Integrated Deep Renovation of Existing Buildings with Prefabricated Shell Exoskeleton
Abstract
:1. Introduction and Research Motivation
2. AdESA System: An Anti-Seismic, Eco-Efficient Wooden Shell
2.1. Structural Layer
2.2. Energy Layer
2.3. Architectural Layer
3. Application to a Real Case Study
3.1. Existing Building Performances in the As-Is Condition
3.2. Design of the Holistic Retrofit Intervention
3.2.1. Structural Intervention
3.2.2. Improvement of Energy Efficiency
3.2.3. Architectural Intervention
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
- ο
- University of Bergamo—energy group: G. Franchini
- ο
- University of Brescia—structure group: M. Preti, V. Bolis;—architecture group: B. Badiani, M. Botti, M. Battisti, A. Soci, R. Marmori, eng. A. Ghirardi, M. Flandina
- ο
- MARLEGNO S.r.l.: S. Carminati, K. Trovenzi
- ο
- EDILMATIC S.r.l.: F. Luitprandi, F. Magnani, R. Bonini
- ο
- HARPACEAS S.r.l.: P. Odorizzi, A. Alli, O. Mariani, G. Svaluto
- ο
- COMUNE DI BRESCIA: M. Azzini, C. Lazzaroni, A. Caporali
Conflicts of Interest
References
- European Commission. The European Construction Sector: A Global Partner. March 2016 G.U. 6/11/2017–Gazzetta Ufficiale Della Repubblica Italiana 6/11/2017. Piano D’azione Nazionale Sul Green Public Procurement (PANGPP). Criteri Ambientali Minimi per L’affidamento di Servizi di Progettazione e Lavori Per la Nuova Costruzione, Ristrutturazione e Manutenzione di Edifici Pubblici. 2016. Available online: https://www.gazzettaufficiale.it/eli/id/2017/11/06/17A07439/sg (accessed on 11 October 2021).
- Marini, A.; Negro, P.; Passoni, C.; Riva, P.; Romano, E.; Taucer, F. Technology Options for Earthquake Resistant, Eco-Efficient Buildings in Europe: Research Needs; JRC Report EUR 26497 EN.; Report EUR 26497 EN. JRC87425; Publications Office of the European Union: Luxembourg, 2014; ISBN 978-92-79-35424-3. [Google Scholar] [CrossRef]
- Vitali Roscini, A.; Rapf, O.; Kockat, J. On the Way to a CLIMATE-NEUTRAL EUROPE. Contributions from the Building Sector to a Strengthened 2030 Climate Target; BPIE Report. Brussels, Belgium, 2020. Available online: https://www.bpie.eu/wp-content/uploads/2020/12/On-the-way-to-a-climate-neutral-Europe-_Final.pdf (accessed on 11 October 2021).
- Gantner, J.; Wittstock, B.; Lenz, K.; Fischer, M.; Sedlbauer, K. EeBGuide Guidance Document–Part B: Buildings. Operational Guidance for Life Cycle Assessment Studies of the Energy Efficient Building Initiative, FRAUNHOFER. 2012. Available online: https://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-3500005.pdf (accessed on 11 October 2021).
- Belleri, A.; Marini, A. Does seismic risk affect the environmental impact of existing buildings? Energy Build. 2016, 110, 149–158. [Google Scholar] [CrossRef]
- Caverzan, A.; Lamperti Tornaghi, M.; Negro, P. Proceedings of SAFESUST Workshop: A Roadmap for the Improvement of Earthquake Resistance and Eco-Efficiency of Existing Buildings and Cities; Publications Office of the European Union: Luxembourg, 2016; ISBN 978-92-79-62618-0. [Google Scholar] [CrossRef]
- UNEP/SETAC, Greening the Economy through Life Cycle Thinking. 2012. Available online: https://www.lifecycleinitiative.org/wp-content/uploads/2013/03/2012_LCI_10_years_28.3.13.pdf (accessed on 11 October 2021).
- EN 15978:2011. Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method; CEN: Belgium, Brussels, 2011. [Google Scholar]
- Passoni, C.; Marini, A.; Belleri, A.; Menna, C. Redefining the concept of sustainable renovation of buildings: State of the art and an LCT-based design framework. Sustain. Cities Soc. 2021, 64, 102519. [Google Scholar] [CrossRef]
- Dodd, N.; Donatello, S.; Cordella, M. Level(s)–A Common EU Framework of Core Sustainability Indicators for Office and Residential Buildings, User Manual 1: Introduction to the Level(s) Common Framework (Publication Version 1.1). 2021. Available online: https://susproc.jrc.ec.europa.eu/product-bureau/sites/default/files/2020-10/20201013%20New%20Level(s)%20documentation_1%20Introduction_Publication%20v1-0.pdf (accessed on 11 October 2021).
