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Abstract: Autonomous vehicles and advanced driver assistance systems are predicted to provide
higher safety and reduce fuel and energy consumption and road traffic emissions. Lane detection
and tracking are the advanced key features of the advanced driver assistance system. Lane detection
is the process of detecting white lines on the roads. Lane tracking is the process of assisting the
vehicle to remain in the desired path, and it controls the motion model by using previously detected
lane markers. There are limited studies in the literature that provide state-of-art findings in this
area. This study reviews previous studies on lane detection and tracking algorithms by performing a
comparative qualitative analysis of algorithms to identify gaps in knowledge. It also summarizes
some of the key data sets used for testing algorithms and metrics used to evaluate the algorithms.
It is found that complex road geometries such as clothoid roads are less investigated, with many
studies focused on straight roads. The complexity of lane detection and tracking is compounded
by the challenging weather conditions, vision (camera) quality, unclear line-markings and unpaved
roads. Further, occlusion due to overtaking vehicles, high-speed and high illumination effects also
pose a challenge. The majority of the studies have used custom based data sets for model testing.
As this field continues to grow, especially with the development of fully autonomous vehicles in
the near future, it is expected that in future, more reliable and robust lane detection and tracking
algorithms will be developed and tested with real-time data sets.

Keywords: lane detection; lane tracking system; sensors; advanced driver assistance system (ADAS);
lane departure warning system

1. Introduction

Autonomous passenger vehicles are a direct implementation of transportation-related
autonomous robotics research. They are also known as self-driving vehicles or driverless
vehicles. Shakey the robot (1966–1972) is the first autonomous mobile robot that has been
documented [1]. It was developed by Stanford Research Institute’s Artificial Intelligence
Centre and was capable of detecting the environment, thinking, planning, and navigation.
In basic settings, vision-based lane tracking and obstacle avoidance sparked interest in au-
tonomous vehicles [2]. In the early 1990s, The Royal Armament Research and Development
Establishment in the United Kingdom created two vehicles for obstacle-free navigation on
and off the road [3]. In the United States, the first operations of autonomous driving in
realistic settings dates back to Carnegie Mellon University’s NavLab in the early 1990s [4].
The vehicle developed by NavLab was operated at very low speeds due to the limited
computational power available at the time. Early US research projects also included the
California PATH project, which developed the automated highway [5]. Vehicle steering
was automated with manual longitudinal control in the “No Hands Across America”
project [6]. In early 2000, CyberCars, one of several European projects began developing
technologies based on automated transport [7]. The announcement of the defence advanced
research projects agency (DARPA) grand challenge in 2003 generated research interest in
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autonomous cars. Following that, in 2006, the DARPA urban challenge was performed in
a controlled situation with a variety of autonomous and human-operated vehicles. Since
then, many manufactures, including Audi, BMW, Bosch, Ford, GM, Lexus, Mercedes,
Nissan, Tesla, Volkswagen, Volvo and Google, have launched self-driving vehicle projects
in collaboration with universities [8]. Google’s self-driving car has experimented and
travelled 500 thousand kilometres and has begun building prototypes of its own cars [9]. A
completely autonomous vehicle would be expected to drive to a chosen location without
any expectation of shared control with the driver, including safety-critical tasks.

The performance of lane detection and tracking depends on the well-developed roads
and their lane markings, so smart cities are also a prominent factor in autonomous vehicle
research. The idea of a smart city is often linked with an eco-city or a sustainable city,
both of which seek to enhance the quality of municipal services while lowering their costs.
Smart cities’ primary goal is to balance technological innovation with the economic, social,
and environmental problems that tomorrow’s cities face. The greater closeness between
government and people is required in smart cities that embrace the circular economy’s
concepts [10]. The way materials and goods flow around people and their demands will
alter, as will the structure of cities. Several car manufacturers such as Tesla and Audi
have already launched autonomous vehicle marketing for private use. Soon, society
will be influenced by autonomous vehicles’ spread to urban transport systems [11]. The
development of smart cities with the introduction of connected and autonomous vehicles
could potentially transform cities and guide long-term urban planning [10].

Autonomous vehicles and Advanced Driver Assistance Systems (ADAS) are predicted
to provide a higher degree of safety and reduce fuel and energy consumption and road
traffic emissions. ADAS is implemented for safe and efficient driving, which has many
driver assistance features such as warning drivers about forwarding collision warning or
safe lane change [12]. Research shows that most accidents occur because of driver errors,
and the ADAS can reduce the accidents and workload of the driver. If there is a likelihood
of an accident, ADAS can take the necessary action to avoid it [13]. Lane departure warning
(LDW), which utilizes lane detection and tracking algorithms, is an essential feature of the
ADAS. The LDW warns the driver when a vehicle crosses white lane lines unintentionally
and controls the vehicle by bringing it back into the desired safe path. Three types of
approaches for lane detection are usually discussed in the existing literature: learning-
based approach, features-based approach, and model-based approach [13–18] (detailed
analysis are presented in Section 3.2). Many challenges and issues have been highlighted
in the literature regarding the LDW systems, such as visibility conditions change, variation
in images, and lane appearance diversity [17]. Since different countries have used various
lane markers, there is a challenge for lane detection and tracking to solve the problems.

1.1. Objectives and Scope of the Study

There are limited studies that provide state-of-art lane detection and tracking al-
gorithms for ADAS. This review paper aims to comprehensively review the previous
literature on lane detection and tracking for ADAS and identify gaps in knowledge for
future research. The report compares different lane detection and tracking algorithms and
analyses different datasets used to verify the algorithms and metrics used to evaluate the
algorithms. Specifically, the review identifies and classifies the existing lane detection and
tracking algorithms under three themes: features-based, learning-based and model-based,
which provides a systematic approach towards understanding the key characteristics of
lane detection and tracking algorithms in the literature. Some patented works by vehicle
manufacturers under these three categories are also reviewed to acknowledge growing
commercialisation interests in this field of study. However, given the large number of
patents by educational institutions, research groups and vehicle manufacturers, a detailed
review of patented works is outside the scope of this study. This systematic review is
expected to assist researchers working in this area by delivering current advancements
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made in lane detection and tracking for ADAS and the challenges to overcome in the future
for robust lane detection and tracking systems.

The structure of the paper is as follows. Section 2 provides an overview of the
methodology adopted for the literature review. It is then followed by a detailed literature
review that includes a brief introduction to sensors used in the ADAS, an analysis of
the existing literature on lane detection and tracking algorithms. Section 4 presents the
discussions followed by conclusions in Section 5.

2. Methodology

Literature was gathered from the electronic database. The database included “ISI Web
of Science”, “Science Direct” “Scopus” “Google Scholar” and “IEEE Xplore”. The keywords
used for the search were “Lane detection algorithms”, “Lane tracking algorithms”, “Lane
departure warning algorithms”, “Advanced driver assistance system”, “Lane change
tracking”, “Vehicle tracking”, Vehicle tracking sensors”, and “Automated lane change” or
a combination of these words (Figure 1). We also searched for patented works. Patents
published from 2006 to 2020 were also searched using the term “Lane detection and
tracking,” “Lane departure warning,” and “Advance driver assistance system” using the
“Google scholar” and “PubMed”. As mentioned in Section 1.1, the objective of patents
search is to acknowledge growing commercialisation interests in this field of study rather
than a detailed review of the patented works. As such, only a sample of patents works from
vehicle manufacturers was discussed. The period studied for the literature is the past two
decades, as lane tracking and detection is an emerging field that has gained momentum
post-2000. English language-based publications were only considered for the review as they
are widely accessible to global readers. Relevant publications further improved the search
procedure in the reference lists available in the collected literature. The lane detection and
tracking algorithms were investigated under three approaches that have been commonly
referred to in the literature (Features based, learning-based and model-based as shown in
Figure 1). The existing databases were analyzed to identify the availability of datasets for
future research. The lane detection criteria, calculation of the detection rate and accuracy
of the algorithms that have been adopted in the literature are also reviewed.
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Figure 1. Flowchart showing the methodology adopted for the review.

3. Literature Review

A comparison of the different sensors used in ADAS is presented first. It is then
followed up with an in-depth review of algorithms used for lane detection and tracking,
including the patented works.
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3.1. Sensors Used in the ADAS

ADAS deploy different sensors fusion systems to guide the vehicle (Figure 2). In the
literature, three types of sensors have been identified that are used in the ADAS, which are,
Light Amplification by Stimulated Emission of Radiation (LASER) based sensors, Radio
Detection And Ranging (RADAR) based sensors and vision-based sensors as described
below. Table 1 shows the Strengths, Weaknesses, Opportunities, and Threats (SWOT)
analysis of LASER, RADAR and vision-based sensors.se

Table 1. SWOT analysis of sensors that are used in ADAS.

Type of
Sensors

Relative
Velocity

Measured
Distance Strengths Weaknesses Application Opportunities Threats Perceived

Energy
Recognizing

Vehicle

LASER
based

sensors

Derivative
of range

Time of
flight

Reliable for
automatic car
parking and

collision
mitigation

Vulnerable to
dirty lenses and
reflecting target

reduced.

