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Abstract: Subjective Well-Being (SWB) is an important indicator reflecting the satisfaction of residents’
lives and social welfare. As a prevalent technique, machine learning is playing a more significant role
in various domains. However, few studies have used machine learning techniques to study SWB.
This paper puts forward a stacking model based on ANN, XGBoost, LR, CatBoost, and LightGBM
to predict the SWB of Chinese residents, using the Chinese General Social Survey (CGSS) datasets
from 2011, 2013, 2015, and 2017. Furthermore, the feature importance index of tree models is used to
reveal the changes in the important factors affecting SWB. The results show that the stacking model
proposed in this paper is superior to traditional models such as LR or other single machine learning
models. The results also show some common features that have contributed to SWB in different years.
The methods used in this study are effective and the results provide support for making society
more harmonious.

Keywords: subjective well-being; stacking model; machine learning

1. Introduction

SWB is an eternal pursuit of human beings. Studies on SWB began in the first half of
the 20th century. They were mainly focused on psychology and philosophy and placed the
locus of happiness within the attitudes and temperament of individuals [1,2]. Warner’s
review entitled “Correlates of Avowed Happiness” presented the measurement, dimen-
sions, and correlates of SWB [1]. After that, research involving SWB expanded rapidly to
economics, sociology, and beyond, and placed the locus of happiness in external conditions
such as income and status [2,3]. With different academic backgrounds, scholars have tried
not only to define what happiness is, but have also tried to find factors that contribute to
it [1–3]. The factors that underpinned SWB ranged from genetics to societal conditions [4].
Measuring, predicting, and knowing the influences on individuals’ SWB has become an im-
portant research domain and many advanced techniques are well suited to this forecasting
task.

Many techniques are used to measure and predict individuals’ SWB. Traditional
methods to predict SWB mainly include the Logistic Regression (LR) and Probit models.
With the ordered Logistic regression model, Yang et al. analyzed the impact of the income
gap, housing property rights, and real estate numbers on the SWB of urban residents [5]. It
was found that the impact of the income gap was an inverted U-shape; the residents that
lived in their own houses were much happier than those who lived in rented houses, and
the more houses the residents had, the happier they were [5]. Ferrer-i-Carbonell and Gowdy,
using an ordered probit model, found that personal concern for positive environmental
characteristics (such as plants and animals) was positively related to happiness, while
the concern for negative environmental characteristics (such as pollution) was negatively
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related to happiness [6]. Traditional statistical models are always criticized for their failure
to deal with multi-dimensional data as well as their strict restrictions on data generation.

As a vital part of artificial intelligence, machine learning promotes the application of
artificial intelligence in sociology, economics, and many other fields. Since the characteris-
tics of data related to individual SWB are substantial, multi-dimensional, and non-linear,
traditional statistical techniques are limited by the sample size and depend excessively on
the statistical distribution of data. However, machine learning has significant advantages
due the reduced need for the potential probability distribution of data, which allows for the
processing of high-dimensional big data and reduces the dimensionality easily. Therefore,
it can be used broadly in the study of SWB and can provide reasonable policy suggestions.
Zhang et al. used the gradient boosting algorithm to predict undergraduate students’ SWB
with online survey data and the results showed that 90% of individuals’ SWB could be
predicted correctly [7].

This work attempts to predict residents’ SWB by using a stacking model. Four years
of data (2011, 2013, 2015, 2017) from the CGSS were employed in the case study [8]. The
remainder of this study is structured as follows. Section 2 reviews the related research of
SWB and machine learning models. Section 3 elaborates on the construction of the stacking
model, the materials, and the empirical process. In this section, the correlated features
are preprocessed to remove redundant and irrelevant information, which is beneficial
for improving the performance of classification models. Section 4 presents the empirical
results of this study. Residents’ SWB is predicted by single models as well as a stacking
model with a different construction. The empirical results prove that, compared with the
benchmark models proposed in this paper, the stacking model possesses better forecasting
precision. Moreover, the Friedman test and the Nemenyi test are used to verify that the
differences in performance are statistically significant. Section 5 discusses the contributing
factors of SWB in different years. In the Section 6, a conclusion is drawn, and some future
work is provided for further research.

