism with urban de-
velopment potential, neighborhood effect and random disturbance, the final transition
probability TPt

i of urban CA model can be expressed as follows:

TPt
i = Ui ×Ωt

i × PCi × R (8)

Furthermore, the amount of urban land development was calculated by the Markov
chain model, which has been widely and successfully used in the quantitative prediction
of land-use change [3,55]. The Kappa index [56] and FoM coefficient [57] were used to
calibrate the urban CA model and assess the simulation outcomes. By a pixel-by-pixel
comparison between the simulation result and reference map, the Kappa index and FoM
coefficient can be calculated as follows:

Kappa =
Po − Pc

1− Po
(9)

Pc =
a0 × b0 + a1 × b1

N2 (10)

FoM =
B

A + B + C
(11)

where PO is the observation consistency, which refers to the ratio of the number of correctly
simulated cells to the total number of cells; PC is the expected consistency; N is the total
number of cells; a0 and a1 are the number of non-urban and urban cells, respectively; b0
and b1 are the number of cells simulated as non-urban land and urban land, respectively; A
is the number of error cells observed as urban but simulated as persisted non-urban; B is
the number of correctness cells observed and predicted as change; C is the number of error
cells observed persistence but simulated to be urban land.

3.4. Multi-Scenario Design of Planning Constraints on Urban Growth

Multi-scenario analysis of planning constraints on the urban growth process has been
conducted in this study. By adjusting the planning preference parameters of different
planning zones, multiple planning-constrained urban growth scenarios can be derived.
Considering the actual situation, the planning preference parameters of the UDZ and
PUZ were preset to 1 and 0, respectively. To model the actual planning preference in
the EAZ, 11 values, ZEAZ∈ {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}, were selected to generate
different planning constraints. Among these values, 0 means corresponding planning zone
is completely unbuildable, and 1 means corresponding planning zone has no planning
restrictions on urban development. Then, multiple scenarios of urban land patterns were
simulated for Wuhan in 2025 through integrating the multiple planning constraints into
the urban CA model.

4. Model Application and Results
4.1. Urban Growth and Encroachment in 2009–2017

Based on the land-use maps in 2009 and 2017, we obtained the spatial pattern of urban
growth in the WUDA from 2009 to 2017. Then, by superimposing it with the integrated
urban spatial planning map, the spatial distribution of urban growth in different planning
zones was produced, as shown in Figure 5. In addition, through further statistical analysis,
the area and proportion of urban growth and encroachment on other lands in different
planning zones are calculated, as shown in Table 3. During 2009–2017, the urban growth of
the WUDA presented obvious infilling and edge sprawling characteristics, with a total area
of 26,351.21 ha. At the same time, the expansion of urban land has led to the occupation
of cultivated land, forest land, garden land, grassland and water areas. Among them, the
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occupied area of cultivated land accounts for 57.96% of the increased area of urban land,
the occupied area of water area accounts for 23.69%, and the occupied areas of forest land,
garden land and grassland account for 4.25%, 1.96% and 1.96%, respectively. These show
that the urban growth in the WUDA during 2009–2017 is mainly at the cost of the reduction
in cultivated land and water area. In addition, we found that the integrated urban spatial
planning of Wuhan has an obvious guiding and restricting effect on the expansion of urban
land at this stage, with 73.26% of the new urban land occurring in the UDZ. However, the
urban land expansion beyond the preset UDZ should not be ignored, with 23.53% of the
new urban land appearing in the EAZ, and even 3.21% in the PUZ.

Figure 5. Spatial distribution of urban growth in different planning zones.

Table 3. Area and percent of different land occupied in different planning zones.

EAZ UDZ PUZ Total
Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Cultivated
land 33.41 12.68 116.46 44.20 2.87 1.09 152.73 57.96

Garden land 1.17 0.44 3.95 1.50 0.05 0.02 5.17 1.96
Forest land 2.74 1.04 7.69 2.92 0.77 0.29 11.20 4.25
Grassland 0.59 0.22 4.54 1.72 0.04 0.01 5.17 1.96

Water areas 14.31 5.43 44.56 16.91 3.56 1.35 62.43 23.69
Rural

settlement 9.41 3.57 14.03 5.33 1.14 0.43 24.58 9.33

Unused land 0.39 0.15 1.81 0.69 0.03 0.01 2.22 0.84
Total 62.02 23.53 193.05 73.26 8.45 3.21 263.51 100.00
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4.2. Calibration and Validation of the Simulation Model

This paper analyzes the impact of urban spatial planning policies on urban growth
during 2009–2017. By adjusting the planning preference coefficients of different planning
zones in this time stage, we obtain the corresponding planning-constrained mechanism.
Considering the practical significance of planning zones, the planning preference parame-
ters of the UDZ and PUZ were preset to 1 and 0, respectively, while 11 values ranging from
0.0 to 1.0 on 0.1 intervals are used to generate different planning-constrained scenarios
in the EAZ. By using the planning-constrained CA model described in Section 3.3, the
urban growth process and spatial pattern from 2009 to 2017 under different planning
constraints were simulated. Finally, the actual land-use map of 2017 is used to verify the
simulation results.

