
sustainability

Article

Sunlight Intensity, Photosynthetically Active Radiation
Modelling and Its Application in Algae-Based Wastewater
Treatment and Its Cost Estimation

Saumya Verma 1, Raja Chowdhury 1,* , Sarat K. Das 2, Matthew J. Franchetti 3 and Gang Liu 4

����������
�������

Citation: Verma, S.; Chowdhury, R.;

Das, S.K.; Franchetti, M.J.; Liu, G.

Sunlight Intensity, Photosynthetically

Active Radiation Modelling and Its

Application in Algae-Based

Wastewater Treatment and Its Cost

Estimation. Sustainability 2021, 13,

11937. https://doi.org/10.3390/

su132111937

Academic Editor: Alessio Siciliano

Received: 17 August 2021

Accepted: 18 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India;
saumyaverma459@gmail.com

2 Department of Civil Engineering, IIT—ISM Dhanbad, Dhanbad 826004, India; saratdas@iitism.ac.in
3 Department of Mechanical Industrial and Manufacturing Engineering, University of Toledo,

Toledo, OH 43606, USA; Matthew.Franchetti@utoledo.edu
4 Department of Green Technology, University of Southern Denmark, DK-5230 Odense, Denmark;

gli@igt.sdu.dk
* Correspondence: rajachowdhury1@gmail.com

Abstract: In algal pond used for treating wastewater, a part of the solar radiation (PAR) is used by
algae for photosynthesis, and rest of the solar energy is wasted. To date, no studies have been con-
ducted that optimize these aspects (wasted solar radiation for heat production) from an operational
cost perspective. Therefore, a model is developed for the estimation of photosynthetically active
radiation (PAR) from solar radiation. Subsequently, derived PAR was utilized in the optimization
algorithm. Experimental data on PAR and solar radiation were used to obtain empirical parameters
of the developed model. Using empirical parameters, diurnal PAR was estimated for other locations
for which the diurnal variation of solar radiation was not available. Afterwards, the estimated solar
radiation was used to obtain the cost of algal biomass production using wastewater. For this purpose,
a cost function was minimized. The cost function contains various cost components of algae-based
wastewater treatment. The major costs of the treatment were incurred by the sunlight harvesting,
and distribution equipment, whereas the major income was registered through the conversion of
sunlight to heat and biomass production. The yearly cost of treating 1m3 wastewater in the proposed
wastewater treatment plant could be varied from 186 to−44 (Rs, INR). The capital cost of constructing
a proposed treatment plant having a capacity of 1000 m3/day varied from 11–45 crores INR.

Keywords: algal culture; clearness index; modelling of PAR; optimization; wastewater

1. Introduction

Dedicated energy crops in the form of various types of grasses indicated a reduction
in greenhouse gas (GHG) emission and the cost of biofuels [1,2]. To reduce the GHG
emissions and the cost of biofuel further, the uses of waste biomass are found to have
several advantages. In this regard, algal biomass provided added advantage of very
low land requirement as compared to other biomass feedstocks [3,4]. Incorporating waste
nutrients in the form of wastewater reduces GHG emission further [5]. However, producing
considerable amounts of algal biomass in wastewater and the treatment of wastewater
using algae have several bottlenecks. They are enumerated below: (i) most of these algal
strains showed low productivity in wastewater, (ii) diurnal variation of solar radiation
may also affect the biomass productivity and wastewater treatment efficiency, (iii) in
business as usual cases for algae-based wastewater treatment, one needs to have sufficient
sunlight, and thus most of the time it is difficult to increase the depth of the algal ponds
beyond 40 cm [6]. Hence, a strategy needs to be developed to integrate optimum solar
radiation with algae-based wastewater treatment. For this purpose, solar light harvesting
and transport of sunlight can be integrated with algae-based wastewater treatment. Some
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of the studies also used optical fiber-based solar light transport equipment to grow algae in
various synthetic mediums [7,8]. These studies used optical fibers to provide a fluctuating
light source for better algae growth.

Similarly, photoluminescent materials could also be used for harvesting solar light
and converting the same to a particular wavelength (red light), which can be optimally
used during photosynthesis [9]. The depth limitation increases the land requirement,
and at the same time, excessive sunlight during daytime can affect the algal growth by
damaging the photosynthetic apparatus of the algal cell. For increasing the depth of the
algal ponds and for the optimum distribution of sunlight, providing sunlight harvesting
and distribution devices will improve the efficiency of the treatment and may reduce the
cost of the treatment. However, the integration of solar light harvesting and its uses for
algae-based wastewater treatment and heat production have not been studied for their
suitability in biomass production and cost reduction. Solar light harvesting using various
types of solar concentrators has been implemented for various beneficial purposes e.g.,
thermal drying of sludge, hydrothermal liquefaction of biomass for fuels, and daylighting
for homes [10–12].

For properly designing solar light harvesting and distribution devices, one needs to
have a diurnal variation of solar radiation and photosynthetically active radiation (PAR).
PAR is the spectral portion of solar radiation ranging from 400 nm to 700 nm used by the
plant for photosynthesis [13]. PAR can be measured directly using pertinent instruments
or estimated from solar radiation (SR) [14]. However, in most places, the diurnal variations
of SR and PAR are not available. Hence, there is a need to develop models for simulating
the diurnal variation of PAR and SR.

PAR changes seasonally and varies during the day, and depends on the latitude.
Factors affecting the intensity of PAR are sunlight intensity, cloud cover, shading by trees,
and buildings. PAR changes from one particular geographical location to another. PAR is a
function of the local sky clearness index that depends on the cloud cover, solar declination
angle, water vapor concentration, time of the day, and latitude of the location [15].