Collision
warning,
assistant

automatic
parking

Gives
warning for

excessive
load or
strain.

Failure due to
inclement
weather

600–1000
emitted laser

waves
(Nanome-

ters)

Resolved
via spatial
segmenta-
tion and
motion

RADAR
based

sensors
Frequency Time of

flight

Suitable for
collision

mitigation and
adaptive

Vulnerable and
sometimes fails

for extreme
weather

condition

Collision
warning,
assistant

automatic
parking

Better
accuracy

and required
no attention

Inappropriate
and difficult to

implementa-
tion by

non-
professional

Emitted
radio single

wave
(Millimeter)

Resolved
via tracking

Vision
based

sensors

Derivative
of range

Model
parameter

Readily
available and
affordable in

the automobile
sector

Vulnerable to
extreme weather
conditions and
sometimes fails
to work in the

night time.

Collision
warning,
assistant

automatic
parking.

Low cost,
passive

non-invasive
sensors and

low
operating

power.

Less effective
for bad

weather, for
complex

illumination
and shadow

Ambient
visible light

Resolved
via motion

and
appearance

3.1.1. LASER Based Sensors

Laser scanner and Light detection and ranging (LIDAR) is the common laser-based
sensors. In this technology, the transmitter and receiver are placed, and the impulse light
of electromagnetic waves are recorded through it. Infrared near about (800–950 nm) and
ultraviolet above (1500 nm) wavelength of the electromagnetic spectrum are used [19].
By estimating the time of flight, the distance between the transmitter and the receiver
is calculated. It may not be possible to derive the direct relative velocity of the moving
object, so it is obtained by taking the derivative of ranges with respect to time. These
types of sensors are used for multiple target tracking. The drawbacks of these sensors
are vulnerability to dirty lenses and the inadequacy of the reflecting target. Besides, for
weather conditions, these sensors may be too sensitive. These types of sensors are reliable
for automatic car parking and collision mitigation [19,20].

3.1.2. RADAR Based Sensors

RADAR sensors can detect the images in haze, dust, rain, and snow up to 200 m
ahead. Through the radar detection and ranging process, these sensors emit strong radio
waves through the transmitter and receive them back through the receiver, similar to
laser-based sensors. The distance between sensors and objects is calculated by the time
of flight. Another advantage is that frequency between emitted and Doppler echo can be
calculated, which provides the object’s velocity. To map movements of aircraft, these kinds
of sensors are often used in aviation and defence manufacturing sectors. In the automobile
sector, two types of sensors are used: long-range sensors, which range between 77–81 GHz
spectrum and short-range sensors that range between 21.65–26.65 GHz. In extreme weather
conditions, these sensors are very vulnerable and sometimes fail to work. These kinds of
sensors are used for collision mitigation and adaptive cruise control [19,20].

3.1.3. Vision-Based Sensors

These types of sensors come under the passive sensors category, which means they do
not emit any waves. To assess the presence, orientation and accuracy of the surrounding
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objects, vision sensors use images. Vision sensors use a mixture of image acquisition and
image processing, and multi-point inspection is carried out using a single sensor. Two
types of sensors are used in a vision-based system, the first is a monocular camera, and
the second is a stereo vision camera. These sensors do not directly derive the range and
velocity of the objects, and as such, a sophisticated signal procedure is used to derive these
parameters. These sensors are readily available and affordable in the automobile sector.
For traffic signal analysis and lane change assistance, these kinds of sensors are applicable.
The main drawback is vulnerabilty to extreme weather conditions and sometimes failing
to work at nighttime [19,20].
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3.2. Lane Detection and Tracking Algorithms

In this section, we have conducted a comparison and analysis of algorithms in three
different categories according to approaches used: features-based approach, model-based
and learning-based approach.

The feature-based approach uses edges and local visual characteristics of interest, such
as gradient, colour, brightness, texture, orientation, and variations, which are relatively in-
sensitive to road shapes but sensitive to illumination effects. The model-based approaches
apply global road models to fit low levels of features that are more robust against illumina-
tion effects, but they are sensitive to road shapes [13,14]. The geometrics parameters are
used in the model-based approach for lane detection [16–18]. The learning-based approach
consists of two stages: training and classification. The training process uses previously
known errors and system properties to construct a model, e.g., program variables. In
addition, the classification phase applies the training model to the user set of properties
and outputs that are more likely to be correlated with the error ordered by their probability
of fault discloser [19]. In the following sections, we describe the three approaches used in
the literature in detail. It is then followed up by summary tables (Tables 2–5) that present
the key features of these algorithms and strengths, weaknesses, and future prospects.

3.2.1. Features-Based Approach (Image and Sensor-Based Lane Detection and Tracking)

Image and sensor-based lane detection and tracking decision-making processes are
dependent on the sensors attached to the vehicle and the camera output. In this approach,
the image frames are pre-processed, and a lane detection algorithm is applied to determine
lane tracking. The sensor values are used to further decide on the path to be followed by
the lane markings [22,23].

Kuo et al. [24] implemented a vision-based lane-keeping system. The proposed
system obtains the vehicle position following the lane and controls the vehicle to be in



Sustainability 2021, 13, 11417 6 of 29

the desired path. The steps involved in the lane-keeping system are inverse perspective
mapping, detection of lane scope features and reconstruction of the lane markings. The
main drawback of the system is that the performance is reduced when the vehicle is driving
in a tunnel.

Kang et al. [25] proposed a kinematic-based fault-tolerant mechanism to detect the
lane even if the camera cannot provide the road image due to malfunction or environmental
constraints. In the absence of camera input, the lane is predicted using the kinematic model
by taking the parameters such as the length and speed of the vehicle. The camera input is
given as a clothoid cubic polynomial curve road model. In the absence of camera input, the
lane coefficients of the clothoid model will be available. A lane restoration scheme is used to
overcome this loss based on a multi-rate state estimator obtained from the kinematic lateral
motion model in the clothoid function. The predicted lane is based on the past curvature
rate and road curvature. The results show that the proposed method can maintain the lane
for 3 s without camera input. The developed algorithm was simulated using CARSIM and
Simulink. It has been tested in a test vehicle equipped with an Auto Box from dSPACE in
Tucson from HYUNDAI Motors.

Borkar et al. [26] proposed a lane detection and tracking method using inverse projec-
tive mapping (IPM) to create a bird’s-eye view of the road; a Hough transform for detecting
candidate lane and Kalman filter track the lane. The road image is converted to grayscale
form followed by temporal blurring. The application of IPM makes the image provide a
bird’s eye view. The lanes are detected by identifying the pair of parallel lines which are
separated by a distance. The IPM images are converted to binary, and a Hough transform is
performed on the binary image and then divided into two halves. To determine the center
of the line, the one-dimensional matched filter is applied to each sample. The pixel with a
large correlation that exceeds the threshold is selected as the center of the lane. The Kalman
filter is used to track the lane, which takes the lane orientation and difference between the
current and previous frames. A firewire camera is used to capture the image of the road.
The performance of the proposed algorithm provides better accuracy under the isolated
highway and metro highway, and the accuracy is in the range of 86% on city roads. The
improved performance is due to the usage of the Kalman filter to track the lane.

Sun et al. [27] proposed a lane detection mechanism considering multiple frames in
contrast with the single frame along with the inertial work classifier. The initially assigned
probability value changes due to error and vehicle movement. Kalman filter is applied to
smooth the line segments in Hough space. The inertial measurement unit (IMU) values
are used to align the previous line segments in the Hough space. The lane detection is
determined by considering the line segments with a high probability value. The analysis of
the method using the Caltech dataset provides accuracy in the range of 95% to 97%. The
lane detection under different environmental conditions such as sunlight, rain and with
high values of sunlight and rainfall shows the performance in the range of 72% to 87%.
The Hough transform is employed to extract the line segment from lane markings stored
in the Hough space. The Hough space is used to store the line segments with an associated
probability value. The truthiness of the line segments is determined using Convolutional
Neural Net. The system is implemented using NVIDIA GTX1050ti GPU, OV10650 camera,
and the IMU is Epson G320.

Lu et al. [28] proposed a lane detection algorithm for urban traffic scenarios in which
the road is well-constructed, flat and of equal width. The road model is constructed using
feature line pairs (FLP), the FLP is detected using Kalman filter and a regression diagnostic
technique to determine the road model using FLP. The result shows that the time taken to
detect the road parameters is 11 ms. The proposed method is implemented using C++ on
a 1.33 GHz AMD processor-based personal computer with a single camera and a Matrox
Meteor RGB/PPB digitizer and implemented in THMR-V (Tsinghua Mobile Robot V).

Zhang and Shi [29] proposed a lane detection method for detecting the lanes at night.
The sober and canny operator detects the edges of the lanes. Gradients acquiring a certain
threshold are labelled as edge points. The histogram with the higher brightness is named
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as lane boundary, and the low valued histogram is named a road. The accuracy of the
proposed method is high even in the presence of noises from car head and rear lights and
road contour signs.