2. Related Work

Well-being is an important value in people’s lives and there are two main approaches
for its measurement: objective well-being and subjective well-being. Since humans are
conscious beings, they can subjectively evaluate their appreciation of life [9]. Over the past
years, scholars have paid great attention to SWB and identified its dimensions as well as its
relevant determinants, which can be both positive or negative [1,3,4]. Veenhoven defined
SWB as an individual’s evaluation of his overall quality of life, and attributed happiness as
one of the four qualities of life: livability of environment, the ability of life, the utility of life,
and the subjective enjoyment of life [10]. To break the fuzziness of the term “happiness”,
Diener suggested using SWB instead of happiness [2]. Until now, SWB has been widely
accepted in academia, and is considered to be a reasonable evaluation of national welfare
and the overall satisfaction of individuals. Generally speaking, SWB represents all benefits,
and can be used interchangeably with happiness or quality of life to indicate personal or
social welfare.

Aiming to improve individuals’ SWB and build a more harmonious stable society,
scholars have paid great attention to what factors influence SWB. From the perspective
of the natural and social environment, Shi and Yi [11], based on CGSS2015 data, found
that environmental governance had regional, urban, and rural heterogeneity in relation
to residents’ happiness. Pan and Chen quantitatively analyzed the impact of three crucial
ecological and environmental factors, namely water, atmosphere, and greening, on the
happiness of Chinese residents [12]. From the perspective of economics, Clark et al.
believed that it was more realistic to see the impact of relative income on happiness in
economics [13]. Besides, social status, economic status and economic resources also affect
the happiness of individuals at certain degrees. Esping-Anderson and Nedoluzhko found
that the lower social and economic status of the group, the lower happiness state of the
group [14]. Johnson and Krueger believed that, according to the national middle-aged
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development survey, economic resources could protect life satisfaction from environmental
impact [15]. Tan et al. used a meta-analysis to test whether the relationship between socio-
economic status (SES) and SWB would differ when the SES was measured subjectively or
objectively [16]. It was confirmed that subjective SES has a stronger impact on SWB.

Machine learning, at the intersection of statistics and computer science, uses algo-
rithms to extract information and knowledge from data [17]. As a subfield of artificial
intelligence, it was first put forward in 1959, and allowed computers to learn without
explicit programming [18]. The central goal of machine learning is prediction. With its
advantages in relation to the processing of multi-dimensional data and the ability to fit
nonlinear data well, machine learning has been widely applied in economics, political
science, and sociology [17]. Some classical machine learning models have been created
in recent years, including the support vector machine (SVM), decision tree (DT), and K-
nearest neighbor (KNN) algorithms [19]. Saputri and Lee used a SVM model to predict the
SWB of people in different countries and obtained the best forecasting accuracy compared
with other models [20]. Jaques et al. adopted machine learning models to forecast the
SWB of students and obtained a classification accuracy of 70% [21]. Marinucci et al. con-
ducted a multiple regression analysis to study the interpersonal SWB based on observed
social media data and the corresponding predicted variables given by machine learning
models [22].

With the development of technologies, scholars have found that using multiple models
and ensemble learning algorithms can achieve superior performance compared to a single
model. Dietterich proved that ensemble learning was superior to a single model in statistics,
computation, and representation [23]. Until now, dozens of ensemble learning algorithms
have been created, but they can all be classified into three categories according to different
ensemble strategies: bagging, boosting, and stacking. The bagging algorithm uses all the
features to train the basic learning machine models by sampling a large amount of data
in parallel at one time and combines the prediction results of each basic learner through
a combination of strategies to output. Bagging usually performs well on unstable base
classifiers. Small changes in the training data will lead to huge changes in the learning
model [24]. That means the more sensitive the base classifier is, the better the bagging model
performs [25]. Recently, Tuysuzoglu and Birant proposed an enhanced bagging model,
which is a novel modified version of bagging, and has a good prediction performance [26].

The boosting algorithm includes a gradient boosting algorithm, a gradient boosting
decision tree (GBDT), an extreme gradient boosting (XGBoost) algorithm, a light gradient
boosting machine (LightGBM) algorithm, and category boosting (Catboost). GBDT, pro-
posed by Friedman [27], is a kind of decision tree algorithm based on gradient lifting. Based
on GBDT, Chen and Guestrin proposed an improved gradient lifting model— XGBoost [28].
XGBoost can effectively alleviate the overfitting problems and accelerate the convergence
speed. Without losing the accuracy of the boosting algorithm, the LightGBM algorithm,
proposed by the Microsoft Asia Research Institute, has improved the operation speed of the
model [29]. In 2017, Yandex, a Russian search giant, proposed a new gradient promotion
algorithm—Catboost—to make further improvements. Prokhorenkova et al. found that
Catboost had a better performance and a shorter running time than the XGBoost and
LightGBM algorithms [30].