Studies exist to model solar radiation using either a physics-based model or using soft
computing techniques. For example, Hocaoglu and his team [16,17] used Hidden Markov
Chain Models to estimate the global solar radiation in various places in Turkey. Bhardwaj
et al. [18] used a combination of fuzzy-based and Hidden Markov Chain model for the
estimation of solar radiation. Vindel and Polo [19] used the Markov model combined with
the Zipf law to develop a solar light intensity estimation model for Spain. Some studies also
attempted to estimate or model PAR from solar radiation [20,21]. Some of the models used
artificial neural network (ANN), principal component analysis coupled with regression,
or artificial neural network to predict solar radiation for a particular area [22,23]. Shams
et al. [24] used a time series model to simulate the diurnal variation of solar radiation in
Bahrain. Similarly, Sun et al. [21], and Ajayi et al. [25] developed a physics-based model to
estimate solar radiation.

Hence, in this study, modelling the photosynthetically active radiation (PAR) from the
solar irradiation and vice versa were evaluated. Later, the modelled data were used for the
cost estimation of the algae-based wastewater treatment plant. In the cost estimation model,
excess sunlight was proposed to be used as a heat source, which may be exploited for heat
requirements in the hydrothermal liquefaction of algal biomass and other processes in a
bio-refinery. Most of the places do not have the data of diurnal variation of PAR or solar
radiation. However, monthly average solar radiation is available for most of the places.
Hence, a unique methodology was developed to simulate the diurnal solar radiation from
the monthly average data using various fitting parameters obtained for the solar radiation
to PAR conversion (vice versa) model. Later, simulated PAR/solar radiation for a place
was used to estimate the cost of the algae-based wastewater treatment for that place.
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2. Materials and Method
2.1. Instruments

Solar radiation was measured using a Pyranometer located on the roof of the Mechan-
ical Engineering Department (Indian Institute of Technology, Roorkee, India), whereas
PAR readings were obtained using a LI-COR Light Meter (LI-250A) and a quantum sensor.
Measured data were used to develop a model for PAR. PAR was recorded at a 1-h interval.
Measurements were taken from 7 a.m. to 7 p.m. for a given day. Solar radiation data
for Hyderabad, India; Sorkoto, Nigeria; and Aberystwyth, UK were obtained from the
literature [26–28]. Solar radiation data for Jaipur was collected from a local body.

2.2. PAR Modeling
2.2.1. Estimation of PAR from Solar Radiation

Estimation of PAR can be obtained with the help of a set of modified equations given
by Hu and Wang [29].

PAR = aρclear
b·Kc

sPAR0· sin(wt) (1)

PAR (extraterrestrial) is 39% of global solar radiation (X0 in watt/m2) and when this
value is multiplied by 4.57, PARo can be obtained (µmol/m2/s).

ρclear =
PARobserved

PARo
(2)

Ks = X/Xo (3)

a, b, c, and w are the empirical coefficient, t is the time (10 a.m. as 10, 1 p.m. as 13 etc.).
X is the solar radiation and X0 is the extra-terrestrial solar radiation (ESR),

Xo = Isc

[
sinϕ·sin δ+ (

24
π
) sin

(
24
π

)
·cosϕ·cos δ·cosωs

]
(4)

where Isc = 1370 Watt/m2, ϕ is the latitude of the location, δ stands for the solar declination,
andωs is the hour angle.

Solar declination, δ = 23.45 ∗ sin[
360
365

(d + 284)] (5)

where, d = Julian day, e.g., January 1 (d = 1).
Hour angle was measured using the traverse angle of the sun during sunrise to sunset.
Latitude of Roorkee, Jaipur, Hyderabad, Sorkoto, Aberystwyth, UK are as follows:

29.8543 N, 26.95 N, 17.3850 N, 12.55′ N, and 52.414 N.
Solar radiation can be calculated from the measured PAR (Equations (1)–(5)).

2.2.2. Estimation of Various Unknown Parameters for PAR Estimation Model

In the present study, the model parameters were obtained through the application of
optimization techniques with minimization of the sum of the square of residuals between
measured and estimated PAR values, i.e.,

Minimize ∑(Measured value− estimated value)2

Minimize ∑
(
PARmeasured − a·ρclear

b·Kc
sPAR0 sin(wt)

)2 (6)

MATLAB (release 2019) optimization tool box (MathWorks Inc., Natick, MA, USA)
was used for the minimization of error.

For the optimization in MATLAB, Equation (6) was used as the objective function to
find out the parameters. Ks and ρclear were obtained from the observed data (PAR and
PAR0, X and X0) (Equations (2) and (3)).
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2.3. Projection Model for PAR

Solar radiation data obtained for other places contain only monthly average solar
radiation. However, to estimate the heat production for a particular place from the excess
solar radiation, which is not required for algae growth, require a diurnal variation of solar
radiation. For simulating the diurnal variation of solar radiation or PAR, the following
optimization routine was used (Equations (7)–(10)).

maximize
t,i=n

∑
t,i=1

[PARobtained− a·ρ(i)clear
b·Kc

s(i)PAR0(i) sin(wt)]
2
+

i=n

∑
i=1

(SR−Ks(i)∗X0i)
2 (7)

subject to[
PARobtained−

t,i=n

∑
t,i=n

(a ∗ ρb
(i)clearˆb)K

C
s(i)

n
PAR0(i) sin(wt)

]2

+

[
SRobtained−

∑i=n
i=1 Ks(i)∗X0

n

]2

= 0 (8)

Ks(i)∗X0
−a·ρ(i)clear

b·Kc
s(i)PAR0(i) sin(wt) ≥ 0 (9)

X0Ks(i) > ε (10)

where ε >= 0.
Equations (8)–(10) are the constraints for the objective function. The first constraint

(Equation (8)) ensures that the average of the estimated SR and PAR would satisfy the
monthly average PAR or SR obtained from the literature. The other two constraints
(Equations (9) and (10)) ensure that obtained PAR would never be greater than SR and SR
would always be greater than or equal to zero during the simulated period (ε is a user
defined value greater or equal to zero).

