Peer-to-Peer Confirmation, Positive Automatic Thoughts, and Flourishing of Computer Programming E-Learners
Abstract
:1. Introduction
1.1. Student-Centered Approach and Peer-to-Peer Confirmation
1.2. Psychological Flourishing
- Hupert and So [47] identify ten features of positive well-being: positive feeling and positive functioning, i.e., hedonic, and eudemonic aspects of well-being: competence, emotional stability, engagement, meaning, optimism, positive emotion, positive relationships, resilience, self-esteem, and vitality [47].
- Keyes’ [48] theoretical model of flourishing consists of positive relationship, positive affect (interest), purpose in life, positive affect (happiness), social contribution, social integration, social growth, social acceptance, social coherence, environmental mastery, personal growth, autonomy, life satisfaction [48].
1.3. Positive Automatic Thoughts
2. Materials and Methods
2.1. Sample
2.2. Instruments
2.2.1. The Flourishing Scale
2.2.2. The Automatic Thoughts Questionnaire—Positive
2.2.3. The Student-to-Student Confirmation Scale
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Computer Programming E-Learners Differ from Other E-Learners in Flourishing and Positive Daily Functioning
4.2. Computer Programming E-Learners Differ in Their Peer-to-Peer Confirmation from Other E-Learners
4.3. Positive Automatic Thoughts Partially Predict the Flourishing of Computer Programming and Other E-Learners
4.4. Positive Automatic Thoughts and Flourishing Predict Peer-to-Peer Confirmation in Group of Computer Programming E-Learners
4.5. Associations between the Study Variables Partially Differ in the Compared Groups
4.6. Theoretical Implications
4.7. Practical Implications
4.8. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dirzyte, A.; Vijaikis, A.; Perminas, A.; Rimasiute-knabikiene, R. Associations between Depression, Anxiety, Fatigue, and Learning Motivating Factors in e-Learning-Based Computer Programming Education. Int. J. Environ. Res. Public Health 2021, 18, 9158. [Google Scholar] [CrossRef] [PubMed]
- Escudero-Castillo, I.; Mato-Díaz, F.J.; Rodriguez-Alvarez, A. Furloughs, Teleworking and Other Work Situations during the COVID-19 Lockdown: Impact on Mental Well-Being. Int. J. Environ. Res. Public Health 2021, 18, 2898. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, S.A.; Garcia, J.; Stewart, C.; Rodriguez, C. The mental and behavioral health impact of COVID-19 stay at home orders on social work students. Soc. Work Educ. 2021, 1–15. [Google Scholar] [CrossRef]
- Chadee, D.; Ren, S.; Tang, G. Is digital technology the magic bullet for performing work at home? Lessons learned for post COVID-19 recovery in hospitality management. Int. J. Hosp. Manag. 2021, 92, 102718. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Xu, R.; Stratton, T.D.; Kavcic, V.; Luo, D.; Hou, F.; Bi, F.; Jiao, R.; Song, K.; Jiang, Y. Sex differences and psychological stress: Responses to the COVID-19 pandemic in China. BMC Public Health 2021, 21, 79. [Google Scholar] [CrossRef] [PubMed]
- Kanzler, K.E.; Ogbeide, S. Addressing trauma and stress in the COVID-19 pandemic: Challenges and the promise of integrated primary care. Psychol. Trauma Theory Res. Pract. Policy 2020, 12, S177–S179. [Google Scholar] [CrossRef] [PubMed]
- Afulani, P.A.; Gyamerah, A.O.; Nutor, J.J.; Laar, A.; Aborigo, R.A.; Malechi, H.; Sterling, M.; Awoonor-Williams, J.K. Inadequate preparedness for response to COVID-19 is associated with stress and burnout among healthcare workers in Ghana. PLoS ONE 2021, 16, e0250294. [Google Scholar] [CrossRef]
- Bond, M.; Bedenlier, S.; Marín, V.I.; Händel, M. Emergency remote teaching in higher education: Mapping the first global online semester. Int. J. Educ. Technol. High. Educ. 2021, 18, 50. [Google Scholar] [CrossRef]
- Othman, N.; Ahmad, F.; El Morr, C.; Ritvo, P. Perceived impact of contextual determinants on depression, anxiety and stress: A survey with university students. Int. J. Ment. Health Syst. 2019, 13, 17. [Google Scholar] [CrossRef] [Green Version]
- Fawaz, M.; Samaha, A. E-learning: Depression, anxiety, and stress symptomatology among Lebanese university students during COVID-19 quarantine. Nurs. Forum 2021, 56, 52–57. [Google Scholar] [CrossRef]
- Al-Tammemi, A.B.; Akour, A.; Alfalah, L. Is It Just About Physical Health? An Online Cross-Sectional Study Exploring the Psychological Distress Among University Students in Jordan in the Midst of COVID-19 Pandemic. Front. Psychol. 2020, 11, 562213. [Google Scholar] [CrossRef]
- Beck, A.T. Theoretical perspectives on clinical anxiety. In Anxiety and the Anxiety Disorders; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1985; pp. 183–196. ISBN 0-89859-532-0. [Google Scholar]
- Borkovec, T.D.; Inz, J. The nature of worry in generalized anxiety disorder: A predominance of thought activity. Behav. Res. Ther. 1990, 28, 153–158. [Google Scholar] [CrossRef]