Figure 6 shows the changes in the Kappa index and FoM coefficient with the adjust-
ment of planning constraints during the verification process. The results show that with
the increase in planning preference coefficient of AEZ planning zone, Kappa index and
FoM coefficient increase first and, then, decrease, which means that the simulation accuracy
has the same change trend. The planning preference coefficient indicates the preference
degree of different planning zones for urban growth relative to ecological or agricultural
protection. The results show that the actual urban growth violates the urban spatial plan-
ning to a certain extent and pays more attention to urban development than ecological
and agricultural protection. When the ZEAZ value is 0.7, the accuracy of the model is the
highest. This shows that from 2009 to 2017, the urban growth of the WUDA is based on the
development strategy that urban growth takes precedence over ecological and agriculture
protection. Although this development strategy considers the trade-off relationship be-
tween urban development and ecological and agricultural protection to a certain extent, it
obviously pays more attention to the economic benefits brought by urban development and
largely ignores the ecosystem functional importance, ecological sensitivity and agricultural
production suitability in the EAZ. This will cause higher risk of ecological and agricultural
loss and further lead to the deterioration of ecological environment and the reduction in
grain production.

Figure 6. Simulation accuracy assessment. (a) Kappa index; (b) FoM coefficient.

4.3. Multi-Scenario Simulation of Urban Growth Based on Planning Constraints

Figure 7 shows the spatial distribution of urban growth probability under different
planning constraints, which is calculated by the method described in Section 3.2. It can be
found that with the adjustment of planning zoning preference parameters, the transition
probability map of urban growth shows obvious differences. Overall, with the increase
in ZAEZ, the area of land with high transition probability increases significantly, showing
obvious influence of planning constraints. From the perspective of the planning zone, the
land located in the UDZ shows significantly higher transition probability and remains
unchanged with the increase in planning zoning preference parameters, mainly because
the planned UDZ is often located around the existing urban land, and it is not affected
by the spatial containment function of the planning zone. The land in the EAZ shows
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obvious spatial heterogeneity, which is mainly located at the urban fringe and suburban
area. The farther away from the urban center, the lower the transition probability. At
the same time, with the reduction in the planning zone preference parameters, the effect
of planning constraints enhanced, resulting in lower transition probability. When the
ZEAZ = 0, it means that the EAZ is subject to the strictest planning constraint, and the urban
growth probability of all land located in this area is 0. When ZEZA = 1, it means that the
EAZ is not affected by the planning constraint; thus, its transition probability only depends
on its urban growth potential. When the ZEAZ < 1, it means that the transition probability
of the EAZ area depends on the joint action of conservation priority and urban growth
potential, and the land with higher urban growth potential and lower conservation priority
is easier to convert to urban land. The transition probability of the land located in the PUZ
is always 0, because it is subject to the strictest planning constraint.

Figure 7. Urban growth probability under different planning constraints.
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Based on the urban growth potential map and the planning-constrained CA model
introduced in Section 3.3, we simulate the spatial distribution of the WUDA urban growth
in 2025 under different planning-constrained scenarios. We used the Markov chain model
to predict the urban land demand in 2025, showing that the total area of urban land
would be 1342.21 km2. Figure 8 illustrates the simulation results under different planning
constraints. During 2017–2025, urban growth in the WUDA continued to occur around the
existing urban land, showing obvious characteristics of edge and infilling expansion. At
the same time, the urban growth in this stage is more distributed in the new town groups
far from the urban center. The central urban area shows weak urban growth due to strict
urban spatial planning policies and few land areas for urban growth. With continuous
changes in the ZEAZ value, the urban spatial pattern evolved in a steady and gradient
mode; however, a sharp transformation was observed with significant changes to the
parameter. In comparison to the weak planning-constrained scenarios (when Z > 0.5),
the strong planning-constrained scenarios (when Z < 0.5) showed an obvious reduction
in urban encroachment on farmland with high agricultural production suitability and
ecological land with high ecological importance. This shows that the strong planning
constraint scheme proposed in this paper can effectively avoid the occupation of cultivated
land and ecological land with high conservation priority, which is conducive to the urban
sustainable development.