Ks(min) ≤ Ks ≤ Ks(max), a(min) ≤ a ≤ a(max), b(min) ≤ b ≤ b(max) etc. SR is the
average solar radiation that was collected from the literature. Xo(i) and PARo(i) were the
extraterrestrial solar radiation and extra—terrestrial PAR for a particular time (details of
the calculation are given in under PAR modelling). The minimum and maximum values of
pertinent parameters (Ks, a, b, c, etc.) were obtained from the modelling of PAR and SR
for Roorkee, India. The minimization of objective function was used to obtain the various
parameters [a, b, c, Ks, ρclear, and ω] (Equation (7)). Later, these derived parameters were
used to estimate the SR and PAR for each hour (Equations (1) and (3)). Equation (4) was
used to estimate X0.

2.4. Optimization of Cost of Algae Production Taking into Account Sunlight Distribution for Algae
Growth and Heat Production

The optimization routine developed for the cost minimization of algae dominated
wastewater treatment included the cost of the following (i) cost of the trough for solar light
harvesting and optical fiber cost used for sunlight harvesting and transport, (ii) land cost,
(iii) cost of aeration, (v) cost of removing nutrients in the advanced biological nutrients
removal process, (vi) selling price of algal biomass, (vii) equivalent selling price of heat
generated from sun light, (viii) capital cost of construction of the algal pond and (ix) algae
harvesting and drying cost. Data for the above-mentioned items were collected from
various literature and given in Table 1. For the heat production estimation, for a designed
sunlight intensity transfer in the algal reactor, the excess sunlight for a particular time was
assumed to be converted to heat, whereas the lower sunlight intensity as compared to
the designed value would be compensated by increasing the surface area of solar light
harvesting trough. Hence, the designed sunlight intensity and sunlight distribution over a
day would govern the area of sunlight trough (Equation (11)).
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Table 1. Various items used in optimization and their respective cost.

ITEM COST (INR) SOURCE

Land Cost 1600/sq. ft ($21.62/sq. ft) [30]
Cost of trough + optical fibre 1231 USD for 4 m2 illumination area Chong et al. [11]

Construction cost of algal pond 0.60 × 71 × 8988Q0.71 [31]
BNR cost 16/m3 ($0.22/m3) [32]

Biomass cost 21/kg ($0.28/kg) ##
Aeration cost 0.26/m3/day ($ 0.003/m3/day) [33]

Cost of Heat Produced 0.92/MJ [$0.012/MJ] (estimated taking
data from the relevant reference) [10]

## assume taking 30% lipid in the biomass and selling price of lipid as 70 INR, land cost at Sorokoto and Aberyst-
wyth were taken from following sources [31,32]; https://homes.mitula.com.ng/detalle/238612/161011958515007
2117/3/8/lands-sokoto?page=2&pos=3&t_sec=190&t_or=2&t_pvid=7b3a4c4a-bf3d-434f-b7c9-7c626d3ec178 [31]
(accessed on 1 August 2021); https://www.onthemarket.com/details/8422968/ [32] (accessed on 1 August 2021).

The formulated objective function for the algae dominated wastewater treatment
consists of the following items:

Land cost + cost of parabolic trough and cost of optical fiber + capital cost of building
algal pond-BNR cost-aeration cost− cost of biomass produced− generated heat cost + cost
of algae harvesting and drying.

Land cost: it is the cost of land required for constructing an algae-based treatment
facility. Land requirement depends on the volume of water treated per day and the depth
of the reactor. Hence, the total land cost = flow (Q) ∗ hydraulic retention time (HRT) ∗ land
cost/depth of the reactor (H).

Cost of parabolic trough and cost of optical fiber: it is assumed that solar light falls on
a square meter area could penetrate or cater 40 cm depth. Hence, the total area of the trough
required = flow (Q) ∗ hydraulic retention time/0.4. It is assumed that the trough would be
placed 3 m above the treatment facility. Hence, total length of the fiber required is H + 3 m,
where H is the depth of the reactor. The sunlight harvesting and transfer equipment were
modelled according to the device described in Chong et al. [11]. It is assumed that the
cost of the equipment includes the cost of 3 m optical fiber. It is assumed that the cost of
the equipment would be increased in proportion to the increment of fiber length above
3 m. Other details about the harvesting equipment are given in Table 1. Hence, cost of
trough = ((Q ∗ HRT)/H ∗ H/0.4) ∗ (3 + H) ∗ 1231 ∗ 71/(4 ∗ design period ∗ 3).

The construction cost of the algal pond and associated facilities were modelled ac-
cording to the conventional wastewater treatment facility. Pertinent data for the same was
taken from Friedler and Pisanty [33]. For estimating the capital cost of the algal pond, it
was assumed that around 60% of the capital cost of municipal wastewater treatment would
be required for algal pond. For municipal wastewater, around 30–40% of the total cost was
accrued due to aeration and other electrochemical equipment. Accordingly, the cost of the
algal pond = 0.60 ∗ 71 ∗ 8988 ∗ Qˆ0.71.

The algal pond facility provided enhanced nutrient removal efficiency, a credit for
BNR cost was incorporated in the cost function. A similar approach was taken for aeration
cost (credit was taken). Pertinent cost data are listed in Table 1.