The stacking algorithm was first proposed by Wolpert [31], who opened up a new
direction in the field of the combined model. Ting and Witten proved that the stacking
model could obtain better results than its base models [32]. Sigletos et al. comprehensively
compared the bagging, boosting, and stacking algorithms and found that the stacking
algorithm has significant advantages in robustness [33]. Cao et al. used the stacking
algorithm to evaluate personal credit and found that the classification accuracy of the
stacking model was better than other machine learning models [34].

Besides these traditional machine learning models and ensemble learning algorithms,
modern models such as the artificial neural network (ANN) and the convolutional neural
network (CNN) are also widely used to conduct empirical research. For the development
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of the neural network models, McCulloch and Pitts proposed the formal mathematical
description of neurons, which laid the theoretical foundation for neural networks [35].
However, due to the limitations of computer power, neural network algorithms did not
gain much attention until the end of the 20th century. Egilmez et al. used an ANN model to
identify graduate students’ SWB, which had a superior accuracy compared with multiple
linear regression (MLR) [36].

Though machine learning has been widely used in academia, related studies still have
some limitations. For example, when selecting models, most studies use the single machine
learning model, which is insufficient for the generalization and robustness of the research.
Meanwhile, regression algorithms used on the data might not meet their strict statistical
assumptions, which affects the accuracy of their models. Moreover, when constructing data
indices, related research encounters problems such as a reduced sample size and fewer
comprehensive evaluation indices, which might also affect their results.

3. Materials and Methods
3.1. Construction of the Stacking Model

LR is a classic binary classification model proposed by Verhulst, which can predict the
probability of an event or its classification. LR is widely used in sociology, economics, and
many other fields because of its computing speed and interpret-ability.

XGBoost is an open-source machine learning project developed by Chen Tianqi. It
improve the GBDT algorithm in a fast and accurate way. The idea of integration is at the
core of XGBoost, which uses second-order Taylor expansion to solve the minimum loss
function, determine the splitting nodes, and construct the whole model.

LightGBM is an efficient, fast, and distributed learning gradient boosting tree algo-
rithm, proposed by Microsoft in early 2017. It can be used for classification, regression, and
ranking. Having partly overcome the shortcomings of traditional models, LightGBM sup-
ports efficient parallel training with the advantages of a fast-training speed, low memory
consumption, and the ability to process large amounts of data.

CatBoost, a kind of boosting algorithm, is a machine learning library opened in 2017.
Based on the GBDT algorithm framework, this algorithm has a better performance in
dealing with category features and greatly enriches the dimensions of features. In addition,
CatBoost can effectively reduce the problem of overfitting and improve its forecasting
accuracy and generalizing ability.

ANN is a machine learning model which imitates the structure and function of
biological neural networks. The single-layer neural network gives different weights to the
inputs and obtains outputs by activating the function. The multi-layer neural network is a
combination of dozens of single layers, which are usually composed of three parts: input
layer, hidden layers, and output layer. ANN has remarkable advantages in dealing with
random data and nonlinear data. It is especially suitable for large-scale, complex structures
and systems.

CNN is a variant of ANN with the characteristics of local connection and weight
sharing, which is usually used in artificial intelligent due to its powerful capability of
compressing information. In the structure of CNN, the original inputs are processed by
every layer to join another layer. Each filter of CNN is to extract the most significant data
features, and the main function of the pooling layer is reducing dimensionality.

Stacking method is an ensemble machine learning algorithm which can use meta-
learning algorithms to learn how to combine the predictions from some base models best. It
mainly trains a new model by taking the output of multiple weak learners as input. Based
on the stacking, we established a combined model with LR, XGBoost, CatBoost, and ANN
as the base models and LightGBM as the meta model, as shown in Figure 1.
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in the second layer of the stacking model, which is the meta model.

In our stacking model, the features affecting residents’ SWB from the CGSS data are
put into the traditional statistical model LR and the machine learning models—XGBoost,
CatBoost and ANN. Then the predictions of these four models and the original features
are put into the LightGBM model. The output results of LightGBM are the basis for
judging residents’ SWB. The models selected above obey different principles when fitting
datasets and have their own advantages in dealing with various types of variables. For
the base models, LR has a strong stability and interpretability. The XGBoost model adds
a regular term to control the complexity of the model, which can effectively improve
the prediction accuracy of the model. CatBoost can deal with the classification features
more efficiently and reasonably, which has solved the problems of gradient deviation
and prediction migration and thus reduces the probability of overfitting. ANN has great
advantages in dealing with random data and nonlinear data, especially for the large-scale,
complex structure and unclear information datasets. For the meta model, LightGBM
uses a one-sided gradient algorithm to filter out the samples with small gradients, which
reduces the unnecessary calculating and computing. It also uses the optimized features to
accelerate parallel calculation. The stacking model can extract more information from these
models and combine all these advantages to achieve a good performance on forecasting.
Therefore, when selecting models for stacking, we tried to choose models with different
fitting principles if possible.