- Reiss, S. Expectancy model of fear, anxiety, and panic. Clin. Psychol. Rev. 1991, 11, 141–153. [Google Scholar] [CrossRef]
- Ehlers, A.; Clark, D.M. A cognitive model of posttraumatic stress disorder. Behav. Res. Ther. 2000, 38, 319–345. [Google Scholar] [CrossRef]
- Clark, D.A.; Beck, A.T. Cognitive Therapy of Anxiety Disorders: Science and Practice; Guilford Press: New York, NY, USA, 2010; ISBN 978-1-60623-434-1. [Google Scholar]
- Ingram, R.E.; Wisnicki, K.S. Assessment of positive automatic cognition. J. Consult. Clin. Psychol. 1988, 56, 898–902. [Google Scholar] [CrossRef]
- Lightsey, O.R. “Thinking positive” as a stress buffer: The role of positive automatic cognitions in depression and happiness. J. Couns. Psychol. 1994, 41, 325–334. [Google Scholar] [CrossRef]
- Berndt, E.R.; Koran, L.M.; Finkelstein, S.N.; Gelenberg, A.J.; Kornstein, S.G.; Miller, I.M.; Thase, M.E.; Trapp, G.A.; Keller, M.B. Lost human capital from early-onset chronic depression. Am. J. Psychiatry 2000, 157, 940–947. [Google Scholar] [CrossRef]
- Zivcic-Becirevic, I. The Role of Automatic Thoughts and Test Anxiety in University Students’ Achievements. Drus. Istraz. 2003, 12, 703–720. [Google Scholar]
- Fletcher, J.M. Adolescent depression: Diagnosis, treatment, and educational attainment. Health Econ. 2008, 17, 1215–1235. [Google Scholar] [CrossRef]
- Maric, M.; Heyne, D.A.; de Heus, P.; van Widenfelt, B.M.; Westenberg, P.M. The Role of Cognition in School Refusal: An Investigation of Automatic Thoughts and Cognitive Errors. Behav. Cogn. Psychother. 2012, 40, 255–269. [Google Scholar] [CrossRef]
- Antaramian, S. Assessing Psychological Symptoms and Well-Being: Application of a Dual-Factor Mental Health Model to Understand College Student Performance. J. Psychoeduc. Assess. 2015, 33, 419–429. [Google Scholar] [CrossRef]
- Howell, A.J. Flourishing: Achievement-related correlates of students’ well-being. J. Posit. Psychol. 2009, 4, 1–13. [Google Scholar] [CrossRef]
- Stuart, A. Student-centered learning. Learning 1997, 26, 53–56. [Google Scholar]
- McCombs, B.; Whisler, J.S. The Learner-Centered Classroom and School: Strategies for Increasing Student Motivation and Achievement; The Jossey-Bass Education Series; Jossey-Bass Inc.: San Francisco, CA, USA, 1997. [Google Scholar]
- Weimer, M. Learner-Centered Teaching: Five Key Changes to Practice; Jossey-Bass: San Francisco, CA, USA, 2002. [Google Scholar]
- Shikulo, L.; Lekhetho, M. Exploring student support services of a distance learning centre at a Namibian university. Cogent Soc. Sci. 2020, 6, 1737401. [Google Scholar] [CrossRef]
- Sánchez-Elvira Paniagua, A.; Simpson, O. Developing Student Support for Open and Distance Learning: The EMPOWER Project. J. Interact. Media Educ. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, K.K.; Bingham, S.G.; Carlson, R.E.; Prisbell, M.; Cruz, A.M.; Fus, D.A. Communication and connectedness in the classroom: Development of the connected classroom climate inventory. Commun. Res. Rep. 2004, 21, 264–272. [Google Scholar] [CrossRef]
- Goodboy, A.K. The Development and Validation of the Instructional Dissent Scale. Commun. Educ. 2011, 60, 422–440. [Google Scholar] [CrossRef]
- Sidelinger, R.J.; Booth-Butterfield, M. Co-constructing Student Involvement: An Examination of Teacher Confirmation and Student-to-Student Connectedness in the College Classroom. Commun. Educ. 2010, 59, 165–184. [Google Scholar] [CrossRef]
- Sollitto, M.; Johnson, Z.D.; Myers, S.A. Students’ Perceptions of College Classroom Connectedness, Assimilation, and Peer Relationships. Commun. Educ. 2013, 62, 318–331. [Google Scholar] [CrossRef]
- Johnson, Z.D.; LaBelle, S. Student-to-Student Confirmation in the College Classroom: An Initial Investigation of the Dimensions and Outcomes of Students’ Confirming Messages. Commun. Educ. 2016, 65, 44–63. [Google Scholar] [CrossRef]
- LaBelle, S.; Johnson, Z.D. Student-to-student confirmation in the college classroom: The development and validation of the Student-to-Student Confirmation Scale. Commun. Educ. 2018, 67, 185–205. [Google Scholar] [CrossRef]
- Johnson, Z.D.; LaBelle, S. Confirmation in the college classroom: The connections between teacher’s use of confirming messages and student’s own communicative behaviors. Commun. Res. Rep. 2020, 37, 172–181. [Google Scholar] [CrossRef]
- Sieburg, E. Interpersonal Confirmation: A Paradigm for Conceptualization and Measurement. Paper presented at the annual meeting of the International Communication Association, Montreal, QC, Canada, 25–29 April 1973. [Google Scholar]
- Ellis, K. Perceived teacher confirmation: The development and validation of an instrument and two studies of the relationship to cognitive and affective learning. Hum. Commun. Res. 2000, 26, 264–291. [Google Scholar] [CrossRef]