BNR and aeration cost = −Q ∗ 16 − Q ∗ 0.26

Cost of biomass produced: Cost of the biomass depends on the biomass produced. In
the algae-based wastewater treatment, the biomass productivity generally remained within
2 g/L/day. Taking 2 g/L/day biomass productivity Monod kinetic coefficients [K = 2,
Km = 1000] were obtained, which gave biomass productivity within 2 g/L/day depending
on the light intensity (I). Cost of biomass was assumed as 21 INR, assuming 30% lipid in
the biomass [Table 1].

Hence, the biomass cost model takes the following form =
(

K∗I
I+Km

)
∗ (Q ∗ 21) where

I = light intensity (µmol/m2/s).

https://homes.mitula.com.ng/detalle/238612/1610119585150072117/3/8/lands-sokoto?page=2&pos=3&t_sec=190&t_or=2&t_pvid=7b3a4c4a-bf3d-434f-b7c9-7c626d3ec178
https://homes.mitula.com.ng/detalle/238612/1610119585150072117/3/8/lands-sokoto?page=2&pos=3&t_sec=190&t_or=2&t_pvid=7b3a4c4a-bf3d-434f-b7c9-7c626d3ec178
https://www.onthemarket.com/details/8422968/
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Heat production cost: Excess sunlight that was not used for algal biomass production
was assumed to be converted to heat. The total area of solar trough = Q ∗ HRT/0.4.
Hence, heat produced = (Q ∗ HRT/0.4) ∗ (x − p)/(4.6 ∗ 1000). Where x and p are
the solar irradiance, and designed solar irradiance used for algal biomass production.
4.6 × 1000 was the conversion factor for changing the unit µmol/m2/s to Kwatt/m2.
It is assumed that the duration of solar radiation in a day was approximately around
11 h. Hence, 11 × 3600 multiplier was used to estimate heat energy produced all over
the daytime. Accordingly, the total cost of produced heat = ∑ (((Q ∗ HRT)/0.4 ∗ x −
(Q ∗ HRT)/0.4 ∗ p)/(4.6 × 1000)) ∗ cost of natural gas × 11 × 3600, It is assumed that
excess heat produced from sunlight would substitute natural gas, hence, cost of natural
gas for producing an equal amount of heat was multiplied with excess heat produced.

Cost of algae harvesting and drying: cost of algae harvesting and drying includes
algae harvesting using centrifuge and drying of algal biomass.

Cost of Algae harvesting = biomass produced ∗ energy required for centrifugation ∗
unit cost of electric energy.

Biomass produced = ((K ∗ I)/(I + Km)) ∗ (Q), energy required for centrifugation =
31 kwh/dry ton of biomass [10], cost of electricity for 1 kwh = 6.5 INR ($0.09).

Drying energy requirement for water evaporation = dry mass of algae produced ∗ energy
required for increase the temperature of water from 30–100 ◦C ∗ cost of the unit heat/
(water content ∗ efficiency of heat transfer) = ((K ∗ I)/(I + Km)) ∗ (Q) ∗ 2.36/(0.4 × 0.8).

Hence, the cost of algae-based wastewater treatment would be the summation of the
above terms, and the resulting objective function is given below (Equation (11)).(

Q∗HRT
H

)
∗ LAND COST +

(
Q∗HRT

H ∗ H
0.4

)
∗ (3 + H) ∗ 1231 ∗ 71/(4∗design period ∗ 3) + 0.60 ∗ 71 ∗ 8988∗Q0.71−

(Q ∗ 16)− (Q ∗ 0.26)−
(

K∗I
I+Km

)
∗ (Q ∗ 21)−∑

(
Q∗HRT

0.4 ∗x− Q∗HRT
0.4 ∗p

4.6∗1000

)
∗ cost of natural gas ∗ 11 ∗ 3600 +

(
K∗I

I+Km

)
∗ (Q) ∗ (31 ∗ 6.5)/1000

+
(

K∗I
I+Km

)
∗ (Q) ∗ 2.36/(0.4 ∗ 0.8)

(11)

In Equation (11),

Q = flow rate (m3/day),
HRT = Hydraulic retention time (day),
H = height of algal pond (meter),
I = solar light intensity used for algae growth (in µmol/m2/s),
X = solar light intensity for a particular time, p = solar light intensity used for algal
growth (µmol/m2/s).

For the optimization of the objective function, bound for height of the algal pond was
taken as 0.4–10 m, for the hydraulic retention time, it was 1–2 days, and for the flow, it was
1000–10,000 m3/day.

Two scenarios were modelled, namely, conservative and optimistic. Details of each
scenario are depicted in Table 2. In the optimistic scenario, the design period of several
components was increased. The compound interest on capital was not considered as it
would have a negligible share on the annuitized cost. For example, in India, most of
the wastewater treatment plants are being built taking loans from various International
development agencies which provided loan at very minimal interest rate (For example
Asian Development Bank provides loan at an interest rate of 2% with a repayment time
30–40 years).
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Table 2. Salient features of conventional and optimistic scenario.

Items Conventional Optimistic

land cost * 10 years 10 years
algal pond * 20 years 30 years

solar trough * 5 years 10 years
optical fibers * 5 years 10 years

kinetic parameter (k) 2 3
drying of biomass included not included

* design period (cost of equipment is same).