3.2. The Evaluation Index of a Model

Due to the imbalance of datasets, we used over-sampling and under-sampling meth-
ods to make the ratio of positive and negative samples at 1:1. Moreover, the ratio of
the training set and test set was divided into 8:2. The model evaluation indexes were as
follows [37,38].

(1) Accuracy, precision, and F1 score. In the binary classification algorithm model,
accuracy is the proportion of all accurate classifications to the number of all samples.
Precision is the proportion of positive samples correctly predicted out of all samples
predicted as positive. Recall is the proportion of positive samples correctly predicted
out of all the positive samples. The F1 score is the harmonic average of precision and
recall.

(2) AUC (Area Under ROC Curve) value is a number that ranges from 0 to 1, which
measures the area under the ROC (Receiver Operating Characteristic) curve. The
higher the AUC value obtained, the better the classification model performs.

(3) KS (Kolmogrov–Smirnov) value represents the ability of the model to segment sam-
ples. The greater the KS value is, the stronger the ability.
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3.3. Datasets and Features

The data we adopted in this paper were from CGSS, hosted by the National Survey
Research Center at Renmin University of China. It collects representative samples of all
urban and rural households in 31 provinces/autonomous regions/municipalities (exclud-
ing Hong Kong, Macao, and Taiwan) of China, using the multi-stage, hierarchical and PPS
(Probability Proportionate to Size Sampling) random sampling methods. The CGSS2011,
CGSS2013, CGSS2015, and CGSS2017 datasets used in this paper are samples collected
from 100 county-level units plus 5 metropolises, 480 communities (village/neighborhood
committees), and 12000 families in China every year. Take CGSS2015 as example. In the
preprocessing stage, we took a36 (level of happiness) as the proxy variable for SWB. In the
survey, the relevant question was: “Generally speaking, how happy do you feel about your
life?” Possible responses included: “totally unhappy”, “a little unhappy”, “neither happy
nor unhappy”, “generally happy”, “completely happy”. To simplify the classification,
“neither happy nor unhappy”, “generally happy” and “completely happy” were merged as
“happy”, and noted as “1”. While “totally unhappy” and “a little unhappy” were merged
as “unhappy”, and noted as “0”. Then we deleted the unrelated features in the data and
filled the missing values with average values. To extract more effective information and
improve prediction accuracy, feature engineering methods were used to add, filter, and
merge the original features. The description and measures of the new features are shown
in Table 1.

Table 1. Method and explanation of feature engineering.

Feature
Class Name Description Measures

Time
Feature Age survey time-birth =0 if 18 ≤ age ≤ 29

=7 if 86 ≤ age ≤ 95

Income
Features

National
income

level

Classifying the variable a8a (personal
annual income) according to the

national per-capita income

=1 if a8a ≥ the national
per-capita income

=0 otherwise

Provincial income level
Comparing a8a (personal annual

income) with per-capita income in the
province

=1 if a8a ≥ per-capita income
in the province
=0 otherwise

Financial
Features

income_diff
(The difference between

family income and individual
income)

Variable a62 (annual household
income)-variable a8a (personal annual

income)

income_debt
(personal burden)

Divided according to the variable
income_diff (the difference between

personal income and household
income)

=1 if income_diff > 0,
indicating that there is debt.
=0 otherwise, means there is

no debt.
income_percent

(the proportion of personal
income in household income)

Variable a8a (personal annual
income)/variable a62 (family annual

income)

much_stress
(personal financial burden)

Divided according to the variable
income_percent (the proportion of

personal income in household income)

=1 if income_percent ≥ 0.8,
it means the burden is heavier.

=0 otherwise,
indicating that the burden is

acceptable.

Health
Features

BMI group
(Body Mass Index type)

According to WHO standards,

BMI =
weightjin/2

(heightcm/100)2

=1 if 20 ≤ BMI ≤ 25, which
means healthy.

=0 otherwise, indicating
unhealthy.

real health
(real health condition)

Divided according to the variable a15
(health condition)

=1 if a15 ≥ 4, which means
healthy.

=0 otherwise, indicating
unhealthy.
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Table 1. Cont.