Table 4 presents the landscape indexes of urban growth simulation results under dif-
ferent planning constraints, including number of patch (NP), mean patch size (MPS), mean
Euclidean nearest neighbor distance (ENN_MN), mean perimeter area ratio (PARA_MN)
and aggregation index (AI). Overall, NP and PARA_MN decrease first and, then, increase,
MPS, AI and ENN_MN show the opposite trend. When the ZEAZ ≤ 0.5, NP and PARA_MN
values decrease gradually, MPS, AI and ENN_MN values increased gradually with the in-
crease in the ZEAZ. When the ZEAZ > 0.5, with the increase in the ZEAZ, NP and PARA_MN
values increase slowly, while MPS, AI and ENN_MN values decrease gradually. This
indicates that when there is no obvious preference on urban growth or ecological land
and cultivated land protection in the EAZ, the patch number of urban lands is the least,
the patch shape is more regular, and the spatial distribution is the most concentrated.
With the increase in preference on urban growth or ecological land and cultivated land
protection in the EAZ, the patch number of urban lands increases, the patch shape is
more irregular, and its spatial distribution is more fragmented. Further, the urban spatial
distribution under weak planning constraints is more concentrated than that under strong
planning constraints.

Table 4. Landscape index of different planning scenarios.

ZEAZ NP MPS PARA_MN ENN_MN AI

0 130 1031.6834 310.3234 202.342 98.3563
0.1 124 1081.3902 309.9919 203.5717 98.3664
0.2 112 1197.3471 281.6773 242.9079 98.3771
0.3 101 1326.1127 260.7926 267.2124 98.377
0.4 99 1354.608 266.4246 270.452 98.3699
0.5 94 1425.4162 241.3943 274.8021 98.3691
0.6 94 1424.8101 258.2396 265.5334 98.3561
0.7 96 1391.0121 269.231 275.8715 98.358
0.8 99 1354.4294 258.9014 276.8843 98.3501
0.9 104 1287.8022 286.3029 234.4195 98.3556
1 107 1251.6569 307.4349 224.5641 98.3379

Based on the spatial structure of three main urban areas (Wuchang, Hankou and
Hanyang) and six new city clusters (North, East, Southeast, South, Southwest and West) in
the WUDA determined by the master plan of Wuhan, we have made zoning statistics on
the simulation results of urban growth in the study area in 2025. Table 5 shows the area of
urban growth and its proportion in the UDZ across different regions under multi-scenarios.



Sustainability 2021, 13, 11279 16 of 21

With the increase in Z value in the EAZ, the proportion of urban growth in the UDZ
will decrease in 2025, from 100% to 68.24%, which clearly shows the impact of planning
constraints proposed in this paper on urban growth. In addition, we note that the South
and Southwest new city clusters show more obvious changes, while the Hanyang main
urban area has the least change. This shows that with the weakening of the impact of
planning constraints, the urban growth of the South and Southwest new city cluster is
more likely to exceed the UDZ preset in the urban spatial plans, while the urban growth of
Hanyang tends to occur in the UDZ.

Figure 8. Urban growth pattern under different planning-constrained scenarios.
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Table 5. Urban growth area and percent in the UDZ across different regions.

ZEAZ = 0 ZEAZ = 0.2 ZEAZ = 0.5 ZEAZ = 0.8 ZEAZ = 1.0
Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Wuchang 16.68 100.00 22.66 68.32 22.28 66.01 22.24 65.37 21.71 66.09
Hankou 2.80 100.00 3.53 76.28 3.76 71.14 3.79 69.20 3.79 70.06
Hanyang 8.48 100.00 9.07 89.06 8.73 88.91 8.69 87.98 8.47 88.19

North 40.69 100.00 35.71 91.79 36.78 79.56 36.88 74.82 38.39 71.78
East 45.32 100.00 44.26 79.18 43.06 70.30 42.24 67.63 41.10 67.14

Southeast 26.40 100.00 25.84 84.05 25.22 74.37 25.64 71.86 25.07 70.68
South 36.93 100.00 38.35 77.96 40.91 64.18 41.51 60.08 42.77 58.85

Southwest 38.20 100.00 37.01 78.34 36.39 66.88 37.49 61.94 37.22 61.09
West 44.80 100.00 43.88 85.16 43.18 79.18 41.82 78.21 41.79 77.51
Total 260.31 100.00 260.31 81.46 260.31 72.30 260.31 69.25 260.31 68.24

