Selection of Renewable Energy in Rural Area Via Life Cycle Assessment-Analytical Hierarchy Process (LCA-AHP): A Case Study of Tatau, Sarawak
Abstract
:1. Introduction
2. Materials and Methods
2.1. Life Cycle Assessment (LCA)
2.1.1. Goal and Scope Definition
- The data for this LCA analysis were extracted from reviews in the literature and publicly available databases. The data were scaled to 1 kWh of electricity produced for all stages before being normalized to 13.89 kWh, which is the functional unit of this study. The following assumptions were made for the inventory data collection: Only electricity was included as the input for this study. Other materials were not considered as alternatives would have required the use of exclusive materials for the manufacturing of components [26].
- The transportation stage only included land transportation and did not include sea or air transportation.
- Only output and pollutants, i.e., methane (CH4), nitrous oxide (N2O), carbon dioxide (CO2), sulfur dioxide (SO2), nitric oxide (NOx), hydrogen chloride (HCl) and ammonia (NH3), which were related to GWP and AP, were taken into consideration in the LCI.
2.1.2. Life Cycle Impact Assessment (LCIA) Scope Definition
2.2. Simulation of HOMER Pro
2.3. Analytical Hierarchy Process (AHP)
AHP Model
- (a)
- Level 0: GoalTo determine the best renewable energy system for Tatau, Sarawak.
- (b)
- Level 1: Main CriteriaMain criteria in this study were the environment, engineering and economy.
- (c)
- Level 2: Sub-criteriaThe sub-criteria in this study were the land requirements, environmental impact (global warming potential (GWP) and acidification potential (AP)), resource availability, efficiency of the system, technology maturity, capital cost and operating and management costs.
- (d)
- Level 3: AlternativesThe alternatives being assessed in this study were solar, wind, biomass and mini-hydro energy system. The layout of this hierarchy is represented in Figure 4.
3. Results
3.1. Environmental Impacts of Renewable Energy Alternatives
3.2. Cost for Electricity Generation
3.3. Analytical Hierarchy Process (AHP)
- (a)
- Level 0: GoalsTo determine the best renewable energy for Tatau, Sarawak.
- (b)
- Level 1: Main CriteriaSince the relative weight and score for the criteria were extracted from literature sources with equivalent goals, the pairwise comparison was disregarded at this level. The importance score was derived from a review of the literature. Figure 11 presents the normalized scores that were used to fit the values into the project model.
- (c)
- Level 2: Sub-criteriaFigure 12 shows the importance scores for each sub-criterion and the overall importance score for sub-criteria that corresponded to the main criterion, as extracted from the literature sources. All scores were normalized to fit into the AHP model.
- (d)
- Level 3: AlternativesTable 3 tabulates the definition of the importance score and the literature source for each of the environmental, engineering and economic criteria, respectively.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Energy Commission, Malaysia Energy Statistics Handbook. 2019. Available online: https://meih.st.gov.my/documents/10620/bcce78a2-5d54-49ae-b0dc-549dcacf93ae (accessed on 11 November 2020).
- Abotah, R.; Daim, T.U. Towards building a multi perspective policy development framework for transition into renewable energy. Sustain. Energy Technol. Assess. 2017, 21, 67–88. [Google Scholar] [CrossRef]
- Choong, J. Yeo: Malaysia Aiming for 20pc Renewable Energy Use by 2025. Malay Mail. 2019. Available online: https://www.malaymail.com/news/malaysia/2019/09/03/yeo-malaysia-aiming-for-20pc-renewable-energy-use-by-2025/1786768 (accessed on 11 November 2020).