Borkar et al. [30] proposed a layered approach to detect the lane at night. The region of
interest is specified in the captured image of the road. The image is converted to greyscale
for further processing. Temporal burring is applied to obtain the continuous lanes of the
long line. Depending on the characteristics of the neighboring pixels, an adaptive controller
is used to determine the object. The images are converted to the left and right halves, and
each half Hough transform is performed to determine the straight lines. The final process
deals with the fitting of all the straight lines. Firewire S400 (400 Mbps) color camera in
VGA resolution (640 × 480) at 30 fps is used to capture the video and fed to MATLAB, and
lanes are detected in an offline manner. The performance of the proposed method is good
in isolated highways and in metro highway scenarios. With moderate traffic, the accuracy
of detecting the lanes is reduced to 80 percent.

Priyadarshini et al. [31] proposed a lane detection system that detects the lane during
the daytime. The captured video is converted to a grayscale image. A Gaussian filter is
applied to remove the noise. The Canny edge detection algorithm is used to detect the
edges. To identify the length of the lane, a Hough transform is applied. The proposed
method is simulated using a raspberry pi-based robot with a camera and ultrasonic sensors
to determine the distance between neighbouring vehicles.

The survey by Hong et al. [32] discussed video processing techniques to determine
the lanes illumination change on the region of interest for straight-line roads. The survey
highlights the methodologies involved, such as choosing the proper color space and
determination of the region of interest. Once the intended image is captured, a color
segmentation operation is performed using region splitting and clustering schemes. This is
followed by applying the merging algorithm to suppress the noise in the image.

A color-based lane detection and a representative line extraction algorithm are pro-
posed by Park et al. [33]. The captured image in RGB format is converted to gray code
followed by binary image conversion. The purpose of binary image conversion is to re-
move the shadows in the captured image. The lanes in the image are detected using the
canny algorithm by the feature named color. The direction and intensity are determined by
removing the noise using the gaussian filter. The images are smoothened by applying a
median filter. The lanes in the image are considered as the region of interest, and Hough
transform is applied to confirm the accuracy of the lanes in the region of interest. The
experiment is performed during the daytime. The results show that the lane detection rate
is more than 93%.

El Hajjouji et al. [34] proposed a hardware architecture for detecting straight lane lines
using Hough transform. The CORDIC (Coordinate Rotation Digital Computer) algorithm
calculates the gradient and phase from the captured image. The output of CORDIC block
is the norm and angle of the x-axis of the image. The norm and angles are compared
with the threshold obtained from the region of interest. The Hough transform is applied
to the outcome of the comparator module, and the relation between the Hough space
and the angle is determined. The noises are removed by the Hough transform voting
procedure. Finally, the output is obtained as the slope of the straight line. The algorithm
is implemented in the Virtex-5 ML505 platform. The algorithm was tested on a variety
of images with varying illumination and different road conditions, such as urban streets,
highways, occlusion, poor line paintings, day and night and scenarios. The algorithm
provides a detection rate of 92%.

Samadzadegan et al. [35] proposed a lane detection methodology in a circular arc or
parabolic based geometric method. The RGB colour is converted to an intensity image
that contains a specific range of values. A three-layer pyramid image is constructed using
bi-cubic interpolation method. Among the three layers of region of interest, the first
layer pixels undergo randomized Hough transformation to determine the curvature and
orientation features followed by a Genetic Algorithm Optimisation. The process is repeated
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to the remaining two layers. The outcome obtained in the lower layers are the features
of the lane and used to determine the lanes in the region of interest. The result shows
that there is a performance drop in lane detection when entering the tunnel region and
occlusion in lane markings due to the shadow of another vehicle.

Cheng et al. [36] proposed a hierarchical lane detection system to detect the lanes on
structured and unstructured roads. The system classifies the environment into structured
and unstructured based on the feature extraction, which depends on the color of the
lane marking. The connected component labelling method is applied to determine the
feature objects. During the training, phase supervised learning is performed and manually
classified the objects as left lane, right lane and no lane markings. The image is classified
as structured and unstructured based on the vote value associated with the weights. The
lanes for structured roads are detected by eliminating the moving vehicle on the lane image
followed by lane recognition by considering the angle of inclination and starting points
of the lane markings. The lane coherence verification module compares the lane width
of the current frame with the previous frame to determine the lanes. For unstructured
roads, the following steps are performed: mean shift segmentation, which deals with
the determination of road surface by comparing with the surroundings to determine the
variation in colors and texture. The region merging and boundary smoothing module deals
with pruning unnecessary boundary lines and neglecting the region which is smaller than
the threshold. The boundary is selected based on the posterior probability of each set of
candidates. The simulation results show that around 0.11 s is needed to identify structured
or unstructured roads. The system achieves an accuracy of 97% in lane detection.

Han et al. [37] proposed a LIDAR sensor-based road boundary detection and tracking
for both structured and unstructured roads. The LIDAR is used to obtain the polar coordi-
nates. The line segments are obtained from the height and pitch of LIDAR. Information
such as roadside, curbs, sidewalks and buildings are obtained from the line segments. The
road slope and width are obtained by merging two-line segments. The road is tracked
using the nearest neighbor filter to estimate the state of the target. The algorithm is tested in
a real vehicle equipped with LIDAR, GPS and IMU. The road boundary detection accuracy
is 95% for structured and 92% for unstructured roads.

Le et al. [38] proposed a method to detect pedestrian lanes under different illumination
conditions with no lane markings. The first stage of the proposed system is the vanishing
point estimation which works based on votes of local orientations from colored edge pixels.
The local orientation of pixels is determined as the vanishing point. The next stage is the
determination of the sample region of the lane from the vanishing point. To achieve higher
robustness towards different illuminations, invariant space is used. Finally, the lanes are
detected using the appearance and shape information from the input image. A Greedy
algorithm is applied, which helps to determine the connectivity between the lanes in each
iteration of the input image. The proposed model is tested on the input image of both
indoor and outdoor environments. The results show that the lane detection accuracy is
95%.

Wang et al. [39] proposed a lane detection system for straight and curve road scenarios.
The captured image determines the region of interest, set as 60 m which falls in the near
field region. The region of interest is divided into the straight region and the curve
region. The near field region is approximated as the straight line, and the far-field region
is approximated as the curve. An improved Hough transform is applied to detect the
straight line. The curve is determined in the far-field region using the least-squares curve
fitting method. The WAT902H2 camera model is used to capture the image of the road.
The results show that the time taken to determine the straight and curve lane is 60–80 ms
compared to 70–100 ms in the existing works and the accuracy is around 92–93%. The error
rate in bending to the left or right direction is from −0.85 to 5.20% for different angles.

Yenıaydin [40] proposed a lane detection algorithm based on camera and 2D LIDAR
input data. The camera obtains the bird’s eye view of the road, and the LIDAR detects the
location of objects. The proposed method consists of the steps mentioned below:
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• Obtain the camera and 2D LIDAR data.
• Perform segmentation operation of the LIDAR data to determine groups of objects. It

is done based on the distance among different points.
• Map the group or objects to the camera data.
• Turn the pixels of groups or objects into camera data. It is done by the formation of

the region of interest based on a rectangular region. Straight lines are drawn from
the location of the camera to the corner of the region of interest. The convex polygon
algorithm determines the background and occluded region of the image.

• Apply lane detection to the binary image to detect the lanes. The proposed approach
shows better accuracy compared with the traditional methods for a distance less than
9 m.

Kemsaram et al. [41] proposed a deep learning-based approach for detecting lanes, objects
and free space. The Nvidia tool comes with SDK (software development kit) with inbuilt options
for object detection, lane detection and free space detection. The object detection module loads
the image and applies transformations to the image to detect different objects. The lane detection
framework uses the lane Net pipeline, which uses the images. The lanes are assigned with
numbers from left to right. For each frame, the lane detection framework determines the lane
markings. The lane detection function creates the pixel coordinates (x, y) for each lane marking.
The free space module can identify the free space on the surface and in front of the vehicle. The
proposed method is implanted in C++ and runs real-time on Nvidia Drive PX 2 platform. The
time taken to determine the lane falls under 6 to 9 ms.

3.2.2. Model-Based Approach (Robust Lane Detection and Tracking)

Lee and Moon [42] proposed a robust lane detection and tracking system. This
system’s main aim is to detect the lane and track by considering different environmental
conditions such as clear sky, rainy, and snowy during morning and night. The proposed
system consists of three phases, namely initialization, lane detection, and lane tracking. In
the initialization phase, the road region is captured and pre-processed to a low-resolution
image. The edges are extracted, and the image is split into the left half and right half region.
An intersection point is made from both regions, and intersection points are mostly found
near the vanishing point. Once the vanishing points become greater than the threshold, the
region above and below the vanishing points is removed. In the lane marking detection
phase, the lane marking is determined in the rectangular region of interest. The image
is converted into greyscale by using edge line detection, and a line segment is detected.
The hierarchical agglomerative clustering method is used for a color image. The line
segment is determined from surrounding vehicles, shadows, trees, and buildings by using
its frequency in the region of interest. Other disturbances are not continuous compared to
the real lane marking, and they can be determined by comparing them with the consecutive
frames. In the lane tracking phase, lane tracking is achieved from the modified region of
interest. Multiple pairs of lanes with the same weight are considered, and the smallest
are chosen. Some lanes, which are not detected, are predicted by using the Kalman filter.
This system is tested using C++ and open CV library with Ubuntu14. There is scope for
improvement of the algorithm during the night scenario.