5. Discussion

CA-based models have been widely used to simulate urban growth and land-use
change in past decades. Although there are many practices of using technologically sophis-
ticated methods to construct the urban CA model, the incorporation of planning constraints
into modeling has not been adequately addressed so far. By combining the cell-based trade-
off between urban growth and conservation with a zoning-based planning implementation
mechanism, we proposed a new planning-constrained CA model to simulate urban growth
and encroachment under different planning scenarios and explore the potential influence
of integrated urban spatial planning on urban growth process. In comparison to the earlier
publications [15,26–28], our research incorporated the synthetical urban planning con-
straints into the CA model, so as to make the predicted future urban scenario closer to
reality and provide a useful evaluation tool for the urban planning implementation.

Taking the Wuhan Urban Development Area as a case study, the planning-constrained
CA model was applied to simulate the spatial pattern of urban growth from 2009 to 2017
and predict the urban scenarios under different planning constraints in 2025. We find that
a higher simulation accuracy can be achieved by considering planning constraints in the
simulation. When the ZEAZ value is 0.7, the accuracy of the model is the highest, which
indicates that the actual urban growth of the WUDA from 2009 to 2017 violates the urban
spatial planning to a certain extent and pays more attention to urban development than
ecological and agricultural protection. In future scenarios, with the weakening of planning
constraints, urban growth tends to occupy more ecological and agricultural land with high
conservation priority. With the increase in preference on urban growth or ecological land
and cultivated land protection in the EAZ, the spatial distribution of future urban land
becomes more fragmented. This shows that the planning constraint scheme proposed in
this paper can effectively guide urban compact development and protect the ecological
environment and food security. Furthermore, in the simulation process, the location and
quantity of new urban land beyond the planned urban development area can be captured,
which will provide certain early warning.

At present, the Chinese government and local governments are formulating a series
of new spatial planning policies, one of which is to optimize the regional spatial pattern. It
mainly includes the delineation of the three lines (ecological protection red line, permanent
basic farmland protection red line and urban expansion boundary line), as well as the
determination of planning zoning such as urban development area, rural development area,
ecological protection area and agricultural protection area. Policymakers are faced with
the problem of how to evaluate spatial planning policies and how to integrate ecological
priority into urban spatial planning [32,33]. The methods and models proposed in this
study can provide effective support.

However, there are several limitations in our work. First, the Markov model was used
to predict the quantity of future urban land in this study, neglecting the impact of different
policies and planning schemes, which should be addressed in further research. Second,
this study mainly considers the natural and socio-economic driving factors to construct the
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transformation rules of the urban CA model, ignoring the impact of people’s behaviors
and decisions. Future research needs to focus on multi-objective human decision-making
behaviors and their impact on the urban growth process. Finally, this study predicts the
spatial pattern of urban growth based on the 30 m grid, ignoring that the actual land
development process is based on the plot. Future research can consider building the
conversion rules of urban CA model based on the land-use plot, so as to produce more
accurate simulation results.

6. Conclusions

Spatial planning policies are important factors affecting urban development. How
urban growth is impacted by urban spatial planning policies needs to be understood in
order to better simulate the future urban patterns [28]. Many other publications have
made significant contributions to the urban CA model and application [18]. However, so
far, the scenario simulation considering the actual urban spatial planning policies has not
been adequately addressed, which weakens the ability of CA to provide insight into the
future urban spatial patterns and inform the sustainable development strategy [20]. In
this paper, we developed a planning-constrained CA model to simulate urban growth
and encroachment under different planning scenarios by integrating cellular automata
and actual urban spatial planning. In the planning-constrained CA model, a syntheti-
cal planning-constrained mechanism was proposed by combing the cell-based tradeoff
between urban growth potential and conservation priority with zoning-based planning
preference. By adjusting the preference parameters of different planning zones, multiple
planning-constrained scenarios can be generated. Taking the Wuhan Urban Development
Area as a case study, the planning-constrained CA model was applied to simulate current
(2017) and future (2025) urban scenarios. The main conclusions were:

1. The planning-constrained CA model demonstrated a higher simulation accuracy
compared to the model without planning constraints.

2. The simulation result of 2017 shows that a weak planning-constrained urban develop-
ment was consistent with the actual situation.

3. With the weakening of planning constraints, urban growth tends to occupy more
ecological and agricultural land with high conservation priority. With the increase in
preference on urban growth or ecological land and cultivated land protection in the
EAZ, the future urban land pattern becomes more fragmented.