3. Results and Discussion
3.1. Diurnal Patterns of Monthly Mean Hourly PAR Values

PAR has a relationship with SR, and it varies during the observation period in Roorkee,
Uttarakhand, India. Previous studies on solar light intensity modelling reported several
relationships between PAR and SR. These models can be used for the estimation of PAR for
the other places. Generally, the seasonal variations of PAR and SR follow solar declination
angle, the latitude of the location, and the day of the year (Julian day). Trends in PAR are
different for all seasons as it depends on the cloud cover also. The maximum monthly
average PAR was observed (hourly average over a month) in June with an estimated
average of 1427.58 µmol s−1 m−2. The minimum PAR was observed in February with an
average value of 464 µmol s−1/m2. PAR that is reaching the surface of Earth comprises
of two portions; the first one is the factor that attenuates under clear skies (ρclear), and
the second one is the attenuation factor due to the cloud cover Ks (clearness index). Ks
(clearness index) indicates the cloudiness that can be calculated from the ratio of SR and ESR.
Cloudiness is correlated to the radiation duration since the least cloudy locations are also
by default the sunniest location, while the cloudiest areas have the least sunny places. The
low value of the Ks means the greater cloud cover or cloudiness and a higher value of Ks
indicates less cloudiness in that location. Ks obtained in this study are higher in the winter
months and lower in the autumn months (Table 3). Higher values of ρclear were estimated
in winter, whereas the lower values were observed during autumn. The estimated values
of KS varied from 0.22 to 0.39 (average value). Compared to the present study, Hu and
Wang [29] reported a variation of Ks between 0.44 to 0.60. However, their model is to
some extent different from ours (w and t are the two extra parameters incorporated in the
present model).

Table 3. Month wise variation in fitting parameters.

Month PAR (Ave ± Std.Dev)
µmol/m2/s Ks (Ave ± Std.Dev) ρlear (Ave ± Std.Dev) a b c w

August 221 ± 225 0.2 ± 0.2 0.2 ± 0.2 1.8 ± 0.6 0.6 ± 0.3 1.0 ± 0.7 1.8 ± 0.8

September 586 ± 599 0.4 ± 0.2 0.4 ± 0.3 2.3 ± 0.5 0.9 ± 0.6 1.0 ± 0.5 1.4 ± 0.6

October 182 ± 111 0.25 ± 0.06 0.4 ± 0.3 1.6 ± 0.9 0.9 ± 0.3 0.09 ± 0.08 0.7 ± 0.9

December 400 ± 453 0.3 ± 0.2 0.6 ± 0.3 1.9 ± 0.6 1.2 ± 0.8 0.6 ± 0.4 1.4 ± 0.8

January 523 ± 398 0.4 ± 0.2 0.5 ± 0.3 1.7 ± 0.5 0.6 ± 0.2 0.5 ± 0.2 0.4 ± 0.3

February 496 ± 496 0.4 ± 0.2 0.4 ± 0.3 1.9 ± 0.6 1.0 ± 0.8 0.8 ± 0.7 1.7 ± 0.7

3.2. PAR (OBSERVED) vs. PAR (MODELED) and Solar Radiation (Observed) vs. Solar
Radiation (Modelled)

The diurnal variation of PAR for several months was also modelled and showed in
Figures 1 and A3a–d (Appendix A). For some of the months of years (June, July, November,
etc.) the PAR, SR modeling could not be conducted because of the non-availability of either
solar irradiation or PAR data. Modelled values matched well with the measured values
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and indicated that PAR, SR modelling framework is efficient to predict the values of SR
or PAR.
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Figure 1. Comparison between observed and modeled data for PAR. Plot for other months are given
in Appendix A.

The statistical results for the goodness of fit for modelled and observed values (PAR
and SR) are presented in Table 4. The statistical parameters include Root Mean Square Error
(RMSE) and the standard deviation (SD) ratio of measured and estimated PAR and SR. The
RMSE provides the goodness of the fit between the modelled and observed value, whereas
the ratio of standard deviation gives that both the data sets (modelled and observed) have
a similar range of variation from their mean value. For Roorkee, root mean square error
between the observed PAR, SR, and the modelled PAR and SR are less than 0.3% for each
of the month. The ratios of standard deviation between measured vs. estimated values for
each of the months were 1. Hence, the model can simulate the individual data accurately
and also able to capture the spread. Several other models are also being used to simulate
solar radiation and PAR for a particular place. Depending on the modelling algorithms,
the RMSE errors varied from as little as 3% to more than 100% for some models. For
example, Amrouche and Pivert [22] reported that ANN-based modelling could have very
little error in the simulated data (~3%). Voyant et al. [34] showed that ANN augmented
with a multivariate modeling scheme could decrease the RMSE errors to 0.5–1%. These
models also showed biases (either over predict or under predict the values). Compared to
the models mentioned above, the empirical, physics-based model showed a higher degree
of errors. For example, models developed by Liu et al. [35] showed more than 100% errors
in the predicted values, whereas the empirical model developed by Ajayi et al. [25] showed
RMSE within 11–100%. These models also showed considerable biases in the estimation.
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Table 4. Root mean square error and standard deviation (measured/estimated) month wise (Roorkee).

Months RMSE (%) SD [(Observed)/SD(Modeled)]

August 0.06 1
September 0.16 1

October 0.06 1
December 0.14 1

January 0.18 1
February 0.25 1

3.3. PAR Prediction from Solar Radiation for Other Places

After the measurement of PAR and modelling the same using the diurnal solar radia-
tion data, a set of empirical parameters were obtained. However, for most of the places
in India and other places in the world, only the monthly average value of solar radiation
was available. However, for implementing algae-based wastewater treatment in which
sunlight would be used for its growth and excess sunlight would be used for generating
heat, one needs to have a diurnal variation of sunlight. Therefore, an attempt has been
made in this study to simulate the diurnal variation of PAR and solar radiation from
monthly average solar radiation data. For this purpose, three places were chosen, Jaipur,
India, Sorkoto, Nigeria; and Aberystwyth, UK [27,28,36]. However, before simulating the
diurnal variation of PAR, simulation of monthly average PAR from solar radiation was
obtained. Monthly average solar radiation data sets were obtained, and then the developed
model (Equations (1)–(6)) was used to estimate the PAR and SR with the help of empirical
parameters obtained for Roorkee.