Feature
Class Name Description Measures

Social
security
Features

basic
social

security

Divided according to variable a611,
a612 (social security participation)

=1 if a611&a612 = 1,
indicating that there is basic

social security.
=0 otherwise, which means
that there is no basic social

security.

commercial
insurance

Divided according to variable a613,
a614 (participation in commercial

insurance)

=1 if a613, a614 = 1, which
means there is commercial

insurance.
=0 otherwise, which means

there is no commercial
insurance.

Other
Features area_per Variable a11 (floor area)/variable a63

(family members)

3.4. Empirical Process

For the data preprocessing, we first deleted the features unrelated to SWB and con-
structed some new features. Second, we used the over-sampling and under-sampling
methods to balance the ratio of the positive and negative samples. Third, the samples
were divided into a training set and a test set at 8:2. Then the balanced data was put
into the traditional statistical model, the machine learning model, and the stacking model,
respectively.

On the model fitting for the machine learning models, a k-fold cross-validation method
was adopted to choose the hyper-parameters and to enhance the robustness and the
generalization ability. As shown in Figure 2, we divided the original training data into five
equally sized parts (named folds). During the 5 iterations, 4 folds were used for training,
while the other 1 fold was used as the test set for the model evaluation. Then, the estimated
performance Si (such as classification accuracy) for each fold was used to calculate the
estimated average performance S of the model. By using this cross-validation method, the
hyper-parameters of the base models were tuned with the training and validation subsets.
After tuning, we trained the base models with the best hyper-parameters and at last, the
performance of the best base models was tested in the test subset.
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After adjusting the parameters and analyzing the importance of the features, we
compared the results of the base models with the stacking model. Then the common factors
that affect SWB across years were obtained.

4. Results
4.1. SWB Prediction Based on Single Models

LR, XGBoost, CatBoost, LightGBM, ANN, and CNN are established in this section,
and 5-fold cross-validation is used on the training set to tune their hyper-parameters,
respectively (Parameter regulation results can be requested from the author).

4.1.1. LR

Evaluations results based on LR are shown in Table 2.

Table 2. Evaluation results based on LR.

LR 2011 2013 2015 2017

Accuracy 0.7450 0.7541 0.8167 0.7395
Precision 0.7708 0.7500 0.8153 0.7325
F1_score 0.7437 0.7531 0.8232 0.7401

AUC 0.7458 0.7542 0.8163 0.7397
KS 0.5075 0.5115 0.6333 0.4958

Evaluations results based on LR, especially the AUC value were used as references to
compare with the other models.

4.1.2. XGBoost

The XGBoost model was established to improve the prediction accuracy. Then we
gained the top 20 significant features from the CGSS data. A detailed description is shown
in Figure 3.
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In CGSS2011, a43a (self-perceived social class at present), a64 (family economic status),
and a43e (self-perceived social class compared to contemporary) were much more signifi-
cant. Then in CGSS2013, the importance of features such as a64 (family economic status),
a43a (self-perceived social class at present), and b20 (the living conditions compared with
ordinary people) ranked higher. In 2015CGSS, b1 (social and economic status compared
with peers), a64 (family economic status), and a35 (self-perceived social equity) were the
features that contributed the most to SWB. In CGSS2017, features such as d21 (satisfaction
with current living conditions), d408 (satisfaction of family’s income), a64 (family economic
status), and a43e (self-perceived social class compared to contemporary) ranked higher in
importance. It can be judged that these features have a significant influence on SWB.

The evaluation results of the XGBoost are shown in Table 3. The AUC of XGBoost
established from the data from 2011, 2013, 2015, and 2017 were better than LR.

Table 3. Evaluation results based on XGBoost.

XGBoost 2011 2013 2015 2017

Accuracy 0.7600 0.7958 0.8300 0.7916
Precision 0.7723 0.7800 0.8503 0.7695
F1_score 0.7647 0.7991 0.8306 0.7976

AUC 0.8561 0.8608 0.8971 0.8584
KS 0.5493 0.6008 0.6826 0.5968

4.1.3. CatBoost

The most significant 20 features were obtained based on CatBoost, which are shown
in Figure 4.
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In CGSS2011, a35a (fairness of current living standard compared with your efforts),
d17c (frequency of depression in the past four weeks), a43a (self-perceived social class
at present), and a64 (family economic status) ranked higher. In CGSS2013, a64 (family
economic status), a35 (self-perceived social equity), a17 (frequency of depression in the past
four weeks), and a43a (self-perceived social class at present) ranked higher. In CGSS2015,
a35 (self-perceived social equity), b1 (social and economic status compared with peers), a64
(family economic status), and a17 (frequency of depression in the past four weeks) ranked
higher. In CGSS2017 d21 (satisfaction with current living conditions), d408 (satisfaction
of family’s income), a43a (self-perceived social class at present), and d407 (self-sufficiency
compared with people around) ranked higher. The evaluation indexes of the model are
shown in Table 4.