Son et al. [43] proposed a robust multi-lane detection and tracking algorithm to
determine the lane accurately under different road conditions such as poor road marking,
obstacles and guardrails. An adaptive threshold is used to extract strong lane features from
images that are not clear. The next step is to extract the erroneous lane features and apply
the random sample consensus algorithm to prevent false lane detection. The selected lanes
are verified using the lane classification algorithm. The advantage of this approach is that
no prior knowledge of the lane geometry is required. The scope for improvement is the
detection of the false lane under the different urban driving scenarios.

Li et al. [44] proposed a real-time robust lane detection method consisting of three methods:
lane marking extraction, geometric model estimation, and tracking key points of the geometric
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model. In the lane extraction process, lane width is chosen according to the standards followed
in the country. The gradient of each pixel is used to estimate the edge points of lane marking.

Son et al. [45] proposed a method that uses the illumination property of lanes under
different conditions, as it is a challenge to detect the lane and keep the lane on track under
different conditions. The methodology involves the determination of the vanishing point
and in which the bottom half of the image is analyzed using a canny edge detector and
Hough transform. The second step involves the determination of white lanes or yellow
lanes based on the illumination property. The white and yellow lanes are used to obtain
the binary image of the lane. The lanes are labelled, and the angles are made to intercept
the y-axis. If there is a match, they are grouped to determine long lanes.

Chae et al. [46] proposed an autonomous lane changing system consisting of three
modules: perception, motion planning, and control. The surrounding vehicles are detected
using LIDAR sensor input. In motion planning, the vehicle determines the mode such as
lane-keeping or lane change, followed by the desired motion that is planned considering the
safety of surrounding vehicles. A linear quadratic regulator (LQR) based model predictive
control is used for longitudinal acceleration and deciding the steering angle. The stochastic
model predictive control is used for lateral acceleration.

Chen et al. [47] proposed a deep convolutional neural network to detect the lane
markings. The modules involved in the lane detection process are lane marking generation,
grouping, and lane model fitting. The lane grouping process involves forming a cluster
comprising neighbouring pixels represented as a single label that belongs to the same lane
and connecting the labels called super marking. The next step of lane model fitting uses
3rd order polynomial to represent straight and curved lanes. The simulation is done on the
CAMVID dataset. The setup requires high-end systems to do the training. The algorithm is
evaluated for a minimal real-time situation. The authors proposed a Global Navigation
Satellite System (GNSS) based lane-keeping assistance system, which calculates the target
steering angle using a model predictive controller. The advantage of the approach is that
it is estimated from GNSS when the lane is not visible due to environmental constraints.
The steering angle and acceleration are modelled using the first-order lag system. The
model predictive control is used to control the lateral movement of the vehicle. The
proposed system was simulated, and prototype testing was conducted in a real vehicle,
OUTLANDER PHEV (Mitsubishi Motors Corporation). The results show that the lane is
followed with a minimal lateral error of about 0.19 m. The drawback of the approach is
that the time delay of GNSS has an impact on the oscillation in the steering. Hence, the
GNSS time delay should be kept minimal compared to the steering time delay.

Lu et al. [48] proposed a lane detection approach using Gaussian distribution random
sample consensus (G-RANSAC). The process involves converting a bird’s eye view image
to look at all the lane characteristics. The next step is using a ride detector to extract the
features of lane points and remove noise points using an adaptable neutral network. The
ridge features are extracted from the gray images, which provide better results during
the presence of vehicle shadow and minimal illumination on the environment. Finally,
the lanes are detected using the RANSAC approach. The RANSAC algorithm considers
the confidence level of ridge points in determining the lanes from noise. The proposed
algorithm is tested under four different illumination conditions: normal illumination
and good pavement, intense illumination and shadow interruption, normal illumination
and sign-on-the-ground interruption and poor illumination and vehicle interference. The
algorithm achieved 99.02%, 96.92%, 96.65% and 91.61% true-positive rates respectively.

3.2.3. Learning-Based Approach (Predictive Controller Lane Detection and Tracking)

Bian et al. [49] implemented a lane-keeping assistance system (LKAS) with two switchable
assistance modes: lane departure prevention and lane-keeping co-pilot modes. The LKAS
is designed to achieve better reliability. The two switchable assistance modes consist of a
conventional Lane Departure Prevention (LDP) mode and a lane-keeping Co-pilot (LK Co-Pilot)
mode. The LDP mode is activated if a lane departure is detected. A lateral offset is used as a
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lane-departure metric to determine whether to trigger the LDP or not. The LK Co-pilot mode is
activated if the driver does not intend to change the lane; this mode helps the driver follow the
expected trajectory based on the driver’s dynamic steering input. Care should be taken to set
the threshold accurately and adequately; otherwise false lane detection would be increased.

Wang et al. [50] proposed a lane-changing strategy for autonomous vehicles using deep
reinforcement learning. The parameters which are considered for the reward are delay and
traffic on the road. The decision to switch lanes depends on improving the reward by interact-
ing with the environment. The proposed approach is tested under accident and non-accident
scenarios. The advantage of this approach is collaborative decision making in lane changing.
Fixed rules may not be suitable for heterogeneous environmental or traffic scenarios.

Wang et al. [51] proposed a reinforcement learning-based lane change controller for a
lane change. Two types of lane change controllers are adopted, namely longitudinal and
lateral control. A car-following model, namely the intelligent driver model, is chosen for
the longitudinal controller. The lateral controller is implemented by reinforcement learning.
The reward function is based on yaw rate, acceleration, and time to change the lane. To
overcome the static rules, a Q-function approximator is proposed to achieve continuous
action space. The proposed system is tested in a custom-made simulation environment.
Extensive simulation is expected to test the efficiency of the approximator function under
different real-time scenarios.

Suh et al. [52] implemented a real-time probabilistic and deterministic lane changing
motion prediction system which works under complex driving scenarios. They designed
and tested the proposed system on both a simulation and real-time basis. A hyperbolic
tangent path is chosen for the lane-change maneuver. The lane changing process is initiated
if the clearance distance is greater than the minimum safe distance and the position of
other vehicles. A safe driving envelope constraint is maintained to check the availability of
nearby vehicles in different directions. A stochastic model predictive controller is used to
calculate the steering angle and acceleration from the disturbances. The disturbance values
are obtained from experimental data. The usage of advanced machine learning algorithms
could improve the currently developed system’s reliability and performance.

Gopalan et al. [53] proposed a lane detection system to detect the lane accurately under
different conditions such as lack of prior knowledge of the road geometry, lane appearance
variation due to change in environmental condition, and independent of vehicle speed.
The modules of the proposed system are lane detection and tracking. The basic approach
used for lane detection is to classify the lane markings from the non-lane markings from
the labelled training sample. A pixel hierarchy feature descriptor method is proposed to
identify the correlation between the lane and its surroundings. A machine learning-based
boosting algorithm is used to identify the most relevant features. The advantage of the
boosting algorithm is the adaptive way of increasing or decreasing the weightage of the
samples. The lane tracking process is performed during the non-availability of knowledge
about the motion pattern of lane markings. Lane tracking is achieved by using particle
filters to track each of the lane markings and understand the cause for the variation. The
variance is calculated for different parameters such as the initial position of the lane, motion
of the vehicle, change in road geometry, traffic pattern. The variance associated with the
above parameters is used to track the lane under different environmental conditions. The
learning-based proposed system provides better performance under different scenarios.
The point to consider is that the assumption made is the flat nature of the road. The flat
road image was chosen to avoid the sudden appearance and disappearance of the lane.
The proposed system is implemented at the simulation level.

To summarize the progress made in lane detection and tracking as discussed in this sec-
tion, Table 2 has been presented that shows the key steps involved in the three approaches
for lane detection and tracking, along with remarks on their general characteristics. It is
then followed with Tables 3–5 that presents the summary of data used, strengths, draw-
backs, key findings and future prospects of the key studies that have adopted the three
approaches in the literature.
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Table 2. A summary of methods used for lane detection and tracking with general remarks.

Methods Steps Tool Used Data Used Methods Classification Remarks

Image and sensor-based lane
detection and tracking

a. Image frames are pre-
processed

b. Lane detection algorithm is
applied

c. The sensors values are used
to track the lanes

a. Camera
b. Sensors

sensors values Feature-based approach
Frequent calibration is required for

accurate decision making in a
complex environment

Predictive controller for lane
detection and controller

Machine learning technique (e.g.,
neural networks,)

a. Model predictive con-
troller

b. Reinforcement learning al-
gorithms

data obtained from the
controller Learning-based approach

Reinforcement learning with model
predictive controller could be a
better choice to avoid false lane

detection.