- Abdullah, W.S.W.; Osman, M.; Ab Kadir, M.Z.A.; Verayiah, R. The potential and status of renewable energy development in Malaysia. Energies 2019, 12, 2437. [Google Scholar] [CrossRef] [Green Version]
- Hannan, M.A.; Begum, R.A.; Abdolrasol, M.G.; Lipu, M.H.; Mohamed, A.; Rashid, M.M. Review of baseline studies on energy policies and indicators in Malaysia for future sustainable energy development. Renew. Sustain. Energy Rev. 2018, 94, 551–564. [Google Scholar] [CrossRef]
- Sreeraj, E.S.; Chatterjee, K.; Bandyopadhyay, S. Design of isolated renewable hybrid power systems. Sol. Energy 2010, 84, 1124–1136. [Google Scholar] [CrossRef]
- Chen, S. Rural electrification in Sarawak, Malaysia: Potential & Challenges for Mini-Hydro & Solar Hybrid Solutions. 2016. Available online: https://www.eclareon.com/sites/default/files/Presentations/04_chen_shiun.pdf (accessed on 10 January 2021).
- Khengwee, T.; Hoole, P.R.P.; Pirapaharan, K.; Julai, N.; Othman, A.K.H.; Anyi, M.; Haidar, A.M.A.; Hoole, S.R.H. A review of Sarawak off-grid renewable energy potential and challenges. J. Telecommun. Electron. Comput. Eng. 2017, 9, 29–33. [Google Scholar]
- Foster, R.; Ghassemi., M.; Cota, A. Solar Energy: Renewable Energy and the Environment; CRC Press: Florida, FL, USA, 2009. [Google Scholar]
- Campos-Guzmán, V.; García-Cáscales, M.S.; Espinosa, N.; Urbina, A. Life cycle analysis with multi-criteria decision making: A review of approaches for the sustainability evaluation of renewable energy technologies. Renew. Sustain. Energy Rev. 2019, 104, 343–366. [Google Scholar] [CrossRef]
- De Marco, I.; Riemma, S.; Iannone, R. Life cycle assessment of supercritical CO2 extraction of caffeine from coffee beans. J. Supercrit. Fluid. 2018, 133, 393–400. [Google Scholar] [CrossRef]
- Gallucci, T.; Lagioia, G.; Piccinno, P.; Lacalamita, A.; Pontrandolfo, A.; Paiano, A. Environmental performance scenarios in the production of hollow glass containers for food packaging: An LCA approach. Int. J. Life Cycle Assess. 2021, 26, 785–798. [Google Scholar] [CrossRef]
- Bhole, G.P.; Deshmukh, T. Multi criteria decision making (MCDM) methods and its applications. Int. J. Appl. Sci. Eng. 2018, 6, 899–915. [Google Scholar] [CrossRef]
- Al Garni, H.; Kassem, A.; Awasthi, A.; Komljenovic, D.; Al-Haddad, K. A multicriteria decision making approach for evaluating renewable power generation sources in Saudi Arabia. Sustain. Energy Technol. Assess. 2016, 16, 137–150. [Google Scholar] [CrossRef]
- Algarín, C.R.; Llanos, A.P.; Castro, A.O. An analytic hierarchy process based approach for evaluating renewable energy sources. Int. J. Energy Econ. Policy 2017, 7, 38–47. [Google Scholar]
- Das, A.; Shabbiruddin. Renewable energy source selection using analytical hierarchy process and quality function deployment: A case study. In Proceedings of the 2016 Second International Conference on Science Technology Engineering and Management (ICONSTEM), Chennai, India, 30–31 March 2016; IEEE: New York, NY, USA, 2016; pp. 298–302. [Google Scholar]
- Hilorme, T.; Tkach, K.; Dorenskyi, O.; Katerna, O.; Durmanov, A. Decision making model of introducing energy-saving technologies based on the analytic hierarchy process. J. Manag. Inf. Decis. Sci. 2019, 22, 489–494. [Google Scholar]
- Zhang, L.Y.; Li, C.X.; Phuong, N.H. Development of biomass energy industry in Heilongjiang Province based on analytic hierarchy process. Nat. Environ. Pollut. Technol. 2019, 18, 1487–1493. [Google Scholar]
- Ren, J.Z.; Manzardo, A.; Mazzi, A.; Zuliani, F.; Scipioni, A. Prioritization of bioethanol production pathways in China based on life cycle sustainability assessment and multicriteria decision-making. Int. J. Life Cycle Assess. 2015, 20, 842–853. [Google Scholar] [CrossRef]
- Basri, N.A.; Ramli, A.T.; Aliyu, A.S. Malaysia energy strategy towards sustainability: A panoramic overview of the benefits and challenges. Renew. Sustain. Energy Rev. 2015, 42, 1094–1105. [Google Scholar] [CrossRef]
