Evaluating the Disaster Risk of the COVID-19 Pandemic Using an Ecological Niche Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. COVID-19 Distribution Data
2.2. Environmental Parameters
2.3. Methods
3. Results
3.1. Model Evaluation
3.2. Epidemic Risk Level
3.3. Key Environmental Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Anastassopoulou, C.; Russo, L.; Tsakris, A.; Siettos, C. Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLoS ONE 2020, 15, e0230405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diao, Y.; Liu, X.J.; Wang, T.; Zeng, Y.F.; Dong, C.; Zhang, Y.M.; Zhou, C.L.; Liu, D.F.; Hu, Z.L. Estimating the cure rate and case fatality rate of the ongoing epidemic COVID-19. Chin. Sci. Bull. 2020, 65, 2342–2347. (In Chinese) [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease 2019 (COVID-19): Situation Report; WHO: Geneva, Switzerland, 2020; Volume 94. [Google Scholar]
- Lotfi, M.; Hamblin, M.R.; Rezaei, N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin. Chim. Acta 2020, 508, 254–266. [Google Scholar] [CrossRef]
- Baker, M.G.; Wilson, N.; Anglemyer, A. Successful elimination of Covid-19 transmission in New Zealand. N. Engl. J. Med. 2020, 383, e56. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F. What does the China’s economic recovery after COVID-19 pandemic mean for the economic growth and energy consumption of other countries? J. Clean Prod. 2021, 295, 126265. [Google Scholar] [CrossRef]
- Jin, H.; Wang, H.; Li, X.; Zheng, W.; Ye, S.; Zhang, S.; Zhou, J.; Pennington, M. Economic burden of COVID-19, China, January–March, 2020: A cost-of-illness study. Bull. World Health Organ. 2021, 99, 112. [Google Scholar] [CrossRef]
- He, F.; Shang, X.; Ling, F.; Chen, Z.; Fu, T.; Lin, J.; Wang, Z. A practice of using five-colour chart to guide the control of COVID-19 and resumption of work in Zhejiang Province, China. Sci Rep. 2021, 11, 1–7. [Google Scholar]
- Liu, Q.H.; Bento, A.I.; Yang, K.; Zhang, H.; Yang, X.; Merler, S.; Vespignani, A.; Lv, J.; Yu, H.; Zhang, W.; et al. The COVID-19 outbreak in Sichuan, China: Epidemiology and impact of interventions. PLoS Comput. Biol. 2020, 16, e1008467. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zeng, J.; Liu, R.; Liu, Y.; Zhou, X.; Zhou, L.; Dong, T.; Cha, Y.; Wang, Z.; Deng, Y.; et al. Should we remain hopeful? The key 8 weeks: Spatiotemporal epidemic characteristics of COVID-19 in Sichuan Province and its comparative analysis with other provinces in China and global epidemic trends. BMC Infect. Dis. 2020, 20, 807. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wu, J.; Peng, J.; Lu, L. The perceived impact of the Covid-19 epidemic: Evidence from a sample of 4807 SMEs in Sichuan Province, China. Environ. Hazards 2020, 19, 323–340. [Google Scholar] [CrossRef]
- Chen, Z.L.; Zhang, Q.; Lu, Y.; Guo, Z.M.; Zhang, X.; Zhang, W.J.; Guo, C.G.; Li, Q.L.; Han, X.L.; Lu, J.H. Distribution of the COVID-19 epidemic and correlation with population emigration from Wuhan, China. Chin. Med. J. 2020, 133, 1044. [Google Scholar] [CrossRef]
- Xie, Z.; Qin, Y.; Li, Y.; Shen, W.; Zheng, Z.; Liu, S. Spatial and temporal differentiation of COVID-19 epidemic spread in mainland China and its influencing factors. Sci. Total Environ. 2020, 744, 140929. [Google Scholar] [CrossRef]
- Han, Y.; Yang, L.; Jia, K.; Li, J.; Feng, S.; Chen, W.; Zhao, W.; Pereira, P. Spatial distribution characteristics of the COVID-19 pandemic in Beijing and its relationship with environmental factors. Sci. Total Environ. 2021, 761, 144257. [Google Scholar] [CrossRef]
- Zhao, H.B.; Wei, J.C.; Wang, S.; Liu, Y.X.; Li, G.H.; Miao, C.H. The Risk Assessment of Covid-2019 Epidemic in Metropolis and Precise Prevention and Control Measures: A Case Study of Zhengzhou City. Econ. Geogr. 2020, 40, 103–109, 124. [Google Scholar]