Table 4. Evaluation results based on CatBoost.

CatBoost 2011 2013 2015 2017

Accuracy 0.7650 0.7500 0.8000 0.7563
Precision 0.7800 0.7500 0.8133 0.7300
F1_score 0.7685 0.7468 0.8026 0.7665

AUC 0.8478 0.8341 0.8754 0.8289
KS 0.5499 0.5258 0.6300 0.5288

4.1.4. LightGBM

The most important 20 features based on LightGBM are shown in Figure 5.
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class compared to contemporary) were the most significant features. In CGSS2013, a17
(frequency of depression in the past four weeks), a35 (self-perceived social equity), and
a43a (self-perceived social class at present) were the most significant features. In CGSS2015,
a35 (self-perceived social equity), a17 (frequency of depression in the past four weeks),
a64 (family economic status), and a43a (self-perceived social class at present) were the
most significant features. In CGSS2017, d21 (satisfaction with current living conditions),
a43a (self-perceived social class at present), d408 (satisfaction of family’s income), and a49
(ability to understand Mandarin) were the most significant features. Table 5 shows the
evaluation results of the LightGBM.

Table 5. Evaluation results based on LightGBM.

LightGBM 2011 2013 2015 2017

Accuracy 0.7850 0.7854 0.8200 0.7875
Precision 0.8333 0.7824 0.8289 0.7742
F1_score 0.7772 0.7841 0.8235 0.7901

AUC 0.8587 0.8441 0.8845 0.8645
KS 0.5893 0.5797 0.6833 0.5802

4.1.5. ANN

Evaluation results based on ANN are shown in Table 6.

Table 6. Evaluation results based on ANN.

ANN 2011 2013 2015 2017

Accuracy 0.7500 0.7792 0.7933 0.7729
Precision 0.7572 0.7598 0.7840 0.7529
F1_score 0.7573 0.7846 0.8038 0.7789

AUC 0.8186 0.8413 0.8482 0.8446
KS 0.5190 0.5810 0.5990 0.5826

Evaluations results based on ANN, especially the AUC values were used as references
to compare with the other models.

4.1.6. CNN

As a kind of feed-forward neural network, CNN can automatically extract features
from its convolution layer to complete the work of model optimization. The evaluation
results of the CNN are shown in Table 7.

Table 7. Evaluation results based on CNN.

CNN 2011 2013 2015 2017

Accuracy 0.7500 0.7271 0.8433 0.7750
Precision 0.7789 0.7098 0.8452 0.7826
F1_score 0.7475 0.7342 0.8479 0.7692

AUC 0.8263 0.8338 0.8989 0.8438
KS 0.5044 0.4987 0.6928 0.5711

Evaluations results based on CNN, especially the AUC value were used as references
to compare with the other models.

4.2. SWB Prediction Based on a Stacking Model

To improve the performance of the base models, we proposed a stacking model,
combining machine learning and LR to enhance the forecasting process. In this model, LR,
XGBoost, CatBoost, and ANN were used as the base models, and LightGBM was used as
the meta model to predict the SWB of residents.
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With the AUC index, the performance of the stacking model and the single model is
shown in Table 8. Compared with the traditional LR model, the AUC value of the stacking
model increased by 15.37% in 2017. Compared with other machine learning models, the
stacking model is still better, including XGBoost, CatBoost, LightGBM, ANN, and the
current popular deep learning model CNN.

Table 8. AUC values of the single and stacking models.

Model/Year 2011 2013 2015 2017

LR 0.7458 0.7542 0.8163 0.7397
XGBoost 0.8561 0.8608 0.8971 0.8584
CatBoost 0.8478 0.8341 0.8754 0.8289

LightGBM 0.8587 0.8441 0.8845 0.8645
ANN 0.8186 0.8413 0.8482 0.8446
CNN 0.8263 0.8338 0.8989 0.8438

Stacking model (Meta model:
LightGBM) 0.8675 0.8957 0.9154 0.8913

After considering the classification performance of the stacking model and the single
model, the running time of the above models were analyzed. This was computed by
putting the target data into the predicting models. The running time is shown in Table 9.

Table 9. Running time (s) of the single and stacking models.