- Kim, T.H.; Chae, C.U. Environmental impact analysis of acidification and eutrophication due to emissions from the production of concrete. Sustainability 2016, 8, 578. [Google Scholar] [CrossRef] [Green Version]
- Ludin, N.A.; Mustafa, N.I.; Hanafiah, M.M.; Ibrahim, M.A.; Teridi, M.A.M.; Sepeai, S.; Sopian, K. Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Renew. Sustain. Energy Rev. 2018, 96, 11–28. [Google Scholar] [CrossRef]
- Bahta, S.T. Design and Analyzing of an Off-Grid Hybrid Renewable Energy System to Supply Electricity for Rural Areas: Case Study: Atsbi District, North Ethiopia. Master’s Thesis, KTH School of Industrial Engineering and Management, Stockholm, Sweden, 2016. [Google Scholar]
- Ishikawa, N.; Soda, R. Anthropogenic Tropical Forests: Human-Nature Interfaces on the Plantation Frontier; Springer Nature: Singapore, 2019. [Google Scholar]
- Jong, F.C.; Ahmed, M.M.; Aik, D.L.H. Integration of renewable energy sources optimization in Sarawak using GIS and MCDM-AHP. In Proceedings of the 2019 International UNIMAS STEM 12th Engineering Conference (EnCon), Sarawak, Malaysia, 28–29 August 2019; pp. 65–70. [Google Scholar]
- Trowell, K.A.; Goroshin, S.; Frost, D.L.; Bergthorson, J.M. Aluminum and its role as a recyclable, sustainable carrier of renewable energy. Appl. Energy 2020, 275, 115112. [Google Scholar] [CrossRef]
- Natural Gas Conversion Guide 2012, International Gas Union. Available online: http://agnatural.pt/documentos/ver/natural-gas-conversion-guide_cb4f0ccd80ccaf88ca5ec336a38600867db5aaf1.pdf (accessed on 21 April 2020).
- Gómez, M.R.; Garcia, R.F.; Gómez, J.R.; Carril, J.C. Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process. Renew. Sustain. Energy Rev. 2014, 38, 781–795. [Google Scholar] [CrossRef]
- Huang, Y.F.; Gan, X.J.; Chiueh, P.T. Life cycle assessment and net energy analysis of offshore wind power systems. Renew. Energy 2017, 102, 98–106. [Google Scholar] [CrossRef]
- Kaab, A.; Sharifi, M.; Mobli, H.; Nabavi-Pelesaraei, A.; Chau, K.W. Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production. Sci. Total Environ. 2019, 664, 1005–1019. [Google Scholar] [CrossRef] [PubMed]
- Yuguda, T.K.; Li, Y.; Xiong, W.; Zhang, W. Life cycle assessment of options for retrofitting an existing dam to generate hydro-electricity. Int. J. Life Cycle Assess. 2020, 25, 57–72. [Google Scholar] [CrossRef]
- Hussein, I.; Raman, N. Reconnaissance studies of micro hydro potential in Malaysia. In Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies, Chiang Mai, Thailand, 2–4 June 2010; pp. 1–10. [Google Scholar]
- Promentilla, M.A.B.; Aviso, K.B.; Lucas, R.I.G.; Razon, L.F.; Tan, R.R. Teaching Analytic Hierarchy Process (AHP) in undergraduate chemical engineering courses. Educ. Chem. Eng. 2018, 23, 34–41. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw Hill International: New York, NY, USA, 1980. [Google Scholar]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.J.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; et al. The ecoinvent database: Overview and methodological framework. Int. J. Life Cycle Assess. 2005, 10, 3–9. [Google Scholar] [CrossRef]
- Ahmad Ludin, N.; Ahmad Affandi, N.A.; Purvis-Roberts, K.; Ahmad, A.; Ibrahim, M.A.; Sopian, K.; Jusoh, S. Environmental impact and levelised cost of energy analysis of solar photovoltaic systems in selected Asia Pacific region: A cradle-to-grave approach. Sustainability 2021, 13, 396. [Google Scholar] [CrossRef]
- Ghenai, C. Life cycle analysis of wind turbine. In Sustainable Development–Energy, Engineering and Technologies–Manufacturing and Environment; Ghenai, C., Ed.; InTech: Rijeka, Croatia, 2012; pp. 19–32. [Google Scholar]
- Emissions, G.G. Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources. 2011. Available online: https://gssd.mit.edu/search-gssd/site/comparison-lifecycle-greenhouse-gas-61507-tue-10-31-2017-2350 (accessed on 10 January 2021).