- Wang, Q.; Dong, W.; Yang, K.; Ren, Z.; Huang, D.; Zhang, P.; Wang, J. Temporal and spatial analysis of COVID-19 transmission in China and its influencing factors. Int. J. Infect. Dis. 2021, 105, 675–685. [Google Scholar] [CrossRef]
- Plank, M.J.; Binny, R.N.; Hendy, S.C.; Lustig, A.; James, A.; Steyn, N. A stochastic model for COVID-19 spread and the effects of Alert Level 4 in Aotearoa New Zealand. MedRxiv 2020. [Google Scholar] [CrossRef]
- Azevedo, L.; Pereira, M.J.; Ribeiro, M.C.; Soares, A. Geostatistical COVID-19 infection risk maps for Portugal. Int. J. Health Geogr. 2020, 19, 1–8. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Krapivin, V.F. A new model for the spread of COVID-19 and the improvement of safety. Saf. Sci. 2020, 132, 104962. [Google Scholar] [CrossRef] [PubMed]
- Sukov, A.I.; Soldatov, V.Y.; Krapivin, V.F.; Cracknell, A.P.; Varotsos, C.A. A sequential analysis method for the prediction of tropical hurricanes. Int. J. Remote Sens. 2008, 29, 2787–2798. [Google Scholar] [CrossRef]
- Edjoc, R.; Atchessi, N.; Lien, A.; Smith, B.A.; Gabrani-Juma, I.; Abalos, C.; Heisz, M. Assessing the progression of the COVID-19 pandemic in Canada using testing data and time-dependent reproduction numbers. Can. J. Public Health 2020, 111, 926–938. [Google Scholar] [CrossRef] [PubMed]
- Baba, I.A.; Nasidi, B.A.; Baleanu, D.; Saadi, S.H. A mathematical model to optimize the available control measures of COVID–19. Ecol. Complex. 2021, 46, 100930. [Google Scholar] [CrossRef]
- Higazy, M. Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic. Chaos Solitons Fractals 2020, 138, 110007. [Google Scholar] [CrossRef] [PubMed]
- Van Doremalen, N.; Bushmaker, T.; Munster, V.J. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Eurosurveillance 2013, 18, 20590. [Google Scholar] [CrossRef] [Green Version]
- Yip, C.; Chang, W.L.; Yeung, K.H.; Yu, I.T. Possible meteorological influence on the severe acute respiratory syndrome (SARS) community outbreak at Amoy Gardens, Hong Kong. J. Environ. Health 2007, 70, 39–46. [Google Scholar] [PubMed]
- Adhikari, D.; Tiwary, R.; Singh, P.P.; Upadhaya, K.; Singh, B.; Haridasan, K.E.; Barik, S.K. Ecological niche modeling as a cumulative environmental impact assessment tool for biodiversity assessment and conservation planning: A case study of critically endangered plant Lagerstroemia minuticarpa in the Indian Eastern Himalaya. J. Environ. Manag. 2019, 243, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Mo, H.H.; Lee, G.S.; Lee, S.E.; Lee, J.H.; Cho, K. Predicting the potential geographic distribution of Thrips palmi in Korea, using the CLIMEX model. Entomol. Res. 2014, 44, 47–57. [Google Scholar] [CrossRef]
- Poutsma, J.; Loomans, A.J.M.; Aukema, B.; Heijerman, T. Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model. Biocontrol 2008, 53, 103–125. [Google Scholar] [CrossRef]
- Ashraf, U.; Ali, H.; Chaudry, M.N.; Ashraf, I.; Batool, A.; Saqib, Z. Predicting the potential distribution of Olea ferruginea in Pakistan incorporating climate change by using Maxent model. Sustainability 2016, 8, 722. [Google Scholar] [CrossRef] [Green Version]
- Mousazade, M.; Ghanbarian, G.; Pourghasemi, H.R.; Safaeian, R.; Cerdà, A. Maxent data mining technique and its comparison with a bivariate statistical model for predicting the potential distribution of Astragalus Fasciculifolius Boiss. in Fars, Iran. Sustainability 2019, 11, 3452. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zhang, Y.; Jia, D.; Tao, J. Species distribution modeling of Sassafras tzumu and implications for forest management. Sustainability 2020, 12, 4132. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Q.J.; Wang, B.; Gong, X.; Duan, C.S.; Zhang, Y.B. The habitat suitability evaluation of Salweenia bouffordiana based on MaxEnt model. Acta Ecol. Sin. 2020, 40, 6077–6085. [Google Scholar]