Robust lane detection and
tracking

a. Capture an image through
camera

b. Use Edge detector to data for
extract the features of the im-
age

c. Determination of vanishing
point

Based on robust lane detection
model algorithms Real-time Model-based approach

Provides better result in different
environmental conditions. Camera

quality plays important role in
determining lanes marking

Table 3. A comprehensive summary of lane detection and tracking algorithm.

Sources

Data

Method Used Advantages Drawbacks Results Tool Used Future Prospects Data Reason for Drawbacks

Sim
ulation

R
eal

[24] Y

Inverse perspective
mapping method is

applied to convert the
image to bird’s eye view.

Minimal error and quick
detection of lane.

The algorithm performance
drops when driving in

tunnel due to the
fluctuation in the lighting

conditions.

The lane detection error is
5%. The cross-track error is
25% and lane detection time

is 11 ms.

Fisheye dashcam,
inertial

measurement unit
and ARM

processor-based
computer.

Enhancing the
algorithm suitable
for complex road
scenario and with

less light
conditions.

Data obtained
by using a
model car

running at a
speed of 100

m/s.

Performance drop in
determining the lane, if the

vehicle is driving in a
tunnel and the road

conditions where there is no
proper lighting.

The complex environment
creates unnecessary tilt

causing some inaccuracy in
lane detection.
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Table 3. Cont.

Sources

Data

Method Used Advantages Drawbacks Results Tool Used Future Prospects Data Reason for Drawbacks

Sim
ulation

R
eal

[25] Y

Kinematic motion model
to determine the lane

with minimal parameters
of the vehicle.

No need for
parameterization of the

vehicle with variables like
cornering stiffness and

inertia. Prediction of lane
even in absence of camera

input for around 3 s.

The algorithm suitable for
different environment

situation not been
considered

Lateral error of 0.15 m in the
absence of camera image.

Mobileye camera,
carsim and MAT-
LAB/Simulink,
Auto box from

dSPACE.

Trying the fault
tolerant model in

real vehicle.
Test vehicle —-

[26] Y

Usage of inverse
mapping for the creation
of bird’s eye view of the

environment.

Improved accuracy of lane
detection in the range of
86%to 96% for different

road types.

Performance under
different vehicle speed and

inclement weather
conditions not considered.

The algorithm requires 0.8 s
to process frame. Higher
accuracy when more than
59% of lane markers are

visible.

Firewire color
camera, MATLAB

Real-time
implementation of

the work

Highway and
streets and

around Atlanta
—-

[27] Y Y

Hough transform to
extract the line segments,
usage of a convolutional

neural network-based
classifier to determine the

confidence of line
segment.

Tolerant to noise

In the custom dataset, the
performance drops

compared to Caltech
dataset.

For urban scenario, the
proposed algorithm

provides accuracy greater
than 95%. The accuracy

obtained in lane detection
in the custom setup is 72%

to 86%.

OV10650 camera
and I MU is Epson

G320.

Performance
improvement is

future
consideration.

Caltech dataset
and custom

dataset.

The device specification
and calibration, it plays

important role in capturing
the lane.

[28] Y
Feature-line-pairs (FLP)
along with Kalman filter

for road detection.

Faster detection of lanes,
suitable for real-time

environment.

Testing the algorithm
suitability under different
environmental conditions

could be done.

Around 4 ms to detect the
edge pixels, 80 ms to detect

all the FLPs, 1 ms to
determine the extract road
model with Kalman filter

tracking.

C++; camera and a
matrox meteor

RGB/ PPB
digitizer.

Robust tracking
and improve the
performance in

urban dense
traffic.

Test robot. ——

[29] Y

Dual thresholding
algorithm for

pre-processing and the
edge is detected by single

direction gradient
operator. Usage of the

noise filter to remove the
noise.

The lane detection
algorithm insensitive

headlight, rear light, cars,
road contour signs.

The algorithm detects the
straight lanes during the

night.

Detection
Of straight lanes.

Camera with RGB
channel. ——- Custom dataset

Suitability of the algorithm
for different types of roads
during night to be studied.

[30] Y

Determination of region
of interest and conversion

of binary image via
adaptive threshold.

Better accuracy

The algorithm needs
changes for checking its

suitability for the day time
lane detection

90% accuracy during night
at isolated highways

Firewire S400
camera and
MATLAB

Geometrics
transformation of

image for
increasing the
accuracy and

intensity
normalization.

Custom dataset
The constraints and

assumption considered do
not suit for the day time.
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Table 3. Cont.

Sources

Data

Method Used Advantages Drawbacks Results Tool Used Future Prospects Data Reason for Drawbacks

Sim
ulation

R
eal

[31] Y

Canny edge detector
algorithm is used to

detect the edges of the
lanes.

Hough transform improves
the output of the lane

tracker.
—— Performance of the

proposed system is better.

Raspberry pi
based robust
with camera
and sensors.

Simulation of the
proposed method by

using raspberry Pi based
robot with a monocular
camera and radar-based
sensors to determine the

distance between
neighboring vehicles.

Custom data ——

[32] Y

Video processing
technique to determine
the lanes illumination

change on the region of
interest.

—- —- Robust performance vision-based
vehicle

Determine the lanes
illumination changes on
the region of interest for

curve line roads

Simulator —-

[33] Y Y

A colour-based lane
detection and

representative line
extraction algorithm is

used.

Better accuracy in the day
time.

Algorithm needs changes to
test in different scenario.

The results show that the
lane detection rate is more

than 93%.
MATLAB

There is scope to test the
algorithm in the night

time.
Custom data

Unwanted noise reduces
the performance of the

algorithm.

[34] Y

Proposed hardware
architecture for detecting
straight lane lines using

Hough transform.

Proposed algorithm
provides better accuracy for

occlusion, poor line
paintings.

Computer complexity and
high cost of HT (Hough

transform)

Algorithm tested under
various conditions of roads

such as urban street,
highway and algorithm

provides a detection rate of
92%.

Virtex-5 ML 505
platform

Algorithm need to test
with different weather

condition.
Custom —–

[35] Y

Proposed a lane detection
methodology in a circular

arc or parabolic based
geometric method.

Video sensor improves the
performance of the lane

marking.

Performance dropped in
lane detection when

entering the tunnel region

Experiment performed with
different road scene and
provided better results.

maps, video
sensors, GPS.

Proposed method can test
with previously available

data.
Custom Due to low illumination

[36] Y

Proposed a hierarchical
lane detection system to
detect the lanes on the

structured and
unstructured roads.

Quick detection of lanes. —-
The system achieves an
accuracy of 97% in lane

detection.
MATLAB

Algorithm can test on an
isolated highway, urban

roads.
—-

[37] Y

LIDAR sensor-based
boundary detection and

tracking method for
structured and

unstructured roads.

Regardless of road types,
algorithm detect accurate

lane boundaries.

Difficult to track lane
boundaries for

unstructured roads because
of low contract, arbitrary

road shape

The road boundary
detection accuracy is 95%
for structured roads and

92% for unstructured roads.

Test vehicle
with LIDAR,

GPS and IMU.

Algorithm needs to test
with RADAR based and

vision-based sensors.
Custom data Low contract arbitrary

road shape
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Table 3. Cont.

Sources

Data

Method Used Advantages Drawbacks Results Tool Used Future Prospects Data Reason for Drawbacks

Sim
ulation

R
eal

[38] Y

Proposed a method to
detect the pedestrian
lanes under different

illumination conditions
with no lane markings.

Robust performance for
pedestrian lane detection

under unstructured
environment.

More challenging for indoor
and outdoor environment.

The result shows that the
lane detection accuracy is

95%.
MATLAB

There is scope for
structured roads

with different
speeds limit

New dataset of
2000 images

(custom)
Complex environment

[39] Y Y

The proposed system is
implemented using an

improved Hough
transform, which

pre-process different light
intensity road images

and convert it to the polar
angle constraint area.

Robust performance for a
campus road, in which the

road does not have lane
markings.

Performance drops due to
low intensity of light —— Test vehicle and

MATLAB ——- Custom data Low illumination

[40] Y

A lane detection
algorithm based on

camera and 2D LIDAR
input data.

Computational and
experimental results show
the method significantly

increases accuracy.

——

The proposed approach
shows better accuracy

compared with the
traditional methods for
distance less than 9 m.

Proposed method
need to test with

RADAR and
vision-based
sensors data

software based
analysis and

MATLAB

Fusion of
camera and 2D

LIDAR data
—–

[41] Y

A deep learning-based
approach for detecting
lanes, object and free

space.

The Nvidia tool comes with
SDK (software

development kit) with
inbuild options for object
detection, lane detection

and free space.

Monocular camera with
advance driver assistance

system is costly.

The time taken to
determine the lane falls

under 6 to 9 ms.

C++ and NVidia’s
drive PX2
platform

Complex road
scenario with
different high

intensity of light.

KITT —-
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Table 4. A comprehensive summary of learning-based model predictive controller lane detection and tracking.

Sources

Data

Method Advantages Drawbacks Result Tool Used Future Prospects Data Reason for Drawback

Sim
ulation

R
eal

[42] Y

Gradient cue, color cue
and line clustering are
used to verify the lane

markings.

The proposed method
works better under
different weather

conditions such as rainy
and snowy environments.