3.4. Calibration of a Model to Simulate the Diurnal Variation of PAR from the Monthly Average
Solar Radiation

After modelling the monthly average PAR from monthly average solar radiation,
diurnal variation of PAR and SR were modeled using Equations (7)–(10). For Jaipur,
hourly PAR and solar radiation (SR) was estimated from the average monthly PAR and
SR (Figure 2). For other places, the simulated values are given in the Appendix A. In this
model, it is assumed that the average of the diurnal variation of PAR or SR would comply
with the PAR or SR obtained from the literature. The model tried to maximize the variance
between the average of the SR or PAR and the estimated one (Equations (7)–(10)). It is also
assumed that the empirical parameters such as Ks, ρclear, and t would vary for each of the
estimated data points. Due to these features in the model, the diurnal variation of PAR and
SR showed random patterns. In most months, the maximum PAR or SR occurred between
12 p.m. to 2 p.m. Measured PAR (some of the data are shown in the Appendix A) also
showed some irregularities; however, such irregularities are not as dramatic as compared to
the simulated one. As our main goal is to develop a diurnal variation, the random pattern
in the variation would not affect the outcome of the cost optimization routine. However, if
one wants, a modification of the present algorithm could also simulate a smooth pattern of
diurnal variation of SR and PAR. Simulating the smooth pattern of the diurnal variation
require a set of constant parameters (Ks, ρclear, a, b, c and w), which were estimated
using optimization routine and used for simulating the SR and PAR for a particular month
(Figure A5 in Appendix A). For a smooth variation of SR or PAR, the maximum intensity
used to occur between 11–12 p.m. The maximum intensity observed in the smooth profile
was lower than the one observed in the irregular profile. Diurnal variation of weather data
could also be implemented (cloudiness index) and the present scheme to simulate a more
realistic diurnal variation of PAR and SR.



Sustainability 2021, 13, 11937 10 of 28

Sustainability 2021, 13, x FOR PEER REVIEW  10  of  29 
 

Diurnal variation of weather data could also be implemented (cloudiness index) and the 

present scheme to simulate a more realistic diurnal variation of PAR and SR. 

 
(a) 

 
(b) 

Figure 2. Hourly projection of (a) PAR and (b) solar radiation for Jaipur (month wise). Simulations for all the months are 

not shown. 

   

0

500

1000

1500

2000

2500

3000

3500

6 8 10 12 14 16 18

P
A
R
 (
m

o
l/
m
2
/s
ec
)

Time(hr) 

Jan March May July Oct Dec

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

6 8 10 12 14 16 18

So
la
r 
R
ad

ia
ti
o
n
 (
m

o
l/
m
2
/s
e
c)

Time(hr) 
Jan March May July Oct Dec

Figure 2. Hourly projection of (a) PAR and (b) solar radiation for Jaipur (month wise). Simulations for all the months are
not shown.

3.5. Cost of Solar Heating Integrated Algae-Based Wastewater Treatment

Cost optimization of the solar heating integrated algae-based wastewater treatment
was carried out using Equation (11). For this purpose, simulated solar radiation and PAR
for Jaipur, Sorkoto Aberystwyth, and Hyderabad were used. Month-wise variation of cost
of the treatment (INR/m3 wastewater treated) was estimated and shown in Figures 3 and 4.

Jaipur, India: The cost of the treatment (INR/m3) for Jaipur varied from 9 to 18 (per m3

wastewater treated) in the conservative scenario ($0.12–$0.24). However, if one considered
an increase in the design period (opportunistic scenario), the wastewater treatment unit
registered profit yearly. The cost of the treatment (per m3 wastewater treated/day) varied
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from−17 to−26 INR (profit) (Figure 3a) (−$0.23–−$0.35). The optimum design parameters
(flow, HRT, Depth of the pond, and irradiance used for algal growth) obtained from the
optimization exercise remained constant throughout the year (except irradiance). In the
optimistic scenario, the values of most of the design variables remained the same as
compared to the conservative scenario, except for the depth of the pond. The depth of
the pond was increased from 0.7 m in the conservative scenario to 1 m in the optimistic
scenario. The major cost of the treatment was incurred due to the solar light harvesting and
transport device. The cost of the unit varied from 7000 INR to 14000 INR depending on the
scenario ($95–$189). The major income was registered by biomass selling and incorporating
the biological nutrients removal in the wastewater treatment unit (Figure 4a). The capital
cost of constructing such a unit for treating 1000 m3/day in Jaipur could be varied between
11 to 14 crores ($1.5 million–$1.9 million). 47–62% of this cost is incurred by the solar
light-harvesting unit. The capital cost of the solar light-harvesting unit can be recovered by
2 to 4 years from the heat production.

Sorkoto, Nigeria: The cost of the wastewater treatment in Sorkoto showed a similar
trend as in Jaipur. However, the cost of the treatment is lower than that estimated in Jaipur.
In the conservative scenario, the cost of the treatment varied from 3 INR to 7 INR (per m3

wastewater treated per day). In contrast, in the optimistic scenario, the treatment unit
registered profit, and profit varied from 19 INR to 27 INR for treating 1 m3 wastewater/day
(Figure 3b). It was also observed that in the optimistic scenario, an increase in wastewater
flow from 1000 m3 (conventional scenario) to 10,000 m3 was observed. The capital cost
of the unit (1000 m3/day capacity) was estimated to be varied between 11–14 crores
($1.5 million–1.9 million) depending on the scenario.