- Bergerson, J.; Lave, L. A Life Cycle Analysis of Electricity Generation Technologies. Health and Environmental Implications of Alternative Fuels and Technologies. 2002. Available online: https://www.cmu.edu/ceic/assets/docs/publications/working-papers/ceic-03-05.pdf (accessed on 21 April 2020).
- Shen, X.; Kommalapati, R.R.; Huque, Z. The comparative life cycle assessment of power generation from lignocellulosic biomass. Sustainability 2015, 7, 12974–12987. [Google Scholar] [CrossRef] [Green Version]
- Pang, M.; Zhang, L.; Wang, C.; Liu, G. Environmental life cycle assessment of a small hydropower plant in China. Int. J. Life Cycle Assess. 2015, 20, 796–806. [Google Scholar] [CrossRef]
- Hanafi, J.; Riman, A. Life cycle assessment of a mini hydro power plant in Indonesia: A case study in Karai River. Procedia Cirp. 2015, 29, 444–449. [Google Scholar] [CrossRef]
- Mulvaney, D. Solar’s green dilemma. IEEE Spectr. 2014, 51, 30–33. [Google Scholar] [CrossRef]
- Gomaa, M.R.; Rezk, H.; Mustafa, R.J.; Al-Dhaifallah, M. Evaluating the environmental impacts and energy performance of a wind farm system utilizing the life-cycle assessment method: A practical case study. Energies 2019, 12, 3263. [Google Scholar] [CrossRef] [Green Version]
- Chipindula, J.; Botlaguduru, V.S.V.; Du, H.; Kommalapati, R.R.; Huque, Z. Life cycle environmental impact of onshore and offshore wind farms in Texas. Sustainability 2018, 10, 2022. [Google Scholar] [CrossRef] [Green Version]
- Raadal, H.L.; Gagnon, L.; Modahl, I.S.; Hanssen, O.J. Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power. Renew. Sustain. Energy Rev. 2011, 15, 3417–3422. [Google Scholar] [CrossRef]
- Carrasco, L.M.; Narvarte, L.; Lorenzo, E. Operational costs of A 13,000 solar home systems rural electrification programme. Renew. Sustain. Energy Rev. 2013, 20, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Albani, A.; Ibrahim, M.Z. Wind energy potential and power law indexes assessment for selected near-coastal sites in Malaysia. Energies 2017, 10, 307. [Google Scholar] [CrossRef] [Green Version]
- Naqvi, M.; Yan, J.; Dahlquist, E.; Naqvi, S.R. Off-grid electricity generation using mixed biomass compost: A scenario-based study with sensitivity analysis. Appl. Energy 2017, 201, 363–370. [Google Scholar] [CrossRef]
- Dorber, M.; May, R.; Verones, F. Modeling net land occupation of hydropower reservoirs in Norway for use in life cycle assessment. Environ. Sci. Technol. 2018, 52, 2375–2384. [Google Scholar] [CrossRef] [PubMed]
- Fthenakis, V.; Kim, H.C. Land use and electricity generation: A life-cycle analysis. Renew. Sustain. Energy Rev. 2009, 13, 1465–1474. [Google Scholar] [CrossRef] [Green Version]
- Oliver, A.; Khanna, M. Demand for biomass to meet renewable energy targets in the United States: Implications for land use. GCB Bioenergy 2017, 9, 1476–1488. [Google Scholar] [CrossRef]