- COMMISSION OF THE EUROPEAN COMMUNITIES, COM(2003)302. Communication EU Integrated Product Policy—Building on Environmental Life-Cycle Thinking. 2003. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2003:0302:FIN:en:PDF (accessed on 11 October 2021).
- BPIE (Building Performance Institute Europe). Europe’s Buildings under the Microscope: A Country-by-Country Review of the Energy Performance of the Buildings, Brussel, 2011. Available online: http://www.bpie.eu (accessed on 11 October 2021).
- La Greca, P.; Margani, G. Seismic and energy renovation measures for sustainable cities: A critical analysis of the Italian scenario. Sustainability 2018, 10, 254. [Google Scholar] [CrossRef] [Green Version]
- NTC. Aggiornamento Dell “Norme Tecniche Per le Costruzioni”. D.M. 17 Gennaio 2018. Available online: https://www.gazzettaufficiale.it/eli/gu/2018/02/20/42/so/8/sg/pdf (accessed on 11 October 2021).
- DPR 412/93-DPR n 412 Del 26/8/1993 e Successivi Aggiornamenti Fino al 31/10/2009–“Regolamento Recante Norme Per la Progettazione, L’installazione, L’esercizio e la Manutenzione Degli Impianti Termici Degli Edifici ai Fini del Contenimento Dei Consumi di Energia, in Attuazione Dell’Art. 4, Comma 4, Della L. 9 Gennaio 1991, n.10”. Available online: https://www.bosettiegatti.eu/info/norme/statali/1993_0412.htm (accessed on 11 October 2021).
- AdESA (Adeguamento Energetico Sismico ed Architettonico). Caso Studio Palestra Della Scuola Primaria “Don Milani”, Traversa IV–Villaggio Badia n.12; Final Report. Project ID n. 379259; Smart Living Project; Regione Lombardia: Brescia, Italy, 2019. [Google Scholar]
- Green Tech Cluster Styria GmbH. Leading Technologies from the Green Tech Cluster, Austria. 2017. Available online: www.greentech.at (accessed on 11 October 2021).
- Sustersic, I.; Dujic, B. Seismic strengthening of existing concrete and masonry buildings with crosslam timber panels. In Materials and Joints in Timber Structures; Aicher, S., Reinhardt, H.W., Garrecht, H., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 9. [Google Scholar] [CrossRef]
- Della Mora, T.; Righi, A.; Peron, F.; Romagnoni, P. Functional, energy and seismic retrofitting in existing building: An innovative system based on xlam technology. Energy Procedia 2015, 82, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Cassol, D.; Giongo, I.; Piazza, M. Numerical Study on Seismic Retrofit of URM Walls Using Timber Panels. In Proceedings of the 8 th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Athens, Greece, 27 June 2021. [Google Scholar]
- Passoni, C.; Guo, J.; Christopoulos, C.; Marini, A.; Riva, P. Design of dissipative and elastic high-strength exoskeleton solutions for sustainable seismic upgrades of existing RC buildings. Eng. Struct. 2020, 221, 111057. [Google Scholar] [CrossRef]
- Labò, S..; Passoni, C.; Marini, A.; Belleri, A. Design of diagrid exoskeletons for the retrofit of existing RC buildings. Eng. Struct. 2020, 220, 110899. [Google Scholar] [CrossRef]
- Manfredi, V.; Masi, A. Seismic strengthening and energy efficiency: Towards and integrated approach for the rehabilitation of existing RC buildings. Buildings 2018, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Di Lorenzo, G.; Colacurcio, E.; Di Filippo, A.; Formisano, A.; Massimilla, A.; Landolfo, R. State-of-the-art on steel exoskeletons for seismic retrofit of existing RC buildings. Ing. Sismica 2020, 37, 50. [Google Scholar]
- Reggio, A.; Restuccia, L.; Menardi, A.; Corrado, V.; Ferro, G.A. Integrated, sustainable, low-impact retrofitting through exoskeleton structures: A case study. In Proceedings of the XVIII CONVEGNO ANIDIS, Ascoli Piceno, Italy, 15–19 September 2019. [Google Scholar]
- Takeuchi, T.; Yasuda, K.; Iwata, M. Seismic retrofitting using energy dissipation façades. In Proceedings of the ATC & SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures, San Francisco, CA, USA, 9–11 December 2009; pp. 1000–1009. [Google Scholar]
- Marini, A.; Passoni, C.; Belleri, A.; Feroldi, F.; Preti, M.; Metelli, G.; Giuriani, E.; Riva, P.; Plizzari, G. Combining seismic retrofit with energy refurbishment for the sustainable renovation of RC buildings: A proof of concept. Eur. J. Environ. Civ. Eng. 2017. [Google Scholar] [CrossRef]
- Marini, A.; Belleri, A.; Passoni, C.; Feroldi, F.; Giuriani, E. In-plane capacity of existing Post-WWII beam-and-block floor systems. Bull. Earthq. Eng. 2021. submitted. [Google Scholar]
- Giuriani, E.; Marini, A. Wooden roof box structure for the anti-seismic strengthening of historic buildings. Int. J. Archit. Herit. 2008, 2, 226–246. [Google Scholar] [CrossRef]
- Carattin, E.; Franz, M.; Luciano, S. Materiali Isolanti—Nuove Tendenze in Architettura. IUAV Venezia, 2008. Available online: http://www.iuav.it/SISTEMA-DE/Archivio-d/approfondi/materiali-/Materiali_Isolanti.pdf (accessed on 11 October 2021).