Aberystwyth, UK: In Aberystwyth, solar radiation was low all over the year. Hence,
for the growth of the microalgae, it was noticed that the intensity of the solar radiation for
6 m2 should be concentrated to 1 m2 area for the growth of microalgae and the treatment
of wastewater. However, even after increasing the area of the solar harvesting device, the
whole treatment unit could not make a profit even in the optimistic scenario. The cost of the
treatment in the conventional scenario varied from 126–187 INR ($1.70–$2.53), which was
one order magnitude higher as compared to other places studied in this study. In the opti-
mistic scenario, the cost of the treatment could be reduced to 16 INR ($0.22) for one or two
months (Figure 3c). As the treatment unit required a larger area for concentrating sunlight
and harvesting, the major cost of the treatment was accrued by the sunlight harvesting and
transport device, and the cost is more than 4–5 times higher for treating the same amount
of wastewater (Figure 4c). 82% of the capital cost (1000 m3/day unit) was consumed by the
solar light-harvesting unit. The cost associated with the device varied from 37K to 74 K
(INR), whereas in Jaipur or in Sorkoto, similar equipment consumed no more than 7 K to
13 K (Figure 4). The cost of the solar light harvesting devices can be recovered within 4 to
7 years depending on the scenario (optimistic vs. conservative scenario).
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Hyderabad, India: A similar exercise was also carried out for Hyderabad. Optimal
parameters were similar as obtained for Jaipur. However, the obtained flow increased
to ~10,000 m3/day. The treatment unit showed profit even in the conservative scenario.
However, profit was registered for six months of the year. The cost of the treatment (INR,
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Rs) varied from 6 to −9(profit). In the optimistic scenario, the unit registered profit all
over the year and profit (INR, Rs) varied from −28 to −44 (per m3 of wastewater treated)
(Figure 3d). The capital cost of constructing such a unit for 1000 m3/day capacity was
estimated for Hyderabad as 11 crores ($1.5 million). Contrary to Jaipur, the capital cost did
not vary for a conventional and optimistic scenario. The capital cost of solar harvesting
devices can be recovered within two years by selling produced heat.

Several studies have also been carried out for algae-based biofuel production with or
without integrating the solar light-harvesting system [12,37,38]. According to these studies,
the integration of sunlight harvesting and waste nutrients was the key to the economic
feasibility of the treatment unit. Some of these units, even though energetically favorable, are
not economically viable [37]. For example, the net energy ratio reported by Hognon et al. [37]
varied between 0.7–1.1, comparable with other studies, which used waste nutrients for biofuel
production [39–42]. However, economic analysis carried out by Hognon et al. [37] reported
that the cost of the produced biofuel would be around 195 INR. Davis et al. [38] reported that
the minimum cost of algal biomass production was 35 INR. If one considers even 30% lipid in
the biomass, the cost of the produced biofuel can be as high as 116 INR/L. The major cost of
algal biomass production, as reported by Davis et al. [38] was because of culture media and
cultivation. However, Acien et al. [43] reported the major cost of algal biomass production
was incurred by labour and capital cost. The cost of biomass production (€69/kg) was also
much higher than the cost reported by Davis et al. [38].

Contrary to the above finding, Delrue and his coworkers estimated that the cost of
producing biodiesel could be kept below 2 USD/L [44]. Integrating waste nutrients and
sunlight can reduce the cost of biofuel production to 80 INR ($ 1.08) [12]. Considering the
cost offset due to avoidance of aeration and cost of tertiary wastewater treatment, the whole
unit as described in this study can be made economically viable except in Aberystwyth,
UK. For evaluating the cost comparison, the item-wise cost for treating wastewater was
also evaluated in this study (Figure 4). According to the data obtained in this study, it was
observed that the major cost of the treatment was incurred by sunlight harvesting and
transport device. The annuitized cost of this device was atleast 7000 INR and can be as high
as 74,000 INR. However, increasing the design period of optical fibre from 5 years to 10 years
could reduce the annuitized cost to 37,000 INR. Hence, the very high cost of solar light-
harvesting devices and low sunlight intensity could not make the whole unit profitable
in Aberystwyth. It was observed that in all the places, the maximum biomass production
occurs at 600 µmol/m2/s. The concentration of biomass was around 750 mg/L/d, which
was on the higher side as compared to the present algae production data available using
wastewater [45,46]. However, it is possible to develop algae-based wastewater treatment
technology using special algal strains, which could grow in low light intensity. Most of
the algae-based wastewater treatment studies showed the growth of algae in light intensity,
not more than 250 µmol/m2/s [46]. Hence, there is a considerable scope to reduce the
cost of wastewater treatment in Aberystwyth. For this purpose, another few simulations
were carried out taking several fixed solar radiations (100–250 µmol/m2/s) for algal growth,
whereas biomass productivity varied between (750–2000 mg/L/day). From a perusal of these
simulations, it was observed that if one considered 100 µmol/m2/s as solar radiation and
corresponding algal growth as 2000 mg/L/day, the whole facility could provide profit during
June and July month for the opportunistic scenario. Hence, in the regions like Aberystwyth,
UK, where solar radiation was low, increasing the biomass productivity in the low light setting
would not be sufficient. The biomass productivity was also high, corresponding to the current
algal biomass productivity observed in the raceway ponds. However, considering the better
distribution of solar radiation, it is possible to improve biomass productivity [7,8,47]. Optical
fiber-based light distribution system improved the biomass productivity by 38–43% and
could reach biomass productivity as high as 2.53 g/L/day. However, the above-mentioned
data were collected from facilities where synthetic media was used. Hence, to facilitate the
implementation of the facility proposed in this study, one needs to improve the economics
of solar radiation harvesting and distribution equipment. For understanding the sensitivity
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of this equipment on the cost of the treatment, it was assumed that the design period was
increased further to 15 years. In that case, when the design period was 15 years, the facility
could register profit for most of the months of the year.