- Wei, B.; Wang, R.; Hou, K.; Wang, X.; Wu, W. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Glob. Ecol. Conserv. 2018, 16, e00477. [Google Scholar] [CrossRef]
- Borthakur, S.K.; Baruah, P.S.; Deka, K.; Das, P.; Sarma, B.; Adhikari, D.; Tanti, B. Habitat distribution modelling for improving conservation status of Brucea mollis Wall. ex Kurz-An endangered potential medicinal plant of Northeast India. J. Nat. Conserv. 2018, 43, 104–110. [Google Scholar] [CrossRef]
- Zeng, Y.W.; Low, B.W.; Yeo, D.C. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecol. Model. 2016, 341, 5–13. [Google Scholar] [CrossRef]
- Singh, P.B.; Mainali, K.; Jiang, Z.; Thapa, A.; Subedi, N.; Awan, M.N.; Llyas, O.; Luitel, H.; Zhou, Z.X.; Hu, H.J. Projected distribution and climate refugia of endangered Kashmir musk deer Moschus cupreus in greater Himalaya, South Asia. Sci. Rep. 2020, 10, 1–13. [Google Scholar]
- Schmidt, H.; Radinger, J.; Teschlade, D.; Stoll, S. The role of spatial units in modelling freshwater fish distributions: Comparing a subcatchment and river network approach using maxent. Ecol. Model. 2020, 418, 108937. [Google Scholar] [CrossRef]
- Yu, H.Y.; Sun, C.K.; Huo, X.; Hu, J.L.; Qi, X.; Xu, K. Predicting the transmission risk of H7N9 using ecological niche modeling. Mod. Prev. Med. 2019, 46, 206–210, 229. (In Chinese) [Google Scholar]
- Hu, X.K.; Hao, Y.W.; Xia, S.; Guo, Y.H.; Xue, J.B.; Zhang, Y.; Wang, L.F.; Dong, Y.; Xu, J.; Li, S.Z. Detection of schistosomiasis transmission risks in Yunnan Province based on ecological niche modeling. Chin. J. Parasi Parasi Dis. 2020, 38, 80–86, 94. (In Chinese) [Google Scholar]
- Li, Q.; Ren, H.; Zheng, L.; Cao, W.; Zhang, A.; Zhuang, D.; Lu, L.; Jiang, H. Ecological niche modeling identifies fine-scale areas at high risk of dengue fever in the pearl river delta, China. Int. J. Environ. Res. Public Health 2017, 14, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaiyos, J.; Suwannatrai, K.; Thinkhamrop, K.; Pratumchart, K.; Sereewong, C.; Tesana, S.; Kaewkes, S.; Sripa, B.; Wongsaroj, T.; Suwannatrai, A.T. MaxEnt modeling of soil-transmitted helminth infection distributions in Thailand. Parasitol. Res. 2018, 117, 3507–3517. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Sun, C.K.; Liu, W.D.; Li, Z.F.; Tan, Z.M.; Wang, X.C.; Hu, J.L.; Shi, S.Q.; Bao, C.J. Scrub typhus in Jiangsu Province, China: Epidemiologic features and spatial risk analysis. BMC Infect. Dis. 2018, 18, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalghaf, B.; Chlif, S.; Mayala, B.; Ghawar, W.; Bettaieb, J.; Harrabi, M.; Benie, F.B.; Michael, E.; Salah, A.B. Ecological niche modeling for the prediction of the geographic distribution of cutaneous leishmaniasis in Tunisia. Am. J. Trop. Med. Hyg. 2016, 94, 844–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coro, G. A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rate. Ecol. Model. 2020, 431, 109187. [Google Scholar] [CrossRef]
- Contina, A.; Yanco, S.W.; Pierce, A.K.; DePrenger-Levin, M.; Wunder, M.B.; Neophytou, A.M.; Phoehytou Lostroh, C.; Telford, R.J.; Benito, B.M.; Chipperfield, J.; et al. Comment on “A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rate”, author Coro. Ecol. Model. 2020, 436, 109288. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Hernández, O.; García, L.V. On the usefulness of the bioclimatic correlative models of SARS-CoV-2. Environ. Res. 2021, 195, 110818. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Zhao, L.; Zhang, A.; Song, L.; Liao, Y.; Lu, W.; Cui, C. Early forecasting of the potential risk zones of COVID-19 in China’s megacities. Sci. Total Environ. 2020, 729, 138995. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Deng, X.; Xiang, W.; Chen, L.; Ouyang, S. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Ecol. Inform. 2021, 64, 101393. [Google Scholar] [CrossRef]