- Biswas, K.; Patel, T.; Shrestha, S.; Smith, D.; Desjarlais, A. Whole building retrofit using vacuum insulation panels and energy performance analysis. Energy Build. 2019, 203, 109430. [Google Scholar] [CrossRef]
- Ruben, B.; Jelle, B.P.; Gustavsen, A. Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 2011, 43, 761–769. [Google Scholar]
- Abate, M. Strategies for the Architectural Redevelopment of the Built Environment with Anti-Seismic Structural Enclosure and for Energy Retrofitting. Master Thesis, Università degli Studi di Brescia, Brescia, Italy, 2019. Supervisors: Barbara Angi, Alessandra Marini. [Google Scholar]
- MidasGen 2020 v.1.1. Copyright © SINCE 1989 MIDAS Information Technology Co., Ltd. Available online: https://www.cspfea.net/prodotti/midas-gen/ (accessed on 11 October 2021).
- Belleri, A.; Cornali, F.; Passoni, C.; Marini, A.; Riva, P. Evaluation of out-of-plane seismic performance of column-to-column precast concrete cladding panels in one-storey industrial buildings. Earthq. Eng. Struct. Dyn. 2017, 47, 397–417. [Google Scholar] [CrossRef]
- McDowell, T.; Bradley, D.E.; Hiller, M.; Lam, J.; Merk, J.; Keilholz, W. TRNSYS 18: The Continued Evolution of the Software. In Proceedings of the 15th IBPSA Conference, San Francisco, CA, USA, 7–9 August 2017. [Google Scholar]
- Murray, M.C.; Finlayson, N.; Kummert, M.; Macbeth, J. Live Energy TRNSYS–TRNSYS Simulation within Google SketchUp; Eleventh International IBPSA Conference: Glasgow, Scotland, 2009; pp. 1389–1396. [Google Scholar]
- Remund, J.; Müller, S.; Kunz, S.; Schilter, C. Meteonorm Handbook Part. II: Theory. 2012. Available online: https://www.energiehaus.es/wp-content/uploads/2015/06/manual-usuario-part-2-meteonorm.pdf (accessed on 11 October 2021).
- Gelfi, P.; Giuriani, E.; Marini, A. Stud Shear Connection Design for Composite Concrete Slab and Wood Beams. J. Struct. Eng. 2002, 128, 1544–1550. [Google Scholar] [CrossRef]
- Iervolino, I.; Galasso, C.; Cosenza, E. REXEL: Computer aided record selection for codebased seismic structural analysis. Bull. Earthq. Eng. 2010, 8, 339–362. [Google Scholar] [CrossRef]
- D.d.u.o. 12 gennaio 2017-n. 176-Aggiornamento Delle Disposizioni in Merito Alla Disciplina Per L’efficienza Energetica Degli Edifici e al Relativo Attestato Di Prestazione Energetica in Sostituzione Delle Disposizioni Approvate Con i Decreti n. 6480/2015 e n. 224/2016. Available online: https://www.anit.it/norma/regione-lombardia-testo-unico-sullefficienza-energetica-degli-edifici/ (accessed on 11 October 2021).
- Decreto Legislativo, n. 102 del 04/07/2014. Available online: http://www.energia.provincia.tn.it/binary/pat_agenzia_energia/DLgs%20102-2014%20aggiornato%20al%20DLgs%20141-2016.pdf (accessed on 11 October 2021).