- Goodboy, A.K.; Myers, S.A. The Effect of Teacher Confirmation on Student Communication and Learning Outcomes. Commun. Educ. 2008, 57, 153–179. [Google Scholar] [CrossRef]
- Mazer, J.P. Validity of the Student Interest and Engagement Scales: Associations with Student Learning Outcomes. Commun. Stud. 2013, 64, 125–140. [Google Scholar] [CrossRef]
- LaBelle, S.; Johnson, Z.D. The relationship of student-to-student confirmation and student engagement. Commun. Res. Rep. 2020, 37, 234–242. [Google Scholar] [CrossRef]
- Diener, E.; Wirtz, D.; Tov, W.; Kim-Prieto, C.; Choi, D.; Oishi, S.; Biswas-Diener, R. New Well-being Measures: Short Scales to Assess Flourishing and Positive and Negative Feelings. Soc. Indic. Res. 2010, 97, 143–156. [Google Scholar] [CrossRef]
- Keyes, C.L.M.; Lopez, S.J. Toward a science of mental health: Positive directions in diagnosis and interventions. In Handbook of Positive Psychology; Oxford University Press: New York, NY, USA, 2002; pp. 45–59. ISBN 0-19-513533-4. [Google Scholar]
- Huppert, F.A. Psychological Well-being: Evidence Regarding its Causes and Consequences. Appl. Psychol. Health Well-Being 2009, 1, 137–164. [Google Scholar] [CrossRef]
- Keyes, C.L.M. The Mental Health Continuum: From Languishing to Flourishing in Life. J. Health Soc. Behav. 2002, 43, 207. [Google Scholar] [CrossRef] [Green Version]
- Ryff, C.D.; Singer, B. The Contours of Positive Human Health. Psychol. Inq. 1998, 9, 1–28. [Google Scholar] [CrossRef]
- Huppert, F.A.; So, T.T.C. Flourishing Across Europe: Application of a New Conceptual Framework for Defining Well-Being. Soc. Indic. Res. 2013, 110, 837–861. [Google Scholar] [CrossRef] [Green Version]
- Keyes, C.L.M. Mental Illness and/or Mental Health? Investigating Axioms of the Complete State Model of Health. J. Consult. Clin. Psychol. 2005, 73, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Seligman, M.E.P. Flourish: A Visionary New Understanding of Happiness and Well-Being; Simon & Schuster: New York, NY, USA, 2011; Volume 27. [Google Scholar]
- Hone, L.C.; Jarden, A.; Schofield, G.M.; Duncan, S. Measuring flourishing: The impact of operational definitions on the prevalence of high levels of wellbeing. Int. J. Wellbeing 2014, 4, 62–90. [Google Scholar] [CrossRef] [Green Version]
- Volstad, C.; Hughes, J.; Jakubec, S.L.; Flessati, S.; Jackson, L.; Martin-Misener, R. “You have to be okay with okay”: Experiences of flourishing among university students transitioning directly from high school. Int. J. Qual. Stud. Health Well-Being 2020, 15, 1834259. [Google Scholar] [CrossRef]
- Fink, J.E. Flourishing: Exploring Predictors of Mental Health Within the College Environment. J. Am. Coll. Health 2014, 62, 380–388. [Google Scholar] [CrossRef]
- Bowman, N.; Brandenberger, J.; Lapsley, D.; Hill, P.; Quaranto, J. Serving in College, Flourishing in Adulthood: Does Community Engagement During the College Years Predict Adult Well-Being? Appl. Psychol. Health Well-Being 2010, 2, 14–34. [Google Scholar] [CrossRef]
- Datu, J.A.D. Flourishing is Associated with Higher Academic Achievement and Engagement in Filipino Undergraduate and High School Students. J. Happiness Stud. 2018, 19, 27–39. [Google Scholar] [CrossRef]
- Lewis, A.D.; Huebner, E.S.; Reschly, A.L.; Valois, R.F. The Incremental Validity of Positive Emotions in Predicting School Functioning. J. Psychoeduc. Assess. 2009, 27, 397–408. [Google Scholar] [CrossRef]
- Isen, A.M.; Reeve, J. The Influence of Positive Affect on Intrinsic and Extrinsic Motivation: Facilitating Enjoyment of Play, Responsible Work Behavior, and Self-Control. Motiv. Emot. 2005, 29, 295–323. [Google Scholar] [CrossRef]
- Coffey, J.K.; Wray-Lake, L.; Mashek, D.; Branand, B. A Multi-Study Examination of Well-Being Theory in College and Community Samples. J. Happiness Stud. 2016, 17, 187–211. [Google Scholar] [CrossRef]
- Howell, A.J.; Buro, K. Measuring and Predicting Student Well-Being: Further Evidence in Support of the Flourishing Scale and the Scale of Positive and Negative Experiences. Soc. Indic. Res. 2015, 121, 903–915. [Google Scholar] [CrossRef]
- Green, J.; Nelson, G.; Martin, A.; Marsh, H. The causal ordering of self-concept and academic motivation and its effect on academic achievement. Int. Educ. J. 2006, 7, 534–546. [Google Scholar]
- Maltby, J.; Day, L.; McCutcheon, L.E.; Gillett, R.; Houran, J.; Ashe, D.D. Personality and coping: A context for examining celebrity worship and mental health. Br. J. Psychol. 2004, 95, 411–428. [Google Scholar] [CrossRef] [Green Version]
- Keyes, C.L.M.; Eisenberg, D.; Perry, G.S.; Dube, S.R.; Kroenke, K.; Dhingra, S.S. The Relationship of Level of Positive Mental Health With Current Mental Disorders in Predicting Suicidal Behavior and Academic Impairment in College Students. J. Am. Coll. Health 2012, 60, 126–133. [Google Scholar] [CrossRef]
- Gilman, R.; Huebner, E.S. Characteristics of Adolescents Who Report Very High Life Satisfaction. J. Youth Adolesc. 2006, 35, 293–301. [Google Scholar] [CrossRef]