- Hu, X.; Wu, F.C.; Guo, W.; Liu, N. Identification of Potential Cultivation Region for Santalum album in China by the MaxEnt Ecologic Niche Model. Sci. Silv. Sin. 2014, 50, 27–33. [Google Scholar]
- Zou, X.Y.; Fang, Z.X.; Xiong, S.W. A discrete particle swarm optimization method for assignment of supermarket resources to urban residential communities under the situation of epidemic control. Appl. Soft. Comput. 2021, 98, 106832. [Google Scholar] [CrossRef]
- Li, J.; Hallsworth, A.G.; Coca-Stefaniak, J.A. Changing grocery shopping behaviours among Chinese consumers at the outset of the COVID-19 outbreak. Tijdschr. Econ. Soc. Geogr. 2020, 111, 574–583. [Google Scholar] [CrossRef]
- Fan, Z.; Pei, T.; Ma, T.; Du, Y.; Song, C.; Liu, Z.; Zhou, C. Estimation of urban crowd flux based on mobile phone location data: A case study of Beijing, China. Computers. Comput. Environ. Urban Syst. 2018, 69, 114–123. [Google Scholar] [CrossRef]
- Pan, J. Safety Risks of Urban Spatial Agglomeration and Their Prevention and Control: Based on the Prevention and Control of Coronavirus (COVID-19) Pandemic. Chin. J. Urban Environ. Stud. 2020, 8, 2050001. [Google Scholar] [CrossRef]
- Tong, Y.; Ma, Y.; Liu, H.M. The short-term impact of COVID-19 epidemic on the migration of Chinese urban population and the evaluation of Chinese urban resilience. Acta Geogr. Sin. 2020, 75, 2505–2520. [Google Scholar]
- Wang, H.; Xia, Q.; Xiong, Z.; Li, Z.; Xiang, W.; Yuan, Y.; Liu, Y.; Li, Z. The psychological distress and coping styles in the early stages of the 2019 coronavirus disease (COVID-19) epidemic in the general mainland Chinese population: A web-based survey. PLoS ONE 2020, 15, e0233410. [Google Scholar] [CrossRef] [PubMed]
- Yaolin, S.; Huihong, C.; Tianxiang, R.; Luyuan, H. Impact of returning population migration after the Chinese Spring Festival on the COVID-19 epidemic. Chin. Sci. Bull. 2020, 65, 2314–2320. [Google Scholar]
- Zhao, Z.; Li, X.; Liu, F.; Zhu, G.; Ma, C.; Wang, L. Prediction of the COVID-19 spread in African countries and implications for prevention and control: A case study in South Africa, Egypt, Algeria, Nigeria, Senegal and Kenya. Sci. Total Environ. 2020, 729, 138959. [Google Scholar] [CrossRef]
- Menebo, M.M. Temperature and precipitation associate with Covid-19 new daily cases: A correlation study between weather and Covid-19 pandemic in Oslo, Norway. Sci. Total Environ. 2020, 737, 139659. [Google Scholar] [CrossRef]
- Notari, A. Temperature dependence of COVID-19 transmission. Sci. Total Environ. 2021, 763, 144390. [Google Scholar] [CrossRef]
- Prata, D.N.; Rodrigues, W.; Bermejo, P.H. Temperature significantly changes COVID-19 transmission in (sub) tropical cities of Brazil. Sci. Total Environ. 2020, 729, 138862. [Google Scholar] [CrossRef]
- Pramanik, M.; Chowdhury, K.; Juel Rana, M.; Bisht, P.; Pal, R.; Szabo, S.; Pal, I.; Behera, B.; Liang, Q.H.; Padmadas, S.S.; et al. Climatic influence on the magnitude of COVID-19 outbreak: A stochastic model-based global analysis. Int. J. Environ. Health Res. 2020, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health 2020, 25, 278–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X. Research on the influence of trade circulation on coastal agricultural economic growth. Coast. Res. 2020, 115, 96–98. [Google Scholar] [CrossRef]