- Angi, B. (Ed.) Eutopia Urbanscape; Lettera Ventidue: Siracusa, Italy, 2016; ISBN 9788862421904. [Google Scholar]
North and South Facades Retrofit | Element Typology | Finite Element Modeling | Description |
Steel Frames | Hollow square profiles and plates in mild steel S355 | Elastic beam elements | The steel frames located around the ribbon windows are modeled as 1-dimension elastic beam elements pinned to the RC curbs |
CLT panels | 100 mm X-LAM structural panels | Plane stress elements | These elements are modeled as 2D plane stress elements fixed to adjacent steel elements |
“Over-resistant” connections | Steel studs in S355 | Spring general links | The “over-resistant” connections used to link the shell exoskeleton to the existing building, to the roof and to the foundation system are modeled as elasto-plastic spring general links, described in terms of strength and stiffness |
“Dissipative” connections | Steel plates in mild steel S275 | Elasto-plastic beam elements | The “dissipative” connections between elements of the exoskeleton are modeled as an array of elasto-plastic beam elements able to dissipate the seismic energy introduced by yielding, limiting the maximum shear forces |
East and West Facades Retrofit | Element Typology | Finite Element Modeling | Description |
Mechanical connections between RC cladding panels | 10 mm plates in mild steel S355 | Spring general links | These mechanical connections are modeled as elastic springs, described only in terms of stiffness |
“Dissipative” studs between steel plates and RC cladding panels | Steel studs in S355 | Spring general links | The dissipative studs used to connect the steel plates to the RC cladding panels are modeled using elasto-plastic spring general links |
“Over-resistant” connections | Steel studs in S355 | Spring general links | The “over-resistant” connections used to link the RC cladding panels to the new roof diaphragm and to the existing base RC slab are modeled as elasto-plastic spring general links, described in terms of strength and stiffness |
Roof Retrofit | Element Typology | Finite Element Modeling | Description |
Wooden shear panels and L-shaped steel longitudinal profiles | 30 mm thick structural plywood panels and L-shape steel profile in mild steel S355 | Rigid diaphragm | The new roof diaphragm is modeled as a rigid diaphragm |
“Over-resistant” connections | Steel studs in S355 | Spring general links | The “over-resistant” connections used to link the new roof diaphragm to the new exoskeleton (North/south) and to the RC cladding panels (East/West) are modeled as elasto-plastic spring general links, described in terms of strength and stiffness |
Max Drift [%] | Plastic Hinge Activation | |
---|---|---|
Transversal short walls (North and South) | 0.36 | Plasticization of dissipative connections, elastic behavior of steel frames and CLT panels |
Longitudinal long walls (East and West) | 0.12 | Plasticization of dissipative connections and the activation of rocking at the base of panels with limited displacement |
Existing Structure | 0.48 | Limited plasticization in pillars |
Insulation System | Transmittance [W/m2K] | MaxTransmittance [W/m2K] | |
---|---|---|---|
Transversal short walls (North and South) | CLT 10 cm + EPS 8 cm | 0.24 | 0.28 |
Longitudinal long walls (East and West) | EPS 10 cm | 0.25 | 0.28 |
Roof | Plywood 3 cm + PIR 10 cm | 0.23 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanni, J.; Cademartori, S.; Marini, A.; Belleri, A.; Passoni, C.; Giuriani, E.; Riva, P.; Angi, B.; Brumana, G.; Marchetti, A.L. Integrated Deep Renovation of Existing Buildings with Prefabricated Shell Exoskeleton. Sustainability 2021, 13, 11287. https://doi.org/10.3390/su132011287
Zanni J, Cademartori S, Marini A, Belleri A, Passoni C, Giuriani E, Riva P, Angi B, Brumana G, Marchetti AL. Integrated Deep Renovation of Existing Buildings with Prefabricated Shell Exoskeleton. Sustainability. 2021; 13(20):11287. https://doi.org/10.3390/su132011287
Chicago/Turabian StyleZanni, Jacopo, Stefano Cademartori, Alessandra Marini, Andrea Belleri, Chiara Passoni, Ezio Giuriani, Paolo Riva, Barbara Angi, Giovanni Brumana, and Angelo Luigi Marchetti. 2021. "Integrated Deep Renovation of Existing Buildings with Prefabricated Shell Exoskeleton" Sustainability 13, no. 20: 11287. https://doi.org/10.3390/su132011287
APA StyleZanni, J., Cademartori, S., Marini, A., Belleri, A., Passoni, C., Giuriani, E., Riva, P., Angi, B., Brumana, G., & Marchetti, A. L. (2021). Integrated Deep Renovation of Existing Buildings with Prefabricated Shell Exoskeleton. Sustainability, 13(20), 11287. https://doi.org/10.3390/su132011287