- Heffner, A.L.; Antaramian, S.P. The Role of Life Satisfaction in Predicting Student Engagement and Achievement. J. Happiness Stud. 2016, 17, 1681–1701. [Google Scholar] [CrossRef]
- Huebner, E.S.; Hills, K.J.; Siddall, J.; Gilman, R. Life satisfaction and schooling. In Handbook of Positive Psychology in Schools, 2nd ed.; Educational Psychology Handbook Series; Routledge/Taylor & Francis Group: New York, NY, USA, 2014; pp. 192–207. ISBN 978-0-415-62185-4. [Google Scholar]
- Long, R.F.; Huebner, E.S. Differential Validity of Global and Domain-Specific Measures of Life Satisfaction in the Context of Schooling. Child Indic. Res. 2014, 7, 671–694. [Google Scholar] [CrossRef]
- Brighouse, H. On Education; Routledge: London, UK; New York, NY, USA, 2006; ISBN 041532789X. [Google Scholar]
- Curwen, B.; Palmer, S.; Ruddell, P. Brief Cognitive Behaviour Therapy; SAGE Publications Ltd.: London, UK, 2000; ISBN 9780761958017. [Google Scholar]
- Evans, J.S.B.T.; Stanovich, K.E. Dual-Process Theories of Higher Cognition. Perspect. Psychol. Sci. 2013, 8, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.S. Balanced states of mind in psychopathology and psychological well-being. Int. J. Psychol. 2010, 45, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Gray, G. A Review of Psychometric Data Analysis and Applications in Modelling of Academic Achievement in Tertiary Education. J. Learn. Anal. 2014, 1, 75–106. [Google Scholar] [CrossRef] [Green Version]
- Chamorro-Premuzic, T.; Furnham, A. A possible model for understanding the personality-intelligence interface. Br. J. Psychol. 2004, 95, 249–264. [Google Scholar] [CrossRef]
- Chamorro-Premuzic, T.; Furnham, A. Personality, intelligence and approaches to learning as predictors of academic performance. Personal. Individ. Differ. 2008, 44, 1596–1603. [Google Scholar] [CrossRef]
- De Feyter, T.; Caers, R.; Vigna, C.; Berings, D. Unraveling the impact of the Big Five personality traits on academic performance: The moderating and mediating effects of self-efficacy and academic motivation. Learn. Individ. Differ. 2012, 22, 439–448. [Google Scholar] [CrossRef]
- Law, K.M.Y.; Lee, V.C.S.; Yu, Y.T. Learning motivation in e-learning facilitated computer programming courses. Comput. Educ. 2010, 55, 218–228. [Google Scholar] [CrossRef]
- Hawi, N. Causal attributions of success and failure made by undergraduate students in an introductory-level computer programming course. Comput. Educ. 2010, 54, 1127–1136. [Google Scholar] [CrossRef]
- Blut, M.; Wang, C. Technology readiness: A meta-analysis of conceptualizations of the construct and its impact on technology usage. J. Acad. Mark. Sci. 2020, 48, 649–669. [Google Scholar] [CrossRef] [Green Version]
- Scherer, R.; Siddiq, F.; Sánchez Viveros, B. The cognitive benefits of learning computer programming: A meta-analysis of transfer effects. J. Educ. Psychol. 2019, 111, 764–792. [Google Scholar] [CrossRef] [Green Version]
- Dirzyte, A.; Vijaikis, A.; Perminas, A.; Rimasiute-Knabikiene, R.; Kaminskis, L.; Zebrauskas, G. Computer Programming E-Learners’ Personality Traits, Self-Reported Cognitive Abilities, and Learning Motivating Factors. Brain Sci. 2021, 11, 1205. [Google Scholar] [CrossRef]
- LaBelle, S.; Johnson, Z.D. The relationship of student-to-student confirmation in the classroom to college students’ mental health and well-being. Commun. Q. 2021, 69, 133–151. [Google Scholar] [CrossRef]
- Tang, Y.M.; Chen, P.C.; Law, K.M.Y.; Wu, C.H.; Lau, Y.; Guan, J.; He, D.; Ho, G.T.S. Comparative analysis of Student’s live online learning readiness during the coronavirus (COVID-19) pandemic in the higher education sector. Comput. Educ. 2021, 168, 104211. [Google Scholar] [CrossRef]
- Sumi, K. Reliability and Validity of Japanese Versions of the Flourishing Scale and the Scale of Positive and Negative Experience. Soc. Indic. Res. 2014, 118, 601–615. [Google Scholar] [CrossRef]
- De la Fuente, R.; Parra, A.; Sánchez-Queija, I. Psychometric Properties of the Flourishing Scale and Measurement Invariance Between Two Samples of Spanish University Students. Eval. Health Prof. 2017, 40, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Giuntoli, L.; Ceccarini, F.; Sica, C.; Caudek, C. Validation of the Italian Versions of the Flourishing Scale and of the Scale of Positive and Negative Experience. SAGE Open 2017, 7, 215824401668229. [Google Scholar] [CrossRef] [Green Version]
- Didino, D.; Taran, E.A.; Barysheva, G.A.; Casati, F. Psychometric evaluation of the Russian version of the flourishing scale in a sample of older adults living in Siberia. Health Qual. Life Outcomes 2019, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Al-Adwan, A.S.; Albelbisi, N.A.; Hujran, O.; Al-Rahmi, W.M.; Alkhalifah, A. Developing a Holistic Success Model for Sustainable E-Learning: A Structural Equation Modeling Approach. Sustainability 2021, 13, 9453. [Google Scholar] [CrossRef]