Model/Year 2011 2013 2015 2017

LR 1.3886 2.1804 2.9632 3.3175
XGBoost 18.3136 12.8114 16.7020 22.7456
CatBoost 5.0844 7.9637 12.4173 14.4290

LightGBM 3.2126 4.7697 3.5627 5.3835
ANN 6.5451 8.1510 6.1897 10.1718
CNN 20.2413 18.3413 22.2424 24.3242

Stacking model (Meta model:
LightGBM) 7.8618 8.4403 8.9045 9.4586

As shown in Table 9, the LR model had the shortest running time, but the prediction
accuracy was low; the CNN model, due to its multiple convolutional layers and pooling
layers, had too long a running time to be suitable for real-time detection. Compared
with these tree-based single models, the XGBoost model had almost twice the time of
the stacking model. Although the running times of CatBoost, LightGBM, and ANN were
similar to the stacking model, it can be seen in Table 8 that their prediction accuracy
was generally lower. In terms of the classification results and running time, it can be
comprehensively stated that the stacking model proposed in this paper has a short running
time while achieving the best classification performance.

When selecting the meta model, we compared the performance of the stacking model
based on LightGBM, LR, XGBoost, CatBoost, and ANN, respectively. The results are shown
in Table 10.

Table 10. The AUC value of the stacking model based on different meta models.

Meta Model/Year 2011 2013 2015 2017

XGBoost 0.8618 0.8632 0.9045 0.8631
LR 0.8066 0.8197 0.8842 0.8227

LightGBM 0.8675 0.8957 0.9154 0.8913
CatBoost 0.8634 0.8967 0.9049 0.8896

ANN 0.7962 0.8133 0.8567 0.8303
Note: The bold numbers represent the highest AUC acquired by the stacking model based on the specific meta
model.
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4.3. Statistical Analysis

In the above experiments, five indicators were used to evaluate the prediction accuracy
and prediction ability of the model, but it was still necessary to indicate whether the
differences in models’ performance were statistically significant or not. The Friedman test
and the Nemenyi test were used to verify the results.

The Friedman test compares the average ranks of algorithms, Rj =
1
N ∑j rj

i , where rj
i

is the rank of the j-th of k algorithms on the i-th of N datasets. In our experiment, there
were seven models and four years of datasets, which means N = 4 and k = 7. The average
ranks were assigned by sorting the AUC values of the models from good to bad. The null
hypothesis of the Friedman test is that all the models are equivalent. The Friedman statistic
is distributed according to the F distribution with k − 1 and (k − 1)(N − 1) degrees of
freedom, as shown in the following equation [39],

τF =
(N − 1)τχ2

N(k − 1)− τχ2
where τχ2 =

12N
k(k + 1)

(
∑k

i=1 R2
i −

k(k + 1)2

4

)
(1)

The value of the τF was 15.1621 and its p-value was 0.0183. Since the p-value was
less than 0.05, this indicates that the hypothesis test rejected the null hypothesis and the
performance of the model was significantly different.

However, the Friedman test can only show that there is a difference between the
accuracy of the models; it cannot distinguish the differences more accurately. Therefore,
the Nemenyi test was needed to further verify whether there was a significant difference in
the accuracy between the seven models. In the Nemenyi test, the CD (the corresponding
average ranks differ by at least the critical difference) values can be calculated by the
following formula [39]:

CD = qα

√
k(k + 1)

6N
(2)

where qα can be obtained from Demšar J.’s related work. According to the calculation, the
qα is 2.949 at the significance level of α = 0.05 in the paper and the CD is equal to 4.50. This
indicates that if the difference of any two models’ average ranks is greater than 4.50, there
is a significant difference in performance of the two models. Furthermore, the results of the
Friedman test and Nemenyi test can be visually represented in Figure 6.
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As shown in Figure 6, there was almost no overlap between the horizontal line
segments of the Stacking model and the CatBoost, ANN, and LR models. Therefore, it can
be considered that there was a significant difference between these models. The Stacking
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model and the LightGBM, XGBoost, and CNN models partially overlapped, indicating that
the performance of these models had a certain similarity from the perspective of statistical
testing.

5. Discussion

This paper has proposed a stacking model with LR, XGBoost, CatBoost, and ANN
as the base models and LightGBM as the meta model. Based on data from different years,
the stacking model has a good effect on the SWB forecasting. The results show that the
stacking model we constructed could learn more information from the same data samples
and improve the accuracy by integrating the advantages of different base models. The
results prove the applicability of the stacking algorithm on the SWB forecasting tasks.

Nevertheless, we also compared the top 20 features of annual samples (excluding the
input variables of the base model in stacking) in the stacking model. Table 11 shows the
similar features of each year.

Table 11. Similar features affecting SWB in different years.