- van Zalk, J.; Behrens, P. The spatial extent of renewable and non-renewable power generation: A review and meta-analysis of power densities and their application in the US. Energy Policy 2018, 123, 83–91. [Google Scholar] [CrossRef]
- Jha, S.K.; Puppala, H. Prospects of renewable energy sources in India: Prioritization of alternative sources in terms of Energy Index. Energy 2017, 127, 116–127. [Google Scholar] [CrossRef]
- Nonhebel, S. Renewable energy and food supply: Will there be enough land? Renew. Sustain. Energy Rev. 2005, 9, 191–201. [Google Scholar] [CrossRef]
- Lam, H.L.; Varbanov, P.S.; Klemeš, J.J. Regional renewable energy and resource planning. Appl. Energy 2011, 88, 545–550. [Google Scholar] [CrossRef]
- Alola, A.A.; Alola, U.V. Agricultural land usage and tourism impact on renewable energy consumption among Coastline Mediterranean Countries. Energy Environ. 2018, 29, 1438–1454. [Google Scholar] [CrossRef]
- Fauzi, M.A.; Setyono, P.; Pranolo, S.H. Environmental assessment of a small power plant based on palm kernel shell gasification. In Proceedings of the International Conference on Science and Applied Science; AIP Publishing LLC: Surakarta, Indonesia, 2020; Volume 2296, p. 020038. [Google Scholar]
- Vaka, M.; Walvekar, R.; Rasheed, A.K.; Khalid, M. A review on Malaysia’s solar energy pathway towards carbon-neutral Malaysia beyond Covid’19 pandemic. J. Clean. Prod. 2020, 273, 122834. [Google Scholar] [CrossRef] [PubMed]
- Petinrin, J.O.; Shaaban, M. Renewable energy for continuous energy sustainability in Malaysia. Renew. Sustain. Energy Rev. 2015, 50, 967–981. [Google Scholar] [CrossRef]
- Sa’adi, Z.; Shahid, S.; Ismail, T.; Chung, E.S.; Wang, X.J. Distributional changes in rainfall and river flow in Sarawak, Malaysia. Asia Pac. J. Atmos. Sci. 2017, 53, 489–500. [Google Scholar] [CrossRef]
- Solangi, K.H.; Islam, M.R.; Saidur, R.; Rahim, N.A.; Fayaz, H. A review on global solar energy policy. Renew. Sustain. Energy Rev. 2011, 15, 2149–2163. [Google Scholar] [CrossRef]
- Chang, Y.; Phoumin, H. Harnessing wind energy potential in ASEAN: Modelling and policy implications. Sustainability 2021, 13, 4279. [Google Scholar] [CrossRef]
- Hossain, M.; Huda, A.S.N.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B.; Stojcevski, A.; Ahmed, M. A state-of-the-art review of hydropower in Malaysia as renewable energy: Current status and future prospects. Energy Strategy Rev. 2018, 22, 426–437. [Google Scholar] [CrossRef]
- Bong, C.P.C.; Ho, W.S.; Hashim, H.; Lim, J.S.; Ho, C.S.; Tan, W.S.P.; Lee, C.T. Review on the renewable energy and solid waste management policies towards biogas development in Malaysia. Renew. Sustain. Energy Rev. 2017, 70, 988–998. [Google Scholar] [CrossRef]
- Umar, M.S.; Urmee, T.; Jennings, P. A policy framework and industry roadmap model for sustainable oil palm biomass electricity generation in Malaysia. Renew. Energy 2018, 128, 275–284. [Google Scholar] [CrossRef]