- Chin, W.; Cheah, J.-H.; Liu, Y.; Ting, H.; Lim, X.-J.; Cham, T.H. Demystifying the role of causal-predictive modeling using partial least squares structural equation modeling in information systems research. Ind. Manag. Data Syst. 2020, 120, 2161–2209. [Google Scholar] [CrossRef]
- Sarstedt, M.; Hair, J.F.; Cheah, J.-H.; Becker, J.-M.; Ringle, C.M. How to Specify, Estimate, and Validate Higher-Order Constructs in PLS-SEM. Australas. Mark. J. 2019, 27, 197–211. [Google Scholar] [CrossRef]
- Sitar-Taut, D.-A.; Mican, D. Mobile learning acceptance and use in higher education during social distancing circumstances: An expansion and customization of UTAUT2. Online Inf. Rev. 2021, 45, 1000–1019. [Google Scholar] [CrossRef]
- Sitar-Tăut, D. Mobile learning acceptance in social distancing during the COVID-19 outbreak: The mediation effect of hedonic motivation. Hum. Behav. Emerg. Technol. 2021, 3, 366–378. [Google Scholar] [CrossRef]
- Dutta, B.; Peng, M.-H.; Chen, C.-C.; Sun, S.-L. Interpreting Usability Factors Predicting Sustainable Adoption of Cloud-Based E-Learning Environment during COVID-19 Pandemic. Sustainability 2021, 13, 9329. [Google Scholar] [CrossRef]
- Hair, J.; Hollingsworth, C.L.; Randolph, A.B.; Chong, A.Y.L. An updated and expanded assessment of PLS-SEM in information systems research. Ind. Manag. Data Syst. 2017, 117, 442–458. [Google Scholar] [CrossRef]
- Hoi, V.N. Understanding higher education learners’ acceptance and use of mobile devices for language learning: A Rasch-based path modeling approach. Comput. Educ. 2020, 146, 103761. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2017; ISBN 9781483377445. [Google Scholar]
- Mastromartino, B.; Wang, J.J.; Suggs, D.W.; Hollenbeck, C.R.; Zhang, J.J. Dimensions of Sense of Membership in a Sport Fan Community: Factors, Outcomes, and Social Capital Implications. Commun. Sport 2020, 216747952095637. [Google Scholar] [CrossRef]
- Mican, D.; Sitar-Tăut, D.-A.; Moisescu, O.-I. Perceived usefulness: A silver bullet to assure user data availability for online recommendation systems. Decis. Support Syst. 2020, 139, 113420. [Google Scholar] [CrossRef]
- Mican, D.; Sitar-Tăut, D.-A.; Mihuţ, I.-S. User Behavior on Online Social Networks: Relationships among Social Activities and Satisfaction. Symmetry 2020, 12, 1656. [Google Scholar] [CrossRef]
- Raza, S.A.; Qazi, W.; Khan, K.A.; Salam, J. Social Isolation and Acceptance of the Learning Management System (LMS) in the time of COVID-19 Pandemic: An Expansion of the UTAUT Model. J. Educ. Comput. Res. 2021, 59, 183–208. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; Methodology in the Social Sciences; Guilford Press: New York, NY, USA, 2016; ISBN 978-1-4625-2334-4. [Google Scholar]
- Bryne, B. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming. J. Appl. Quant. Methods 2010, 5, 365–368. [Google Scholar]
- Murtaugh, P.A. In defense of P values. Ecology 2014, 95, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Kercher, A.J.; Rapee, R.M.; Schniering, C.A. Neuroticism, Life Events and Negative Thoughts in the Development of Depression in Adolescent Girls. J. Abnorm. Child Psychol. 2009, 37, 903–915. [Google Scholar] [CrossRef]
- Schotanus-Dijkstra, M.; Pieterse, M.E.; Drossaert, C.H.C.; Westerhof, G.J.; de Graaf, R.; ten Have, M.; Walburg, J.A.; Bohlmeijer, E.T. What Factors are Associated with Flourishing? Results from a Large Representative National Sample. J. Happiness Stud. 2016, 17, 1351–1370. [Google Scholar] [CrossRef] [Green Version]
- Di Fabio, A.; Gori, A. Neuroticism and flourishing in white collar workers: From self-esteem to intrapreneurial self-capital for adaptive outcomes. In Neuroticism: Characteristics, Impact on Job Performance and Health Outcomes; Psychology of Emotions, Motivations and Actions; Nova Science Publishers: New York, NY, USA, 2016; pp. 129–146. ISBN 978-1-63485-323-1. [Google Scholar]
- Zhang, D.C.; Renshaw, T.L. Personality and College Student Subjective Wellbeing: A Domain-Specific Approach. J. Happiness Stud. 2020, 21, 997–1014. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.T.; Bialowolski, P.; Weziak-Bialowolska, D.; Mooney, K.D.; Lerner, P.J.; McNeely, E.; VanderWeele, T.J. Self-assessed importance of domains of flourishing: Demographics and correlations with well-being. J. Posit. Psychol. 2021, 16, 137–144. [Google Scholar] [CrossRef]
- Grieve, R.; Kemp, N. Individual differences predicting social connectedness derived from Facebook: Some unexpected findings. Comput. Hum. Behav. 2015, 51, 239–243. [Google Scholar] [CrossRef]
- Weziak-Bialowolska, D.; Bialowolski, P.; Lee, M.T.; Chen, Y.; VanderWeele, T.J.; McNeely, E. Psychometric Properties of Flourishing Scales From a Comprehensive Well-Being Assessment. Front. Psychol. 2021, 12, 652209. [Google Scholar] [CrossRef]