Year Features Description

2011

a35a Fairness of current living standards compared with your efforts
d34 The degree of life freedom
d17 Frequency of depression in the past four weeks
a8a Personal annual income in 2010
a64a Changes in family economic status in the past 5 years
a43e Self-perceived social class compared to contemporaries

2013

a35 Self-perceived social equity
a43a Self-perceived social class at present
a11 The building area of the respondent’s current house

income_
percent

The proportion of respondents’ personal income
in household income

a8a Personal annual income in 2010

b119 The situation where the respondent considers their life to be
comfortable and at ease

a17 Frequency of depression in the past four weeks

2015
a35 Self-perceived social equity

b16-5 Respondents’ satisfaction with employment

2017

a43c Self-perceived social class in 10 years
a31b Frequency of social entertainment with friends
a43a Self-perceived social class at present
d21 Satisfaction with current living conditions

d407 Self-sufficiency compared with people around
d4017 Discontentment compared with people around

According to Table 11, one of the common significant features of 2011, 2013, and
2015 was the degree of the respondents’ self-perceived social equity (a43e, a35), but the
importance of the feature was no longer prominent in 2017. To some extent, the equity
and justice in society that Chinese residents have pursued have been realized during the
development of the country. It also reveals that the concept of equity has been gradually
established in the society. The Chinese government has guided people to establish a
dialectical concept of equity, to treat society rationally, and to treat themselves correctly.
Under this circumstance, the Chinese people persist in creating happy lives through hard
work. Further, through deepening structural reform, China has gradually achieved equity
in many areas of society and has improved the sense of social justice and the SWB of
citizens.

As another important feature of SWB in 2011 and 2013, respondents’ annual income
was not reflected in 2015 and 2017, which means that the influence of total income has
gradually decreased as time passed. This result shows that, with the modernization and
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development of China, the income level of residents has been greatly improved. The
absolute income is no longer the only dominant factor affecting SWB.

Furthermore, it is noticeable that there were several important factors which were
not related to income in 2011, 2013, 2015, and 2017. In 2011, there were features such as
respondents’ self-perceived social class, degree of freedom, and frequency of depression.
In 2013, there were features such as self-perceived social class, degree of comfort, and
frequency of depression. In 2015, there were features such as respondents’ satisfaction
with employment. In 2017, there were features such as the respondents’ self-perceived
social class, frequency of social entertainment, and satisfaction of current living conditions.
With the continuous development of the economy and society, people’s desire for a better
life is becoming much stronger. The demand from people has changed from material
wealth to the spiritual aspect, from satisfaction in relation to material quantity to the
pursuit of quality of life. Therefore, enriching the demand of people’s spiritual and cultural
life, promoting the construction of spiritual civilization, and enhancing people’s sense
of security, acquisition as well as happiness will be the direction of further reform and
development over a long period.

6. Conclusions

To improve the performance of predicting the SWB of residents and explore the
determinant factors, we conduct an empirical analysis based on CGSS2011, CGSS2013,
CGSS2015, and CGSS2017 data.

Six machine learning and deep learning algorithms are selected, namely LR, XGBoost,
CatBoost, LightGBM, ANN, and CNN. A stacking model is constructed by taking the
ANN, XGBoost, LR, and CatBoost as the base models, while the LightGBM is taken as
the meta model. With the over-sampling and under-sampling method, we obtain 20
important features which are highly correlated to the SWB of residents. The similarities
and differences among these features in 4 years are beneficial for studying what factors
influence the SWB of residents the most. The results show that machine learning models
can generally achieves a better forecasting accuracy than the traditional LR, while the
stacking model achieved the best performance among all the algorithms. Meanwhile, the
Friedman test and the Nemenyi test are used to verify the experimental results, indicating
that the difference in performance of models is statistically significant.

For the features that affect the SWB of residents in different years, this paper has
extracted the top 20 related features. For further research, the scope of influencing features
can be expanded to analyze the differences and connections between various features,
which will be beneficial for improving the forecasting performance of SWB.
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Abbreviations

SWB Subjective Well-Being
CGSS Chinese General Social Survey
LR Logistic Regression
SES Socio-economic Status
SVM Support Vector Machine
DT Decision Tree
KNN K-Nearest Neighbor
GBDT Gradient Boosting Decision Tree
XGBoost Extreme Gradient Boosting
LightGBM Light Gradient Boosting Machine
Catboost Category Boosting
ANN Artificial Neural Network
CNN Convolutional Neural Network
MLR Multiple Linear Regression
ROC Receiver Operating Characteristic
AUC Area Under ROC Curve
KS Kolmogrov-Smirnov
BMI Body Mass Index
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