The suitability of the
algorithm for multi-lane

detection of lane curvature
is to be studied.

Except rainy condition
during the day, the

proposed system provides
better results.

C++ and OpenCV on
ubuntu operating

system.
Hardware: duel ARM
cortex-A9 processors.

—-
48 video clips
from USA and

Korea

Since the road
environment may not

be predictable, leads to
false detection.

[43] Y

Extraction of lanes from
the captured image

Random, sample
consensus algorithm is

used to eradicate error in
lane detection.

Multilane detection even
during poor lane markings.
No prior knowledge about

the lane is required.

Urban driving scenario
quality has to be improved
in cardova 2dataset since it

perceives the curb of the
sidewalk as a lane.

The Caltech lane datasets
consisting of four types of
urban driving scenarios:

Cordova 1;
Cordova 2;

Washington2; with a total of
1224 frames containing 4172

lane markings.

MATLAB

Real time
implementation of

the proposed
algorithm

Data from south
Korea road and
Caltech dataset.

IMU sensors could be
incorporated to avoid
the false detection of

lanes.

[44] Y Y

Rectangular detection
region is formed on the
image. Edge points of
lane is extracted using
threshold algorithm. A
modified Brenham line
voting space is used to

detect lane segment.

Robust lane detection
method by using a

monocular camera in which
the roads are provided with

proper lane markings.

Performance drops when
road is not flat

In Cardova 2 dataset, the
false detection value is

higher around 38%. The
algorithm shows better

performance under
different roads geometries

such as straight, curve,
polyline and complex

Software based
performance analysis
on Caltech dataset for

different urban driving
scenario. Hardware

implementation on the
Tuyou autonomous

vehicle.

—-
Caltech and

custom-made
dataset

Due to the difficulty
In image capturing

false detection
happened. More

training or inclusion of
sensors for live dataset
collection will help to

mitigate it.

[45] Y

Based on voting map,
detected vanishing

points, usage of distinct
property of lane colour to

obtain illumination
invariant lane marker

and finally found main
lane by using clustering

methods.

Overall method test
algorithm within 33 ms per

frame.

Need to reduce
computational complexity
by using vanishing point

and adaptive ROI for every
frame.

Under various
Illumination condition lane

detection rate of the
algorithm is an average 93%

Software based
analysis done.

There are chances,
to test algorithm
at day time with

inclement weather
conditions.

Custom data
based on
Real-time

—–

[46] Y

Proposed a sharp curve
lane from the input

image based on
hyperbola fitting. The

input image is converted
to grayscale image and
the feature namely left

edge, right edge and the
extreme points of the
lanes are calculated

Better accuracy for sharp
curve lanes.

The suitability of the
algorithm for different road

geometrics yet to study.

The results show that the
accuracy of lane detection is

around 97% and the
average time taken to detect

the lane is 20 ms.

Custom made
simulator C/C++ and

visual studio
—– Custom data —–
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Table 4. Cont.

Sources

Data

Method Advantages Drawbacks Result Tool Used Future Prospects Data Reason for Drawback

Sim
ulation

R
eal

[47] Y
vanishing point detection
method for unstructured

roads

Accurate and robust
performance for

unstructured roads.

Difficult to obtain robust
vanishing point for
detection of lane for
unstructured scene.

The accuracy of vanishing
point range between 80.9%

to 93.6% for different
scenarios.

Unmanned ground
vehicle and mobile

robot.

Future scope for
structured roads

with different
scenarios.

Custom data
Complex background

interference and
unclear road marking.

[48] Y

Proposed a lane detection
approach using Gaussian

distribution random
sample consensus

(G-RANSAC), usage of
rider detector to extract

the features of lane points
and adaptable neural
network for remove

noise.

Provides better results
during the presence of

vehicle shadow and
minimal illumination of the

environment.

—-

The proposed algorithm is
tested under different
illumination condition
ranging from normal,

intense, normal and poor
and provides lane detection
accuracy as 95%, 92%, 91%

and 90%.

Software based
analysis

Need to test
proposed method

under various
times like day,

night.

Test vehicle —-

Table 5. A comprehensive summary of robust lane detection and tracking.

Sources

Data

Method Used Advantages Drawbacks Result Tool Used Future Prospects Data Reason for
Drawbacks

Sim
ulation

R
eal

[49] Y

Inverse perspective
mapping method is

applied to convert the
image to bird’s eye view.

Quick detection of lane.
The algorithm performance
drops due to the fluctuation
in the lighting conditions.

The lane detection
error is 5%. The

cross-track error is 25%
lane detection time is

11 ms.

Fisheye dashcam:
inertial measurement

unit; Arm
processor-based

computer.

Enhancing the algorithm
suitable for complex road

scenario and with less
light conditions.

Data obtained
by using a
model car

running at a
speed of 1 m/s

The complex
environment creates

unnecessary tilt
causing some

inaccuracy in lane
detection.
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Table 5. Cont.

Sources

Data

Method Used Advantages Drawbacks Result Tool Used Future Prospects Data Reason for
Drawbacks

Sim
ulation

R
eal

[50] Y

Deep learning-based
reinforcement learning is
used for decision making

in the changeover. The
reward for decision

making is based on the
parameters like traffic

efficiency

Cooperative
decision-making processes

involving the reward
function comparing delay

of a vehicle and traffic.

Validation expected to
check the accuracy of the

lane changing algorithm for
heterogeneous environment

The performance is
fine-tuned based on
the cooperation for
both accident and

non-accidental
scenario

Custom made
simulator

Dynamic selection of
cooperation coefficient
under different traffic

scenario

Newell car
following

model.
—-

[51] Y

Reinforcement
learning-based approach
for decision making by

using Q-function
approximator.

Decision-making process
involving reward function
comprising yaw rate, yaw

acceleration and lane
changing time.

Need for more testing to
check the efficiency of the
approximator function for

its suitability under
different real-time

conditions.

The reward functions
are used to learn the
lane in a better way.

Custom made
simulator

To test the efficiency of
the proposed approach

under different road
geometrics and traffic
conditions. Testing the

feasibility of the
reinforcement learning

with fuzzy logic for
image input and

controller action based on
the current situation.

custom

More parameters
could be considered

for the reward
function.

[52] Y
Probabilistic and
prediction for the

complex driving scenario.

Usage of deterministic and
probabilistic prediction of
traffic of other vehicles to
improve the robustness

Analysis of the efficiency of
the system under real-time

noise is challenging.

Robust decision
making compared to

the deterministic
method. Lesser

probability of collision.

MATLAB/Simulink
and carsim. Used
real-time setup as

following:
Hyundai-Kia motors

K7, mobile eye camera
system, micro auto box
II, Delphi radars, IBEO

laser scanner.

Testing undue different
scenario

Custom dataset
(collection of

data using test
vehicle).

The algorithm to be
modified for real

suitability for
real-time

monitoring.

[53] Y

Usage of pixel hierarchy
to the occurrence of lane
markings. Detection of

the lane markings using a
boosting algorithm.

Tracking of lanes using a
particle filter.

Detection of the lane
without prior knowledge

on-road model and vehicle
speed.

Usage of vehicles inertial
sensors GPS information

and geometry model
further improve

performance under
different environmental

conditions

Improved performance
by using support

vector machines and
artificial neural

networks on the image.

Machine with 4-GHz
processor capable of
working on image

approximately 240 ×
320 image at 15 frames

per second.

To test the efficiency of
the algorithm by using

the Kalman filter.
custom data

Calibration of the
sensors needs to be

maintained.
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Based on the review, some of the key observations from Tables 3–5 are summarized
below:

• Frequent calibration is required for accurate decision making in a complex environ-
ment.

• Reinforcement learning with the model predictive control could be a better choice to
avoid false lane detection.

• Model-based approaches (robust lane detection and tracking) provide better results
in different environmental conditions. Camera quality plays an important role in
determining lane marking.

• The algorithm’s performance depends on the type of filter used, and the Kalman filter
is mostly used for lane tracking.

• In a vision-based system, image smoothing is the initial lane detection and tracking
stage, which plays a vital role in increasing systems performance.

• External disturbances like weather conditions, vision quality, shadow and blazing,
and internal disturbances such as too narrow, too wide, and unclear lane marking,
drop algorithm performance.

• The majority of researchers (>90%) have used custom datasets for research.
• Monocular, stereo and infrared cameras have been used to capture images and videos.

The algorithm’s accuracy depends on the type of camera used, and a stereo camera
gives better performance than a monocular camera.

• The lane markers can be occluded by a nearby vehicle while doing overtake.
• There is an abrupt change in illumination as the vehicle gets out of a tunnel. Sudden

changes in illumination affect the image quality and drop the system performance.
• The results show that the lane detection and tracking efficiency rate under dry and

light rain conditions is near 99% in most scenarios. However, the efficiency of lane
marking detection is significantly affected by heavy rain conditions.

• It has been seen that the performance of the system drops due to unclear and degraded
lane markings.

• IMU (Inertia measurement unit) and GPS are examples that help to improve RADAR
and LIDAR’s performance of distance measurement.