- Widnall, E.; Price, A.; Trompetter, H.; Dunn, B.D. Routine Cognitive Behavioural Therapy for Anxiety and Depression is More Effective at Repairing Symptoms of Psychopathology than Enhancing Wellbeing. Cogn. Ther. Res. 2020, 44, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.S. Negative thinking versus positive thinking in a Singaporean student sample: Relationships with psychological well-being and psychological maladjustment. Learn. Individ. Differ. 2012, 22, 76–82. [Google Scholar] [CrossRef]
- McNulty, J.K.; Fincham, F.D. Beyond positive psychology? Toward a contextual view of psychological processes and well-being. Am. Psychol. 2012, 67, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Frisby, B.N.; Martin, M.M. Instructor–Student and Student–Student Rapport in the Classroom. Commun. Educ. 2010, 59, 146–164. [Google Scholar] [CrossRef]
- Reis, H.T.; Lemay, E.P.; Finkenauer, C. Toward understanding understanding: The importance of feeling understood in relationships. Soc. Personal. Psychol. Compass 2017, 11, e12308. [Google Scholar] [CrossRef]
- Xu, J.; Yang, H.H.; MacLeod, J. STEP on connected classroom climate in a hybrid learning environment. Int. J. Innov. Learn. 2018, 23, 430. [Google Scholar] [CrossRef]
- MacLeod, J.; Yang, H.H.; Shi, Y. Student-to-student connectedness in higher education: A systematic literature review. J. Comput. High. Educ. 2019, 31, 426–448. [Google Scholar] [CrossRef]
- Di Fabio, A. The psychology of sustainability and sustainable development for well-being in organizations. Front. Psychol. 2017, 8, 1534. [Google Scholar] [CrossRef] [Green Version]
- Borovay, L.A.; Shore, B.M.; Caccese, C.; Yang, E.; Hua, O. (Liv) Flow, Achievement Level, and Inquiry-Based Learning. J. Adv. Acad. 2019, 30, 74–106. [Google Scholar] [CrossRef]
- Hong, J.-C.; Liu, Y.; Liu, Y.; Zhao, L. High School Students’ Online Learning Ineffectiveness in Experimental Courses During the COVID-19 Pandemic. Front. Psychol. 2021, 12, 738695. [Google Scholar] [CrossRef]
- Di Fabio, A.; Rosen, M.A. Opening the Black Box of Psychological Processes in the Science of Sustainable Development: A New Frontier. Eur. J. Sustain. Dev. Res. 2018, 2, 47. [Google Scholar] [CrossRef] [Green Version]
Scales and Subscales | Cronbach Alpha | McDonald’s Omega | CR | AVE |
---|---|---|---|---|
Automatic Thoughts Questionnaire—Positive (ATQP) | 0.966 | 0.966 | 0.966 | 0.492 |
Positive daily functioning subscale | 0.934 | 0.935 | 0.935 | 0.592 |
Positive self-evaluation subscale | 0.870 | 0.872 | 0.872 | 0.534 |
Other evaluation of self subscale | 0.809 | 0.814 | 0.810 | 0.520 |
Positive future expectation subscale | 0.917 | 0.917 | 0.917 | 0.847 |
Flourishing Scale (FS) | 0.859 | 0.860 | 0.860 | 0.438 |
Student-to-Student Confirmation Scale | 0.967 | 0.968 | 0.979 | 0.696 |
Individual attention subscale | 0.957 | 0.958 | 0.958 | 0.698 |
Acknowledgement subscale | 0.949 | 0.950 | 0.949 | 0.676 |
Assistance subscale | 0.940 | 0.940 | 0.939 | 0.722 |
The ATQP Variables | M | SD | 1 | 2 | 3 |
---|---|---|---|---|---|
Positive daily functioning | 3.016 | 0.922 | - | ||
Positive self-evaluation | 3.095 | 0.912 | 0.816 *** | - | |
Other evaluation of self | 3.177 | 0.876 | 0.761 *** | 0.715 *** | - |
Positive future expectation | 3.243 | 1.034 | 0.710 *** | 0.703 *** | 0.620 *** |
The Student-to-Student Confirmation Scale Variables | M | SD | 1 | 2 |
---|---|---|---|---|
Individual attention | 3.660 | 0.837 | - | |
Acknowledgement | 3.255 | 0.836 | 0.668 *** | - |
Assistance | 3.522 | 0.856 | 0.688 *** | 0.557 *** |
Variables | M | SD | 1 | 2 |
---|---|---|---|---|
Positive automatic thoughts (ATQP) | 3.094 | 0.808 | - | |
Student-to-student confirmation | 3.481 | 0.737 | 0.254 *** | - |
Flourishing (FS) | 3.782 | 0.667 | 0.543 *** | 0.276 *** |
95% CI for Cohen’s d | ||||||||
---|---|---|---|---|---|---|---|---|
t | df | p | Mean Difference | SE Difference | Cohen’s d | Lower | Upper | |
Positive automatic thoughts (ATQP) | −1.447 | 451 | 0.149 | −0.110 | 0.076 | −0.136 | −0.321 | 0.049 |
Positive daily functioning | −2.331 | 451 | 0.020 | −0.201 | 0.086 | −0.220 | −0.405 | −0.034 |
Positive self-evaluation | −0.557 | 451 | 0.578 | −0.048 | 0.086 | −0.052 | −0.237 | 0.132 |
Other evaluation of self | −1.493 | 451 | 0.133 | −0.123 | 0.082 | −0.141 | −0.325 | 0.044 |
Positive future expectation | −1.209 | 451 | 0.277 | −0.118 | 0.097 | −0.114 | −0.299 | 0.071 |
Flourishing (FS) | −2.965 | 451 | 0.003 | −0.185 | 0.062 | −0.279 | −0.465 | −0.094 |
95% CI for Cohen’s d | ||||||||
---|---|---|---|---|---|---|---|---|
t | df | p | Mean Difference | SE Difference | Cohen’s d | Lower | Upper | |
Student-to-Student Confirmation | −3.614 | 451 | <0.001 | −0.247 | 0.068 | −0.340 | −0.526 | −0.154 |
Individual attention | −3.302 | 451 | 0.001 | −0.257 | 0.078 | −0.311 | −0.497 | −0.125 |