- Tang, S.; Chen, J.; Sun, P.; Li, Y.; Yu, P.; Chen, E. Current and future hydropower development in Southeast Asia countries (Malaysia, Indonesia, Thailand and Myanmar). Energy Policy 2019, 129, 239–249. [Google Scholar] [CrossRef]
- Noman, F.; Alkawsi, G.; Abbas, D.; Alkahtani, A.; Tiong, S.K.; Ekanyake, J. A Comprehensive Review of Wind Energy in Malaysia: Past, Present and Future Research Trends. IEEE Access 2020, 8, 124526–124543. [Google Scholar] [CrossRef]
- Sampaio, P.G.V.; González, M.O.A. Photovoltaic solar energy: Conceptual framework. Renew. Sustain. Energy Rev. 2017, 74, 590–601. [Google Scholar] [CrossRef]
- Quaranta, E.; Revelli, R. Output power and power losses estimation for an overshot water wheel. Renew. Energy 2015, 83, 979–987. [Google Scholar] [CrossRef]
- Rawat, R.; Lamba, R.; Kaushik, S.C. Thermodynamic study of solar photovoltaic energy conversion: An overview. Renew. Sustain. Energy Rev. 2017, 71, 630–638. [Google Scholar] [CrossRef]
- Lee, J.Y.; An, S.; Cha, K.; Hur, T. Life cycle environmental and economic analyses of a hydrogen station with wind energy. Int. J. Hydrog. Energy 2010, 35, 2213–2225. [Google Scholar] [CrossRef]
- Nzihou, A. Handbook on Characterization of Biomass, Biowaste and Related by-Products; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Goswami, D.Y.; Kreith, F. Handbook of Energy Efficiency and Renewable Energy; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Akram, R.; Chen, F.; Khalid, F.; Ye, Z.; Majeed, M.T. Heterogeneous effects of energy efficiency and renewable energy on carbon emissions: Evidence from developing countries. J. Clean. Prod. 2020, 247, 119122. [Google Scholar] [CrossRef]
- Leal Filho, W.; Salvia, A.L.; Do Paco, A.; Anholon, R.; Quelhas, O.L.G.; Rampasso, I.S.; Brandli, L.L. A comparative study of approaches towards energy efficiency and renewable energy use at higher education institutions. J. Clean. Prod. 2019, 237, 117728. [Google Scholar] [CrossRef]
- Garrett-Peltier, H. Green versus brown: Comparing the employment impacts of energy efficiency, renewable energy, and fossil fuels using an input-output model. Econ. Model. 2017, 61, 439–447. [Google Scholar] [CrossRef]
- Stavropoulos, S.; Burger, M.J. Modelling strategy and net employment effects of renewable energy and energy efficiency: A meta-regression. Energy Policy 2020, 136, 111047. [Google Scholar] [CrossRef]
- Amer, M.; Daim, T.U. Selection of renewable energy technologies for a developing county: A case of Pakistan. Energy Sustain. Dev. 2011, 15, 420–435. [Google Scholar] [CrossRef]
- Ahmad, S.; Tahar, R.M. Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renew. Energy 2014, 63, 458–466. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; Solangi, Y.A. Strategic renewable energy resources selection for Pakistan: Based on SWOT-Fuzzy AHP approach. Sustain. Cities Soc. 2020, 52, 101861. [Google Scholar] [CrossRef]
- Abushammala, M.F.; Qazi, W.A. Evaluation of the significant renewable energy resources in Sultanate of Oman using Analytical Hierarchy Process. Int. J. Renew. Energy Res. 2018, 8, 1528–1534. [Google Scholar]