• One of the biggest problems with today’s ADAS is that changes in environmental and
weather conditions have a major effect on the system’s performance.

3.3. Patented Works

According to the patent’s family size, it is observed that Toyota has a generally greater
number of patents work (521), followed by Ford (406), General Motors (GM) (353), Honda
motor (284) and Uber (245). Six of the top ten companies are from the United States, while
four are from Asia. From a patent standpoint, Europe seems to be lagging behind in the
battle for ADAS, and that the patents published in China and other Asian countries for
lane detection and tracking are invented in the universities. Only Google and General
Motor patent portfolios have a high technical relevance score among the top ten patent
manufacturers. On the other hand, all portfolios have an above average market coverage
score, indicating that their manufacturer believes their inventions are valuable enough to
protect globally, and it highlights the significance and promises that companies perceive
in autonomous driving. The detailed review of the patent works is beyond the scope of
this study. However, given the commercial nature of lane detection and tracking, a sample
of patented works, especially from the vehicle manufacturer, that align with the three
approaches (feature-based, learning-based and model-based) has been presented in Table 6.
Some of the key observations from Table 6 are:
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• By following the method of image and sensor-based lane detection, separate courses
are calculated for precisely two of the lane markings to be tracked, with a set of binary
parameters indicating the allocation of the determined offset values to one of the two
separate courses [54]

• By following the robust lane detection and tracking method, after a fixed number of
computing cycles, a most probable hypothesis is calculated—the difference between
the predicted courses of lane markings to only be tracked and the courses of recognized
lane markings to be lowest [55].

• A parametric estimation method, in particular a maximum likelihood method, is
used to assign the calculated offset values to each of the separate courses of the lane
markings to be tracked [56].

• Only those two-lane markers that refer to the left and right lane boundaries of the
vehicle’s own lane are applied to the tracking procedure [57].

• The positive and negative ratios of the extracted characteristics of the frame are used
to assess the system’s correctness. The degree of accuracy is enhanced by including
the judgment in all extracted frames [58].

• At a present calculation cycle, the lane change assistance calculates a target control
amount comprising a feed-forward control using a target curvature of a track for
changing the host vehicle’s lane [59].

• Extra details analyzing signals mounted to determine if a collision between the host
vehicle and any other vehicle is likely to occur, allowing action to be done to avoid the
accident [60].

• There are two kinds of issues that are often seen and corrected in dewarped perspective
images: a stretching effect at the periphery region of a wide-angle image de warped
by rectilinear projection, and duplicate images of objects in an area where the left and
right camera views overlap [61].

• The object identification system examines the pixels in order to identify the object that
has not previously been identified in the 3D Environment [62].

Table 6. Summary of patents for lane detection and tracking algorithms.

Country Patent No Assignee Method Key Finding Approach Inventor

USA US20170068862A1 Aptiv
Technologies Ltd.

Camera based vision based
driver assistance system.

State estimation and
separate progression.

Feature based
approach Mirko Mueter, Kun Zhao

USA US9384394B2 Toyota motor
corporation

Generates accurate lane
estimation using course map

information and LIDAR
sensors.

Centre of the lane and
multiple lanes.

Model based
approach

Avdhut Joshi and
Michael James

USA US20020095246A1 Nissan motor co
Ltd.

Controller is designed in
such way that it detect lanes
by controlling steering angle

when vehicle move out of
desired track.

Measure the output of the
signal.

Learning based
approach Hiroshi Kawazoe

Europe EP1143398A3 Panasonic
Corporation

Proposed an extraction
method using Hough

transform to detect the lanes
in the opposite side of roads.

Determine the maximum
value of accumulators.

Feature based
approach

Atsushi Lisaka, Mamoru
Kaneko and Nobohiko

Yasui

China CN105205500A
Beijing University

of post and
telecommunication

Computer graphical and
vision-based technology with

multi target filtering and
sorter training is used.

This method finds multi
target tracking and cascade

classifier with high
detection processing

speed.

Model based
approach

Zhitong, H. and Yuefeng,
Z

Japan JP6589941B2 Not available

Developed steering assist
device for lane detection and

tracking under periphery
monitoring.

Objective of this method is
relative position host

vehicle and their relation
with lane has been

identified.

Model based
approach Shota Fujii

USA US10336326 Ford global
technologies LLC

Proposed a deep
learning-based front facing

camera lane detection
method.

Exacted features of lane
boundaries with the help

of camera mounted at
front.

Feature based
approach

Alexandru Mihai,
Tejaswi Koduri, Vidya

Nariyambut Marali Kyle
J Carey
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Table 6. Cont.

Country Patent No Assignee Method Key Finding Approach Inventor

USA US9834143B2
GM Global
Technology

Operations LLC

The improved perspective
view is produced a new
camera imaging surface

model and other distortion
correcting technique.

Main objective is to
improve the perspective

view of the vehicle at front
for lane detection and

tracking.

Featured based
approach

Wende Zhang, Jinsong
Wang, Kent S Lybecker,

Jeffrey S. Piasecki,
Bakhtiar Brian Litkouhi,

Ryan M. Frakes

USA US20170323179A1 Uber technologies
Inc.

Sensor fusion data processing
technique is used for

surrounding object detection
and lane detection.

Generate 3D envirmental
data through sensor fusion

to guide autonomous
vehicle.

Leaning based
approach

Carlos
Vallespi-Gonzalez

4. Discussion

Based on the review of studies on lane detection and tracking in Section 3.2, it can be
observed that there are limited data sets in the literature that researchers have used to test
lane detection and tracking algorithms. Based on the literature review, a summary of the
key data sets used in the literature or available to the researchers is presented in Table 7,
which shows some of the key features, strengths, and weaknesses. It is expected that in
future, more data sets may be available for the researchers as this field continues to grow,
especially with the development of fully autonomous vehicles. As per the statistics survey
of research papers published between 2000 and 2020, almost 42% of researchers mainly
focused on Intrusion Detection System (IDS) matrix to evaluate the performance of the
algorithms. This may be because the efficiency and effectiveness of IDS are better when
compared to Point Clustering Comparison, Gaussian Distribution, Spatial Distribution
and Key Points Estimation methods. The verification of the performance of the algorithms
for lane detection and tracking system is done based on ground truth data set. There are
four possibilities as true positive (TP), false negative (FN), false positive (FP) and true
negative (TN), as shown in Table 8. There are many metrics available for the evaluation
of performance, but the most common are accuracy, precision, F-score, Dice similarity
coefficient (DSC) and receiver operating characteristic (ROC) curves. Table 9 provides the
common metrics and the associated formulas used for the evaluation of the algorithms.
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Table 7. A summary of datasets that have been used in the literature for verification of the algorithms.

Dataset Features Strength Weakness

CU lane [63] 55 h videos, 133,235 extracted frames, 88,880 training set, 9675 validations set
and 34,680 test set.

For unseen or occluded lane marking annotated
manually with a cubic spline.

Except for four lanes markings, others are not
annotated

Caltech [64]
10 h video 640 × 480 Hz of regular traffic in an urban environment.

250,000 frames, 350,000 boundary boxes annotated with occlusion and
temporal.

Entire dataset annotated, testing data also provided
(set 06–set 10) and training data (set 00–set 05) each

1 GB.

Not applicable for all types of road geometries and
weather conditions.

Custom data (collection of data using test
vehicle) Not applicable Available according to the requirements Time-consuming and highly expensive

DIML [65]

Multimodal dataset:
Sony cyber shot DSC-RX 100 camera, 5 different photometric variation pairs.

RGB-D dataset: More than 200indoor/outdoor scenes, Kinect Vz and zed
stereo camera obtain RGB-D frames.

Lane dataset: 470 video sequences of downtown and urban roads.
Emotion Recognition dataset (CAER): more than 13,000 videos and 13,000

annotated videos
CoVieW18 dataset: untrimmed videos sample, 90,000 YouTube videos URLs.

Different scenarios have been covered, like a traffic
jam, pedestrians and obstacles.

Dataset for different weather conditions and lanes
with no markings are missing.

KITTI [66]
It contains stereo, optical flow, visual odometry etc. it contains an object
detection dataset, monocular images and boundary boxes, 7481 training

images, 7518 test images.

Evaluation is done of orientation estimation of bird’s
eye view and applicable for real-time object detection

and 3D tracking. Evaluation metrics provided.

Only 15 cars and 30 pedestrians have been considered
while capturing images. Applicable for rural and

highway roads dataset.

Tusimple [67]

Training: 3222 annotated vehicles in 20 frames per second for 1074 clips of 25
videos.

Testing: 269 video clips
Supplementary data: 5066 images of position and velocity of vehicle marked

by range sensors.

Lane detection challenge, velocity estimation
challenge and ground truths have been provided.

Calibration file for lane detection has not been
provided.

UAH [68]

Raw real time data:
Raw-GPS, RAW-Accelerometers.

Processed data as continuous variables: pro lane detection, pro vehicle
detection and pro OpenStreetMap data.

Processed data as events: events list lane changes and events inertial.
Sematic information:

Sematic final and sematic online.