4. Location and quantity of new urban land beyond the planned urban development area
can be captured in future urban scenarios, which will provide certain early warning.

The method proposed in this study can provide effective support for planners and
decisionmakers to evaluate the impact of actual urban spatial planning policies on urban
growth and generate urban future scenarios in which urban development and natural
protection are coordinated, so as to realize the urban sustainable development.

Author Contributions: Conceptualization, H.W. and Y.L.; methodology, H.W.; software, H.W. and
Y.W.; formal analysis, H.W.; data curation, H.W. and J.Z.; writing—original draft preparation, H.W.;
writing—review and editing, H.W. and Y.L.; visualization, H.W. and G.Z.; All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program (Grant
No: 2017YFB0503505).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2021, 13, 11279 19 of 21

References
1. Bai, X.; Shi, P.; Liu, Y. Society: Realizing China’s urban dream. Nature 2014, 509, 158–160. [CrossRef]
2. Mcphearson, T. Scientists must have a say in the future of cities. Nature 2016, 538, 165–166. [CrossRef]
3. Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-scenario simulation of urban land change in Shanghai by random forest and

CA-Markov model. Sustain. Cities Soc. 2020, 55, 102045. [CrossRef]
4. Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon

pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [CrossRef]
5. Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities.

Science 2008, 319, 756–760. [CrossRef]
6. Grêt-Regamey, A.; Altwegg, J.; Sirén, E.A.; van Strien, M.J.; Weibel, B. Integrating ecosystem services into spatial planning—A

spatial decision support tool. Landsc. Urban Plan. 2017, 165, 206–219. [CrossRef]
7. Li, Y.; Ma, Q.; Song, Y.; Han, H. Bringing conservation priorities into urban growth simulation: An integrated model and applied

case study of Hangzhou, China. Resour. Conserv. Recycl. 2019, 140, 324–337. [CrossRef]
8. McCormick, K.; Anderberg, S.; Coenen, L.; Neij, L. Advancing sustainable urban transformation. J. Clean. Prod. 2013, 50, 1–11.

[CrossRef]
9. Godwin, C.; Chen, G.; Singh, K.K. The impact of urban residential development patterns on forest carbon density: An integration

of LiDAR, aerial photography and field mensuration. Landsc. Urban Plan. 2015, 136, 97–109. [CrossRef]
10. Haberl, H. Competition for land: A sociometabolic perspective. Ecol. Econ. 2015, 119, 424–431. [CrossRef]
11. Ke, X.; van Vliet, J.; Zhou, T.; Verburg, P.H.; Zheng, W.; Liu, X. Direct and indirect loss of natural habitat due to built-up area

expansion: A model-based analysis for the city of Wuhan, China. Land Use Policy 2018, 74, 231–239. [CrossRef]
12. He, J.; Liu, Y.; Yu, Y.; Tang, W.; Xiang, W.; Liu, D. A counterfactual scenario simulation approach for assessing the impact of

farmland preservation policies on urban sprawl and food security in a major grain-producing area of China. Appl. Geogr. 2013, 37,
127–138. [CrossRef]

13. Zhang, Y.; Liu, Y.; Zhang, Y.; Kong, X.; Jing, Y.; Cai, E.; Zhang, L.; Liu, Y.; Wang, Z.; Liu, Y. Spatial Patterns and Driving Forces
of Conflicts among the Three Land Management Red Lines in China: A Case Study of the Wuhan Urban Development Area.
Sustainability 2019, 11, 2025. [CrossRef]

14. Long, Y.; Han, H.; Tu, Y.; Shu, X. Evaluating the effectiveness of urban growth boundaries using human mobility and activity
records. Cities 2015, 46, 76–84. [CrossRef]

15. Tong, X.; Feng, Y. How current and future urban patterns respond to urban planning? An integrated cellular automata modeling
approach. Cities 2019, 92, 247–260. [CrossRef]

16. Li, X.; Lao, C.; Liu, Y.; Liu, X.; Chen, Y.; Li, S.; Ai, B.; He, Z. Early warning of illegal development for protected areas by integrating
cellular automata with neural networks. J. Environ. Manag. 2013, 130, 106–116. [CrossRef]

17. Tobler, W.R. Cellular Geography. In Philosophy in Geography; Gale, S., Olsson, G., Eds.; Springer: Dordrecht, The Netherlands,
1979; pp. 379–386. [CrossRef]

18. Liu, Y.; Batty, M.; Wang, S.; Corcoran, J. Modelling urban change with cellular automata: Contemporary issues and future research
directions. Prog. Hum. Geogr. 2021, 45, 3–24. [CrossRef]
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