Acknowledgement | −2.304 | 451 | 0.022 | −0.181 | 0.078 | −0.217 | −0.402 | −0.032 |
Assistance | −4.181 | 451 | <0.001 | −0.331 | 0.079 | −0.394 | −0.580 | −0.207 |
Model | Non-Standardized Coefficients | Standardized Coefficients | t | Significance | |
---|---|---|---|---|---|
B | Standard Error | Beta | |||
A. Respondents do not participate in e-learning-based computer programming courses | |||||
(Constant) | 3.242 | 0.172 | 18.807 | <0.001 | |
Positive daily functioning | 0.239 | 0.086 | 0.348 | 2.772 | 0.006 |
Positive self-evaluation | −0.077 | 0.085 | −0.112 | −0.904 | 0.367 |
Other evaluation of self | −0.079 | 0.078 | −0.106 | −1.017 | 0.310 |
Positive future expectation | 0.118 | 0.059 | 0.187 | 2.000 | 0.047 |
R = 0.332; R Square = 0.110; Adjusted R Square = 0.093; Standard Error of the Estimate = 0.58341; F (4, 206) = 6.394, p < 0.001 | |||||
B. Respondents participate in e-learning-based computer programming courses | |||||
(Constant) | 2.015 | 0.112 | 18.068 | <0.001 | |
Positive daily functioning | 0.354 | 0.066 | 0.475 | 5.396 | <0.001 |
Positive self-evaluation | −0.042 | 0.059 | −0.056 | −0.718 | 0.474 |
Other evaluation of self | −0.025 | 0.052 | −0.033 | −0.488 | 0.626 |
Positive future expectation | 0.268 | 0.043 | 0.414 | 6.240 | <0.001 |
R = 0.762; R Square = 0.581; Adjusted R Square = 0.574; Standard Error of the Estimate = 0.45708; F (4, 237) = 82.125, p < 0.001 |
Dependent Variables | Predictors/ Models | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | R | R2 | F | Sig. | |
---|---|---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | ||||||||
Respondents participate in e-learning-based computer programming courses | ||||||||||
Student-to-Student confirmation | 1 (Constant) | 2.484 | 0.138 | 18.061 | <0.001 | 0.398 | 0.159 | 45.283 | <0.001 | |
Positive daily functioning | 0.302 | 0.045 | 0.398 | 6.729 | <0.001 | |||||
2 (Constant) | 2.114 | 0.228 | 9.270 | <0.001 | 0.416 | 0.173 | 24.998 | <0.001 | ||
Positive daily functioning | 0.209 | 0.064 | 0.276 | 3.289 | 0.001 | |||||
Flourishing | 0.173 | 0.085 | 0.171 | 2.031 | 0.043 | |||||
3 (Constant) | 2.027 | 0.227 | 8.917 | <0.001 | 0.445 | 0.198 | 19.591 | <0.001 | ||
Positive daily functioning | 0.306 | 0.072 | 0.405 | 4.244 | <0.001 | |||||
Flourishing | 0.266 | 0.091 | 0.262 | 2.930 | 0.004 | |||||
Positive future expectation | −0.169 | 0.062 | −0.258 | −2.726 | 0.007 | |||||
Individual attention | 1 (Constant) | 2.034 | 0.275 | 7.408 | <0.001 | 0.339 | 0.115 | 31.114 | <0.001 | |
Flourishing | 0.407 | 0.073 | 0.339 | 5.578 | <0.001 | |||||
2 (Constant) | 1.950 | 0.272 | 7.157 | <0.001 | 0.378 | 0.143 | 19.978 | <0.001 | ||
Flourishing | 0.274 | 0.086 | 0.228 | 3.180 | 0.002 | |||||
Other evaluation of self | 0.185 | 0.066 | 0.202 | 2.818 | 0.005 | |||||
3 (Constant) | 1.771 | 0.280 | 6.330 | <0.001 | 0.405 | 0.164 | 15.529 | <0.001 | ||
Flourishing | 0.414 | 0.103 | 0.344 | 4.013 | <0.001 | |||||
Other evaluation of self | 0.252 | 0.071 | 0.274 | 3.562 | <0.001 | |||||
Positive future expectation | −0.171 | 0.071 | −0.220 | −2.414 | 0.017 | |||||
Acknowledgement | 1 (Constant) | 2.226 | 0.162 | 13.707 | <0.001 | 0.367 | 0.135 | 37.316 | <0.001 | |
Positive daily functioning | 0.323 | 0.053 | 0.367 | 6.109 | <0.001 | |||||
Assistance | 1 (Constant) | 2.570 | 0.169 | 15.171 | <0.001 | 0.304 | 0.092 | 24.441 | <0.001 | |
Positive daily functioning | 0.273 | 0.055 | 0.304 | 4.944 | <0.001 | |||||
2 (Constant) | 2.667 | 0.175 | 15.255 | <0.001 | 0.329 | 0.108 | 14.485 | <0.001 | ||
Positive daily functioning | 0.400 | 0.083 | 0.446 | 4.830 | <0.001 | |||||
Positive future expectation | −0.147 | 0.072 | −0.189 | −2.050 | 0.041 |
Dependent Variables | Predictors/ Models | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | R | R2 | F | Sig. | |
---|---|---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | ||||||||
Respondents do not participate in e-learning-based computer programming courses | ||||||||||
Student-to-Student confirmation | (Constant) | 2.803 | 0.362 | 7.738 | <0.001 | 0.167 | 0.028 | 1.181 | 0.320 | |
Positive daily functioning | −0.019 | 0.112 | −0.023 | −0.172 | 0.863 | |||||
Positive self-evaluation | −0.032 | 0.109 | −0.038 | −0.293 | 0.770 | |||||
Other evaluation of self | 0.135 | 0.100 | 0.149 | 1.354 | 0.177 | |||||
Positive future expectation | 0.003 | 0.076 | 0.004 | 0.037 | 0.971 | |||||
Flourishing | 0.135 | 0.089 | 0.111 | 1.518 | 0.130 | |||||
Individual attention | (Constant) | 3.024 | 0.396 | 7.638 | <0.001 | 0.142 | 0.020 | 0.846 | 0.519 | |
Positive daily functioning | −0.047 | 0.122 | −0.052 | −0.385 | 0701 | |||||
Positive self-evaluation | 0.010 | 0.119 | 0.011 | 0.084 | 0.933 | |||||
Other evaluation of self | 0.110 | 0.109 | 0.111 | 1.011 | 0.313 | |||||
Positive future expectation | 0.010 | 0.083 | 0.012 | 0.121 | 0.904 | |||||
Flourishing | 0.129 | 0.097 | 0.097 | 1.324 | 0.187 | |||||