- Ishfaq, S.; Ali, S.; Ali, Y. Selection of optimum renewable energy source for energy sector in Pakistan by using MCDM approach. Process Integr. Optim. Sustain. 2018, 2, 61–71. [Google Scholar] [CrossRef]
- Whitacre, P. Sustainable Materials and Manufacturing for Renewable Energy Technology Development to 2030: Proceedings of a Workshop–in Brief; The National Academies Press: Washington, DC, USA, 2017. [Google Scholar]
- Martinopoulos, G. Life cycle assessment of solar energy conversion systems in energetic retrofitted buildings. J. Build. Eng. 2018, 20, 256–263. [Google Scholar] [CrossRef]
Energy System | Type of Pollutants (kg/kWh) | Manufacturing (×10−2) | Construction (×10−2) | Usage (×10−2) | End-of-Life (×10−2) |
---|---|---|---|---|---|
Solar | CO2 | 156.14 | 26.80798 | 0.00 | 11.03 |
CH4 | 346.98 | 59.55 | 0.00 | 24.52 | |
N2O | 80.50 | 13.82 | 0.00 | 5.69 | |
SO2 | 80.50 | 13.82 | 0.00 | 5.69 | |
NOx | 27,271.27 | 4680.52 | 0.00 | 1927.15 | |
HCl | 232.61 | 39.92 | 0.00 | 16.44 | |
NH3 | 56.95 | 9.77 | 0.00 | 4.02 | |
Wind | CO2 | 18.82 | 0.24 | 0.17 | 0.18 |
CH4 | 44.46 | 0.56 | 0.39 | 0.43 | |
N2O | 0.37 | 0.01 | 0.00 | 0.00 | |
SO2 | 3799.77 | 48.20 | 33.23 | 36.54 | |
NOx | 2991.72 | 37.95 | 26.16 | 28.77 | |
HCl | 19.24 | 0.24 | 0.17 | 0.19 | |
NH3 | 2.89 | 0.04 | 0.03 | 0.03 | |
Biomass | CO2 | 1.21 | 0.03 | 1.64 | 0.03 |
CH4 | 1.81 | 0.04 | 2.46 | 0.04 | |
N2O | 3.54 | 0.08 | 4.79 | 0.08 | |
SO2 | 1091.65 | 25.04 | 1479.81 | 25.04 | |
NOx | 10,832.53 | 248.46 | 14,684.22 | 248.464 | |
HCl | 209.93 | 4.82 | 284.58 | 4.82 | |
NH3 | 587.81 | 13.48 | 796.82 | 13.48 | |
Mini-hydro | CO2 | 10.42 | 5.56 | 1.39 | 0.02 |
CH4 | 21.89 | 11.68 | 2.92 | 0.04 | |
N2O | 0.42 | 0.22 | 0.06 | 0.00 | |
SO2 | 1010.25 | 538.80 | 134.70 | 1.68 | |
NOx | 2139.34 | 1140.98 | 285.25 | 3.57 | |
HCl | 5.94 | 3.17 | 0.79 | 0.01 | |
NH3 | 2.38 | 1.27 | 0.32 | 0.00 |
Expenditure | Solar Energy | Wind Energy | Biomass Energy | Mini-Hydro Energy |
---|---|---|---|---|
Capital cost (US$) | 11,618.67 | 12,337.18 | 841.75 | 5,782.83 |
Operational and maintenance cost (US$) | 3,202.34 | 2,288.82 | 5,447.09 | 773.38 |
Total (US$) | 14,821.01 | 14,626.00 | 6288.84 | 6556.21 |
Criteria | Sub-Criteria | Definition of Importance Score | Data Source |
---|---|---|---|
Environmental | Land requirement | Larger land required indicates lower importance score (lower environmental sustainability) | Solar energy: 35 m2/kWh [51] |
Wind energy: 100 m2/kWh [53] | |||
Biomass energy: 7000 m2/kWh [52] | |||
Mini-hydro energy: 961 m2/kWh [51] | |||
GWP and AP | Higher impact value indicates lower importance score (lower environmental sustainability) | LCA | |
Engineering | Resource availability | Higher generation potential indicates higher importance score (higher engineering sustainability) | Solar energy: 6500 MW [62] |
Wind energy: 1.5 MW [4] | |||
Biomass energy: 1.7 MW [63] | |||