More than 500 min naturistic driving and processed
sematic information have provided. Limited accessibility to the research community

BDD100K [69] 100,000 videos for more than 1000 h, road object detection, drivable area,
segmentation and full frame sematic segmentation.

IMU data, timestamp and localization have been
included in the dataset. Data for unstructured road has not covered.
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Table 8. Performance metrics for verification of lane detection and tracking algorithms, compiled from ref. [70].

Possibility Condition 1 Condition 2

True positive Ground truth exists When the algorithm detects lane markers.

False positive No ground truth exists When the algorithm detects lane markers.

False negative Ground truth exists in the image When the algorithm detects lane markers.

True negative No ground truth exists in the image When the algorithm is not detecting anything

Table 9. A summary of the equation of metrics used for evaluation of the performance of the algorithm, compiledfrom
refs. [71,72].

Sr. no Metrics Formula *

1. Accuracy(A) A = (TP+TN)
(TP+TN+FP+FN)

2. Detection rate (DR) DR = (TP)
(TP+FN)

3. False positive rate (FPR) FPR = (FN)
(TP+FN)

4. False negative rate (FNR) FNR = FN
(FN+TP)

5. True negative rate (TNR) TNR = TN
(TN+TP)

6. Precision Precision = TP
(TN+FP)

7. F-measure F−Measure = (2×Recall×Precision)
(Recall×Precision)

8. Error rate Error = (TP+FN)
(FP+FN+TP+TN)

* Where, TP = True positive, i.e., both conditions are satisfied by the algorithm. FP = False positive. i.e., only one condition satisfied by the
algorithm. TN = True negative. i.e., ground truth missing in the image. FN = False negative. i.e., algorithm fails to detect lane marking.

If the database is balanced, the accuracy rate should accurately reflect the algorithm’s
global output. The precision reflects the goodness of optimistic forecasts. The greater
the accuracy, the lower the number of “false alarms.” The recall, also called true positive
rate (TPR), is the ratio of positive instances that are correctly detected by the algorithm.
Therefore, the higher the recall, the higher the algorithm’s quality in detecting positive
instances. The F1-Score is the Precision and Recall harmonic mean, and since they are
combined into a concise metric, it can be used for comparing algorithms. Because it is more
sensitive to low values, the harmonic mean is used rather than arithmetic. Hence, a valid
algorithm has a satisfactory F1 score if it has accuracy and high recall. These parameters
can be estimated as unique metrics for each class or as the algorithm’s overall metrics [73].

Table 10 shows the SWOT analysis of different approaches used for lane detection and
tracking algorithms. The use of a Learning-based approach (model predictive controller) is
considered an emerging approach for lane detection and tracking because it is computa-
tionally more efficient than the other two approaches, and it provides reasonable results
in real-time scenarios. However, the risk of mismatching lanes and performance drop in
inclement weather conditions are the drawback of the learning-based approach. Feature-
based approach, while time-consuming, can provide better performance in optimization of
lane detection and tracking. However, this approach poses challenges in handling high
illumination or shadows. Image and sensor-based lane detection and tracking approaches
have been used widely in lane detection and tracking patents.
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Table 10. SWOT analysis of different approaches used for lane detection and tracking algorithms.

Methods Strength Weakness Opportunities Threats

Feature based
approach

Feature extraction is used to
determine false lane markings. Time-consuming Better performance in

optimization
Less effective for complex
illumination and shadow

Learning based
approach Easy and reliable method Mismatching lanes Computationally more

efficient
Performance drops due to

inclement weather

Model based
approach

Camera quality improves
system performance

Expensive and
time-consuming

Robust performance for
lane detection model

Difficult to mount sensor fusion
system for complex geometry

In addition, from the literature synthesis, several gaps in knowledge are identified
and are presented in Table 11. The literature review shows that clothoid and hyperbola
shape roads are ignored for lane detection and algorithms road because of the complexity
of road structure and unavailability of the dataset. Likewise, much work has already been
done on structured roads’ pavement marking compared to unstructured roads (Figure 3).
Most studies focus on straight roads. It is to be noted that unstructured roads are available
in residential areas, hilly area roads, forest area roads. Much research has previously
considered daytime, while night and rainy conditions are less studied. From the literature,
it is observed that, in terms of speed flow conditions, they have been previously researched
on the speed levels of 40 km/h to 80 km/h while high speed (above 80 km/hr) has received
less attention. Further, occlusion due to overtaking vehicles or other objects (Figure 4),
and high illumination also pose a challenge for lane detection and tracking. These issues
should be addressed to move from level 3 automation (partial driving) to level 5 fully
autonomous Also, new databases for more testing of algorithms are needed as researchers
are constrained due to the unavailability of datasets. There is, however, the prospect of
using synthetic sensor data generated by using a test vehicle or driving scenario designing
through a driving simulator app available through commercial software.

Table 11. Lane detection under different conditions to identify the gaps in knowledge.

Road Geometry Pavement Marking Weather Condition Speed

Sources

Straight

C
lothoid

H
yperbola

Structured

U
nstructured

D
ay

N
ight

R
ain

[26] Borkar et al. (2009)
√

–
√ √

– – – – –

[28] Lu et al. (2002)
√

– –
√

–
√

– – –

[29] Zhang & Shi (2009)
√

– –
√

– –
√

– –

[32] Hong et al. (2018)
√

– –
√

–
√

– – –

[33] Park, H. et al. (2018)
√

– –
√

–
√

– – Low (40 km/h) &
high (80 km/h)

[34] EI Hajiouji, H. (2019)
√

– –
√

–
√ √

– 120 km/h

[35] Samadzadegan et al. (2006) – –
√ √

–
√ √

– –

[36] Cheng et al. (2010)
√ √

–
√

–
√

– – –

[40] Yeniaydin et al. (2019)
√

–
√

–
√ √

– – –

[41] Kemsoaram et al. (2019)
√

–
√

–
√

– – – –

[43] Son et al. (2019)
√

–
√ √

–
√

– –

[47] Chen et al. (2018)
√ √

–
√

–
√

– – –

[52] Suh et al. (2019)
√

–
√ √

–
√

– – 60–80 km/h

[53] Gopalan et al. (2018)
√

–
√ √ √ √

– – –

[74] Wu et al. (2008)
√

– –
√

–
√

– – 40 km/h
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Table 11. Cont.

Road Geometry Pavement Marking Weather Condition Speed

Sources

Straight

C
lothoid

H
yperbola

Structured

U
nstructured

D
ay

N
ight

R
ain

[75] Liu & Li et al. (2018)
√

–
√ √

–
√ √ √

–

[76] Han et al. (2019)
√

– –
√ √ √

– – 30–50 km/h

[77] Tominaga et al. (2019) – – –
√

–
√

– – 80 km/h

[78] Chen Z et al. (2019)
√

–
√ √

– – – – –

[79] Feng et al. (2019)
√

–
√ √

–
√ √ √

120 km/h
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Lane markings are usually yellow and white, although reflector lanes are designated
with other colors. The number of lanes and their width varies per country. Due to the
existence of shadows, there may be problems with vision clarity. The surrounding cars may
obstruct the lane markings. Likewise, there is a dramatic shift in lighting as the car exits a
tunnel. As a result, excessive light has an impact on visual clarity. Due to different weather
conditions such as rain, fog, and snow, the visibility of the lane markings decreases. In
the evening, visibility may be reduced. These difficulties in lane recognition and tracking
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lead to a drop in the performance of lane detection and tracking algorithms. Therefore, the
development of a reliable lane detecting system is a challenge.

5. Conclusions

Over the last decade, many researchers have researched ADAS. This field continues to
grow, as fully autonomous vehicles are predicted to enter the market soon [80,81]. There
are limited studies in the literature that provides the state-of-art in lane detection and
tracking algorithms and evaluation of the algorithms. To fulfil this gap, in this study, we
have provided a comprehensive review of different methods of lane detection and tracking
algorithms. In addition, we presented a summary of different data sets that researchers
have used to test the algorithms, along with the approaches for evaluating the performance
of the algorithms. Further, a summary of patented works has also been provided.

The use of a Learning-based approach is gaining popularity because it is computa-
tionally more efficient and provides reasonable results in real-time scenarios. The unavail-
ability of rigorous and varied datasets to test the algorithms have been a constraint to
the researchers. However, using synthetic sensor data generated by using a test vehicle
or driving scenario through a vehicle simulator app availability in commercial software
has opened the door for testing algorithms. Likewise, the following areas need more
investigations in future:

• lane detection and tracking under different complex geometric road design models,
e.g., hyperbola and clothoid

• achieving high reliability for detecting and tracking the lane under different weather
conditions, different speeds and weather conditions, and

• lane detection and tracking for the unstructured roads

This study aimed to comprehensively review previous literature on lane detection and
tracking for ADAS and identify gaps in knowledge for future research. This is important
because limited studies provide state-of-art lane detection and tracking algorithms for
ADAS and a holistic overview of works in this area. The quantitative assessment of
mathematical models and parameters is beyond the scope of this work. It is anticipated
that this review paper will be a valuable resource for the researchers intending to develop
reliable lane detection and tracking algorithms for emerging autonomous vehicles in future.
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