Acknowledgement | (Constant) | 2.487 | 0.406 | 6.119 | <0.001 | 0.170 | 0.029 | 1.214 | 0.304 | |
Positive daily functioning | −0.057 | 0.126 | −0.061 | −0.458 | 0.647 | |||||
Positive self-evaluation | −0.065 | 0.122 | −0.068 | −0.528 | 0.598 | |||||
Other evaluation of self | 0.176 | 0.112 | 0.173 | 1.581 | 0.115 | |||||
Positive future expectation | 0.029 | 0.085 | 0.034 | 0.342 | 0.732 | |||||
Flourishing | 0.149 | 0.100 | 0.109 | 1.494 | 0.137 | |||||
Assistance | (Constant) | 2.910 | 0.408 | 7.128 | <0.001 | 0.162 | 0.026 | 1.106 | 0.359 | |
Positive daily functioning | 0.084 | 0.126 | 0.090 | 0.668 | 0.505 | |||||
Positive self-evaluation | −0.053 | 0.123 | −0.056 | −0.432 | 0.666 | |||||
Other evaluation of self | 0.114 | 0.112 | 0.111 | 1.013 | 0.312 | |||||
Positive future expectation | −0.049 | 0.085 | −0.056 | −0.569 | 0.570 | |||||
Flourishing | 0.124 | 0.100 | 0.091 | 1.243 | 0.215 |
Regression | B | S.E. | Z | p | LL | UL | β | R2 | Group * | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Student-to-student confirmation | → | Positive automatic thoughts | 0.623 | 0.114 | 5.485 | <0.001 | 0.400 | 0.845 | 0.417 | 0.174 | 1 |
Positive automatic thoughts | → | Flourishing | 0.557 | 0.048 | 11.697 | <0.001 | 0.464 | 0.650 | 0.706 | 0.574 | 1 |
Student-to-student confirmation | → | Flourishing | 0.128 | 0.089 | 1.434 | 0.151 | -0.047 | 0.303 | 0.109 | 1 | |
Student-to-student confirmation | → | Positive automatic thoughts | 0.139 | 0.116 | 1.192 | 0.233 | -0.089 | 0.367 | 0.110 | 0.093 | 2 |
Positive automatic thoughts | → | Flourishing | 0.212 | 0.059 | 3.609 | <0.001 | 0.097 | 0.327 | 0.281 | 0.012 | 2 |
Student-to-student confirmation | → | Flourishing | 0.089 | 0.068 | 1.305 | 0.192 | -0.045 | 0.222 | 0.093 | 2 | |
Measurement Model | |||||||||||
Positive automatic thoughts | → | Positive daily functioning | 1.000 | 0.000 | 1.000 | 1.000 | 0.945 | 0.894 | 1 | ||
Positive automatic thoughts | → | Other evaluation of self | 0.831 | 0.044 | 18.907 | <0.001 | 0.745 | 0.917 | 0.803 | 0.646 | 1 |
Positive automatic thoughts | → | Positive self-evaluation | 0.913 | 0.045 | 20.410 | <0.001 | 0.825 | 1.000 | 0.867 | 0.751 | 1 |
Positive automatic thoughts | → | Positive future expectation | 0.989 | 0.055 | 18.033 | <0.001 | 0.881 | 1.096 | 0.810 | 0.657 | 1 |
Student-to-student confirmation | → | Acknowledgement | 1.000 | 0.000 | 1.000 | 1.000 | 0.718 | 0.515 | 1 | ||
Student-to-student confirmation | → | Individual attention | 1.215 | 0.128 | 9.472 | <0.001 | 0.963 | 1.466 | 0.857 | 0.735 | 1 |
Student-to-student confirmation | → | Assistance | 0.976 | 0.112 | 8.704 | <0.001 | 0.756 | 1.195 | 0.688 | 0.473 | 1 |
Positive automatic thoughts | → | Positive daily functioning | 1.000 | 0.000 | 1.000 | 1.000 | 0.910 | 0.828 | 2 | ||
Positive automatic thoughts | → | Other evaluation of self | 0.823 | 0.042 | 19.398 | <0.001 | 0.740 | 0.906 | 0.813 | 0.660 | 2 |
Positive automatic thoughts | → | Positive self-evaluation | 0.978 | 0.045 | 21.676 | <0.001 | 0.889 | 1.066 | 0.895 | 0.800 | 2 |
Positive automatic thoughts | → | Positive future expectation | 0.891 | 0.074 | 12.081 | <0.001 | 0.746 | 1.035 | 0.742 | 0.551 | 2 |
Student-to-student confirmation | → | Acknowledgement | 1.000 | 0.000 | 1.000 | 1.000 | 0.769 | 0.591 | 2 | ||
Student-to-student confirmation | → | Individual attention | 1.184 | 0.098 | 12.066 | <0.001 | 0.992 | 1.377 | 0.939 | 0.881 | 2 |
Student-to-student confirmation | → | Assistance | 1.076 | 0.089 | 12.070 | <0.001 | 0.901 | 1.250 | 0.824 | 0.680 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dirzyte, A.; Sederevičiūtė-Pačiauskienė, Ž.; Šliogerienė, J.; Vijaikis, A.; Perminas, A.; Kaminskis, L.; Žebrauskas, G.; Mačiulaitis, K. Peer-to-Peer Confirmation, Positive Automatic Thoughts, and Flourishing of Computer Programming E-Learners. Sustainability 2021, 13, 11832. https://doi.org/10.3390/su132111832
Dirzyte A, Sederevičiūtė-Pačiauskienė Ž, Šliogerienė J, Vijaikis A, Perminas A, Kaminskis L, Žebrauskas G, Mačiulaitis K. Peer-to-Peer Confirmation, Positive Automatic Thoughts, and Flourishing of Computer Programming E-Learners. Sustainability. 2021; 13(21):11832. https://doi.org/10.3390/su132111832
Chicago/Turabian StyleDirzyte, Aiste, Živilė Sederevičiūtė-Pačiauskienė, Jolita Šliogerienė, Aivaras Vijaikis, Aidas Perminas, Lukas Kaminskis, Giedrius Žebrauskas, and Kęstutis Mačiulaitis. 2021. "Peer-to-Peer Confirmation, Positive Automatic Thoughts, and Flourishing of Computer Programming E-Learners" Sustainability 13, no. 21: 11832. https://doi.org/10.3390/su132111832
APA StyleDirzyte, A., Sederevičiūtė-Pačiauskienė, Ž., Šliogerienė, J., Vijaikis, A., Perminas, A., Kaminskis, L., Žebrauskas, G., & Mačiulaitis, K. (2021). Peer-to-Peer Confirmation, Positive Automatic Thoughts, and Flourishing of Computer Programming E-Learners. Sustainability, 13(21), 11832. https://doi.org/10.3390/su132111832