Mini-hydro energy: 28.9 MW [32] | |||
Efficiency of the system | Higher efficiency indicates higher importance score (higher engineering sustainability) | Solar energy: 11% [62] | |
Wind energy: 35% [71] | |||
Biomass energy: 32.5% [72] | |||
Mini-hydro energy: 67% [70] | |||
Technology maturity | Higher number of past projects indicates higher importance score (higher engineering sustainability) | Solar energy: 38 projects [59] | |
Wind energy: 7 projects [65] | |||
Biomass energy: 17 projects [66] | |||
Mini-hydro energy: 13 projects [64] | |||
Economic | Capital cost | Higher cost indicates lower importance score (lower economical sustainability). | HOMER Pro results |
Operation and maintenance cost |
Energy System | Priority Vector |
---|---|
Solar Energy | 0.312 |
Wind Energy | 0.284 |
Biomass Energy | 0.180 |
Mini-hydro Energy | 0.225 |
Level 1 | Level 2 | Level 3 | |||||
---|---|---|---|---|---|---|---|
Criteria | Importance Score | Sub-Criteria | Importance Score | Solar Energy | Wind Energy | Biomass Energy | Mini-hydro Energy |
Environmental | 0.237 | Land requirement | 0.412 | 0.064 | 0.149 | 0.461 | 0.326 |
LCA | 0.588 | 0.127 | 0.310 | 0.247 | 0.316 | ||
Engineering | 0.363 | Resource availability | 0.410 | 0.995 | 0.000 | 0.000 | 0.004 |
Efficiency of the system | 0.435 | 0.076 | 0.241 | 0.223 | 0.460 | ||
Technology maturity | 0.155 | 0.507 | 0.093 | 0.227 | 0.173 | ||
Economic | 0.400 | Capital cost | 0.562 | 0.207 | 0.199 | 0.324 | 0.270 |
O & M | 0.438 | 0.242 | 0.268 | 0.178 | 0.311 |
Alternatives | Final Importance Score |
---|---|
Solar Energy | 0.299 |
Wind Energy | 0.200 |
Biomass Energy | 0.230 |
Mini-hydro Energy | 0.271 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
John, C.A.; Tan, L.S.; Tan, J.; Kiew, P.L.; Shariff, A.M.; Abdul Halim, H.N. Selection of Renewable Energy in Rural Area Via Life Cycle Assessment-Analytical Hierarchy Process (LCA-AHP): A Case Study of Tatau, Sarawak. Sustainability 2021, 13, 11880. https://doi.org/10.3390/su132111880
John CA, Tan LS, Tan J, Kiew PL, Shariff AM, Abdul Halim HN. Selection of Renewable Energy in Rural Area Via Life Cycle Assessment-Analytical Hierarchy Process (LCA-AHP): A Case Study of Tatau, Sarawak. Sustainability. 2021; 13(21):11880. https://doi.org/10.3390/su132111880
Chicago/Turabian StyleJohn, Cyril Anak, Lian See Tan, Jully Tan, Peck Loo Kiew, Azmi Mohd Shariff, and Hairul Nazirah Abdul Halim. 2021. "Selection of Renewable Energy in Rural Area Via Life Cycle Assessment-Analytical Hierarchy Process (LCA-AHP): A Case Study of Tatau, Sarawak" Sustainability 13, no. 21: 11880. https://doi.org/10.3390/su132111880
APA StyleJohn, C. A., Tan, L. S., Tan, J., Kiew, P. L., Shariff, A. M., & Abdul Halim, H. N. (2021). Selection of Renewable Energy in Rural Area Via Life Cycle Assessment-Analytical Hierarchy Process (LCA-AHP): A Case Study of Tatau, Sarawak. Sustainability, 13(21), 11880. https://doi.org/10.3390/su132111880