- Wen, M. Relocation and agglomeration of Chinese industry. J. Dev. Econ. 2004, 73, 329–347. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.D.; Li, H.L.; Cao, Y.E. Influence of Meteorological Factors on the COVID-19 Transmission with Season and Geographic Location. Int. J. Environ. Res. Public Health 2021, 18, 484. [Google Scholar] [CrossRef]
- Sun, C.; Cheng, C.; Zhao, T.; Chen, Y.; Ahmed, M.A. Frozen food: Is it safe to eat during COVID-19 pandemic? Public Health 2021, 190, e26. [Google Scholar] [CrossRef]
- Rizou, M.; Galanakis, I.M.; Aldawoud, T.M.; Galanakis, C.M. Safety of foods, food supply chain and environment within the COVID-19 pandemic. Trends Food Sci. Technol. 2020, 102, 293–299. [Google Scholar] [CrossRef]
- Prochazka, J.; Scheel, T.; Pirozek, P.; Kratochvil, T.; Civilotti, C.; Bollo, M.; Maran, D.A. Data on work-related consequences of COVID-19 pandemic for employees across Europe. Data Brief. 2020, 32, 106174. [Google Scholar] [CrossRef]
- Mecenas, P.; Bastos, R.T.D.R.M.; Vallinoto, A.C.R.; Normando, D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS ONE 2020, 15, e0238339. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.F.; Ma, B.; Komal, B.; Bashir, M.A.; Tan, D.; Bashir, M. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci. Total Environ. 2020, 728, 138835. [Google Scholar] [CrossRef] [PubMed]
- Sarmadi, M.; Marufi, N.; Moghaddam, V.K. Association of COVID-19 global distribution and environmental and demographic factors: An updated three-month study. Environ. Res. 2020, 188, 109748. [Google Scholar] [CrossRef] [PubMed]
Code | Variable | Unit | Resolution |
---|---|---|---|
Bio1 | Annual mean temperature | °C | 1 km |
Bio2 | Annual precipitation | mm | 1 km |
Bio3 | Wettest-month precipitation | mm | 1 km |
Bio4 | Wettest-season precipitation | mm | 1 km |
Bio5 | Coldest-season precipitation | mm | 1 km |
Bio6 | Catering | / | 1 km |
Bio7 | Shopping | / | 1 km |
Bio8 | Real estate | / | 1 km |
Bio9 | Company businesses | / | 1 km |
Bio10 | Transportation | / | 1 km |
Bio11 | Hotels | / | 1 km |
Bio12 | Seafood markets | / | 1 km |
Bio13 | Training institutions | / | 1 km |
Bio14 | Fever clinics | / | 1 km |
Bio15 | Medical facilities | / | 1 km |
Area | Replicates | Maximum Iterations | Random Test Percentage (%) |
---|---|---|---|
Beijing | 15 | 500 | 25 |
Shenyang | 10 | 500 | 20 |
Dalian | 10 | 500 | 30 |
Shijiazhuang | 10 | 1000 | 30 |
Beijing | Contribution | Shenyang | Contribution | Dalian | Contribution | Shijiazhuang | Contribution |
---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | ||||
Bio7 | 43.8 | Bio12 | 61.3 | Bio8 | 59.2 | Bio6 | 19.3 |
Bio1 | 14.1 | Bio13 | 20.3 | Bio13 | 21.9 | Bio11 | 19.1 |
Bio9 | 13.2 | Bio5 | 9.2 | Bio12 | 7.8 | Bio15 | 14.1 |
Bio3 | 5.7 | Bio12 | 10.2 | ||||
Bio12 | 5.2 | Bio5 | 9.8 | ||||
Bio4 | 6.8 | ||||||
Bio2 | 5.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, P.; Gao, Y.; Guo, L.; Huo, T.; Li, Y.; Zhang, X.; Li, Y.; Peng, C.; Meng, F. Evaluating the Disaster Risk of the COVID-19 Pandemic Using an Ecological Niche Model. Sustainability 2021, 13, 11667. https://doi.org/10.3390/su132111667
He P, Gao Y, Guo L, Huo T, Li Y, Zhang X, Li Y, Peng C, Meng F. Evaluating the Disaster Risk of the COVID-19 Pandemic Using an Ecological Niche Model. Sustainability. 2021; 13(21):11667. https://doi.org/10.3390/su132111667
Chicago/Turabian StyleHe, Ping, Yu Gao, Longfei Guo, Tongtong Huo, Yuxin Li, Xingren Zhang, Yunfeng Li, Cheng Peng, and Fanyun Meng. 2021. "Evaluating the Disaster Risk of the COVID-19 Pandemic Using an Ecological Niche Model" Sustainability 13, no. 21: 11667. https://doi.org/10.3390/su132111667
APA StyleHe, P., Gao, Y., Guo, L., Huo, T., Li, Y., Zhang, X., Li, Y., Peng, C., & Meng, F. (2021). Evaluating the Disaster Risk of the COVID-19 Pandemic Using an Ecological Niche Model. Sustainability, 13(21), 11667. https://doi.org/10.3390/su132111667