Cost of the various components of the proposed facility: As compared to the present
study, John and Laxmanan [48] estimated that the cost of the solar trough would be around
200–500 INR/m2 depending on the size of the trough. However, they did not consider the cost
of the tracking devices, absorbers etc. in their calculation. The annuitized cost for constructing
the algal pond estimated in this study varied from 900–2600 for treating 1 m3 wastewater.
As reported in the literature, the capital cost of algal pond construction (annuitized) varied
from 32–300,000 INR [38,43]. The cost of biomass production was assumed at 21 INR in this
study; however, the cost of stand-alone algal biomass production using artificial media could
be as high as 1639/kg [38]. The selling price of heat obtained in this study and reported in
literature match well with each other, and heat production provided profit in the range of
3500–11,000 (INR) depending on the location of the study (Figure 4). The heat production
provided the maximum revenue in Hyderabad and Aberystwyth, whereas biomass provided
almost similar revenue in all the places. A perusal of the breakdown of cost obtained from the
analysis also depicted drying cost, and centrifugal cost (operational cost) contributed little
to the overall cost of the treatment. However, energy analysis studies depicted that algal
biomass harvesting is one of the bottlenecks of algal biomass production [49]. Hence, it can
be deduced that even though the energy demand is very high in the algae harvesting and
drying process, the cost of energy and harvesting would not contribute much to the overall
cost of the proposed algae-based wastewater treatment.

Several other studies also reported the advantages and disadvantages of solar energy
in biomass drying, waste remediation, and in renewable energy production [10,50–53].
These studies showed that depending on the type of uses and location of application affect
the cost of energy derived from sunlight. For example, Safei et al. [50] argued that a solar
concentrator for cogeneration of heat in place of natural gas could be economically viable in
some parts of Portugal. However, the application of solar PV was not economically viable
in Portugal, China and even in Saudi Arabia [50–53]. Poblet and Painemal [10] observed
that solar concentrator-based heat drying of sludge could improve the energy efficiency as
compared to the conventional heat drying of sludge. Hence, it can be deduced that the heat
production from sunlight is the most economically viable method. A similar observation was
also observed in the present study. Most of the revenue in the study was gathered from heat
production. However, the present simulation of diurnal variation of solar radiation and the
associated heat production model did not include the quality of heat production. Generally,
waste heat with a temperature range of 60–80 ◦C is available in a considerable amount in most
of the petrochemical or chemical industries [54]. As the temperature required for drying
biomass seldom reach above 100 ◦C, hence, such a heat source can be available without
burning fuels. However, a heat source, which has a temperature above 300 ◦C, which is
required for the thermochemical treatment, needs to be obtained by burning fuels [55].

Hence, if one considers such intricate details, depending on the available waste heat
source, the production of high-temperature heat can be increased. Some studies on solar
heat concentrators reported that solar light intensity also affected the temperature obtained
at the concentrating area. Generally, air, water, or oil are being used for harvesting the
concentrated heat. If one tried to increase the temperature of the heat harvesting fluids by
controlling the flow of fluids, the heat transfer efficiency was also changed [56].

The present research is primarily carried out to simulate the integration of solar energy for
algae-based wastewater treatment and for simulating solar irradiance where the diurnal variation
of solar radiation is not available. The model can be applied to places to estimate the algal biofuel
production potential using available municipal wastewater and simulated solar radiation.

4. Conclusions

Developed PAR, SR estimation model, showed that observed vs. modeled values
match well and had a very low root mean square error (~0.3%). The algae-based wastewater
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treatment integrated with sunlight harvesting and heating could be profitable for most of
the month in a year where the sunlight intensity is high. The major cost of the treatment
was incurred by the sunlight harvesting device. Biomass and heat production provided
the maximum profit for the unit. The proposed sunlight integrated wastewater treatment
method can be a profitable method of treating wastewater and producing biomass in places
where sunlight intensity is high. The methodology depicted in this manuscript provides a
robust guideline for estimating the feasibility of an algae-based wastewater treatment unit
where a diurnal variation of sunlight was not available. The capital cost of the unit varied
between 11–44 crores ($1.5 million–5.9 million) depending on the place of the construction.
The major fraction of the capital cost was consumed by the solar light-harvesting unit.
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Appendix A

1 USD ($) = 74 (RS, INR) [Conversion factor USD ($) to Indian currency (Rs)].

1 

 

 

Figure A1. Schematic representation of various methodology used in this study.
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Figure A2. (a–h) Measured hour wise monthly average, maximum and minimum PAR for Roorkee.
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Figure A4. Simulated Solar radiation (a) and PAR (b) for Sorkoto, Nigeria. 
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Figure A4. Simulated Solar radiation (a) and PAR (b) for Sorkoto, Nigeria.



Sustainability 2021, 13, 11937 25 of 28
Sustainability 2021, 13, x FOR PEER REVIEW  26  of  29 
 

 
(a) 

 
(b) 

Figure A5. Simulated Solar radiation (a) and PAR (b) for Aberystwyth, UK. 
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Figure A5. Simulated Solar radiation (a) and PAR (b) for Aberystwyth, UK.
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Figure A6. Simulated Solar radiation (a) and PAR (b) for Aberystwyth, UK using the modified model for smooth profile. 
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Figure A6. Simulated Solar radiation (a) and PAR (b) for Aberystwyth, UK using the modified model for smooth profile.
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